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We analyze substitution tiling spaces with fivefold symmetry. In the substitution process, the
introduction of randomness can be done by means of two methods which may be combined:
composition of inflation rules for a given prototile set and tile rearrangements. The configurational
entropy of the random substitution process is computed in the case of prototile subdivision
followed by tile rearrangement. When aperiodic tilings are studied from the point of view of
dynamical systems, rather than treating a single one, a collection of them is considered. Tiling
spaces are defined for deterministic substitutions, which can be seen as the set of tilings that
locally look like translates of a given tiling. Čech cohomology groups are the simplest topological
invariants of such spaces. The cohomologies of two deterministic pentagonal tiling spaces are
studied.

1. Introduction

Aperiodic tilings of the plane appeared in the literature in the works of Wang [1] and Penrose
[2]. Substitution tilings with noncrystallographic planar symmetries have been intensively
studied in the last decades, mainly since the discovery of quasicrystals. The structures
are meaningful in several areas like the study of quasicrystalline materials and artificially
fabricated macroscopic structures that can be used as photonic or phononic devices.

A property of quasicrystal structures is the appearance of sharp peaks in their
diffraction patterns and recent results in this direction use methods familiar from statistical
mechanics and from the long-range aperiodic order of tilings [3]. A suitable approach is to
work with translation invariant families of mathematical quasicrystals, instead of dealing
with a single one. The action of the dynamical systems, which is usually on time, is now
translation on space. For recent advances in the mathematics of diffraction in the context
of dynamical systems and stochastic spatial point processes, see [4]. On the other hand,
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the atoms in a material modeled with a quasicrystal tiling are distributed in such a way
that they determine a quasiperiodic potential. The spectrum of the associated Schrödinger
Hamiltonian has infinitely many gaps, and its distribution is related to the integer Čech
cohomology of the corresponding space of tilings [5, 6]. Other questions tied to the Čech
cohomology are connected to the derivation of the internal structure of a material from
diffraction data or the type of deformations of the molecular structure that are consistent
with the combinatorics of the molecular bonds [7, 8].

Pentagonal, octagonal, decagonal, and dodecagonal quasicrystalline materials have
been found in experiments, and tilings with the corresponding symmetries in the diffraction
patterns are candidates of their structural models. In this paper, we first study the derivation
of both deterministic and random tilings and then we discuss the cohomology groups of
some tilings generated by an inflation process. In Section 2, we review a general geometric
construction for substitutions and we show how it is applied to the case d = 5. Then
we analyze the introduction of randomness in the tilings generation and we compute the
configurational entropy for certain cases. To conclude, we consider tiling spaces and we study
the cohomology groups of the deterministic pentagonal patterns in Section 4.

2. The Substitution Tilings

In [9], the authors studied the systems of tangents of the deltoid and derived a method for the
construction of substitution tilings for d-fold symmetries, with d being odd and not divisible
by 3. They are particular cases of subsystems of lines included in the constructions described
below and in [10, 11]. By a system of lines, we mean a set of d straight lines (d-system)
appearing in d orientations. In what follows, E(n) denotes the integer part of n and sν ≡
sin(νπ/d). The following sets of lines in the xy plane define for each d, up to mirror images,
finite patterns made with triangles having edge lengths sν. The patterns contain not only the
prototiles but also, when arrows are added as explained below, the first inflation step (level-1
supertiles) and therefore the necessary information for the derivation of the substitution or
inflation rules. For d = 2m, (m = 3, 4, . . .) the systems of lines are formed by x = 0, y = 0, and

y = x tan
(νπ
d

)
+ Γα(ν), (2.1)

where for ν = 1, 2, . . . , m − 1, the index α(ν) is defined as α(ν) = ν (ν = 1, 2, . . . , E(m/2)),
α(ν) = m − ν (ν = E(m/2) + 1, . . . , m − 1), and Γα(ν) is defined as Γα(ν) = −

∑α(ν)
k=1 sm+1−2k. For

ν = m + 1, m + 2, . . . , d − 1, we have α(ν) = ν −m (ν = m + 1, . . . , m + E(m/2)), α(ν) = d − ν
(ν = m + E(m/2) + 1, . . . , d − 1) and Γα(ν) =

∑α(ν)
k=1 sm+1−2k.

The inflation factors for simple tilings are [ν]d = sν/s1, ν = 2, 3, . . . d, and composite
tilings, where the inflation factors are products of the form [ν]d[μ]d · · · [λ]d, can be obtained
also; although in order to include all the inflation factors, additional constructions must be
used [11]. In Section 3, we will study the case d = 5 which may be generated with the
constructions considered in this section.

In general, arrows must be added to the triangle edges in order to generate tilings
by means of substitution rules. The arrows are not necessary for the d = 2m tilings with
inflation factors sm/s1 because the edge substitution rules are palindrome [10, 11]. A 2d-
system contains a d-system inheriting a structure on each edge. The d-system prototile edges
appear subdivided into two segments. We adopt the criterion of assigning an arrow in
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(a) (b)

Figure 1: System of lines for d = 5, 10 (a) and induced arrows for d = 5 (b).

the direction going from the longest to the shortest segment, and no arrow when the edge
has a barycentric subdivision. When the tiles are juxtaposed along an edge, the arrows on the
edge match.

The system of lines for d = 10 are (Figure 1)

x = 0, y = 0,

y = x tan
(
π

10

)
− s4, y = x tan

(
2π
10

)
− s4 + s2,

y = x tan
(

3π
10

)
− s4 + s2, y = x tan

(
4π
10

)
− s4,

y = x tan
(

6π
10

)
+ s4, y = x tan

(
7π
10

)
+ s4 + s2,

y = x tan
(

8π
10

)
+ s4 + s2, y = x tan

(
9π
10

)
+ s4.

(2.2)

This 10-system contains the subsystem (thick lines in Figure 1)

x = 0,

y = x tan
(

2π
10

)
− s4 + s2, y = x tan

(
4π
10

)
− s4,

y = x tan
(

6π
10

)
+ s4, y = x tan

(
8π
10

)
+ s4 + s2,

(2.3)

corresponding to d = 5. The lines of the 10-system intersect the 5-system on points that
determine the arrow directions (Figure 1(b)).
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The 2D tilings can be described in terms of word sequences in D0L-systems as in [12].
A 0L system is a triple G = {Σ, h, ω} where Σ = {x1, x2, . . . , xn} is an alphabet, h is a finite
substitution on Σ into the set of subsets of Σ∗, and ω ∈ Σ∗ is the axiom or starting symbol. G
is called a D0L system if #(h(xi)) = 1, for every xi ∈ Σ, that is to say, there is only one possible
substitution for each tile.

Now we consider the tilings generated with the 5-system. The triangular tile
Tm(x, y, z) has edges x, y, z placed anticlockwise, and the index m ∈ Z10 denotes relative
orientation. The letters Am, Bm represent the prototiles Tm(α, α, β), Tm(α, β, β), respectively,
where α, β have lengths s2, s1, with sk ≡ sin(kπ/5). The tiles of type A then have edges
with relative lengths 1, 1, θ, and the tiles of type B have sides θ, θ, 1, where θ = s2/s1 is
the golden number. The alphabet is Σ = {Am, Ãm, Bm, B̃m, (, )} with m ∈ Z10. It contains two
brackets and letters of type Xi and X̃i which represent reflected tiles. The set of production
rules h for the tiling T− is (Figure 2(a)):

Am �−→ (Φ−[Am]) =
(
Bm+4Am+6Ãm+3

)
,

Bm �−→ (Φ−[Bm]) = (Bm+4Am+6),

Ãm �−→
(
Φ−
[
Ãm

])
=
(
B̃mÃm+4Am+3

)
,

B̃m �−→
(
Φ−
[
B̃m
])

=
(
ÃmB̃m+6

)
,

) �−→),

(�−→ ( .

(2.4)

Any letter representing an oriented tile can be used as axiom. By iterating the
production rules applied to an axiom, we get word sequences that describe the tiling growth.
We take the axiom Am for a given m. In the word (Bm+4Am+6Ãm+3), if two letters follow
one another inside a bracket, the corresponding oriented triangles are glued face to face in
a unique way. In the next derivation step, which gives ((Φ−[Bm+4])(Φ−[Am+6])(Φ−[Ãm+3])),
two oriented triangles represented by consecutive words enclosed by brackets like Φ−[Bm+4]
and Φ−[Am+6] are glued face to face and again the prescription is unique.

A different type of tilings T+ can be generated with substitution rules characterized by

Φ+[Xm] = Φ−[X̃m] for all the prototiles represented by Xm ∈ Σ with ˜̃Xm = Xm. Penrose tilings
[2, 13] can be obtained also with the same system of lines but the arrowing is changed for
some edges (Figure 2(b)). Having in mind the different arrow decorations for the prototiles,
the substitution rules for the Penrose pattern can be obtained formally from Φ− if we make
the replacements Am ↔ Ãm. Fragments of T−, T+ and Penrose tilings can be seen in Figures 3
and 4.

3. Random Substitutions

Random tiling problems are of interest from a mathematical and also physical point of
view. Quasicrystal order may appear even for random tilings, and it is not yet known if
deterministic tilings are better candidates than random tilings for the description of materials
with noncrystallographic symmetries. A method for the derivation of random substitutions
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Figure 2: Arrowed prototiles and inflation rules of (a) T− and (b) Penrose tilings.

with arbitrarily high symmetries has been introduced recently [11]. We analyze two types of
nondeterministic tilings, one is related to composition of inflation rules and the other to tile
rearrangements.

3.1. Composition of Inflation Rules

The composition of inflation rules Φn
−Φm

+ Φ
k
− · · · gives tilings that are edge to edge. This is

a property that is not in general fulfilled by other random tilings studied in the literature
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(a) (b) (c)

Figure 3: Fragments of (a) T−, (b) T+ and (c) Penrose tilings.

Figure 4: The superposition of Φ6
+[A1] and Φ12

+ [A1].

[14, 15]. Random substitutions can be described in terms of stochastic L-systems. A stochastic
0L-system is a four-tuple Gπ = {Σ, h, ω, π}. The alphabet, the set of productions, and the
axiom are defined as in a 0L-system. The function π : h �→ (0, 1], called the probability
distribution, maps the set of productions into the set of production probabilities. We
define a stochastic DT0L-system as a four-tuple Gπ = {Σ,H,ω, π} where H is a set of
homomorphisms and π : H �→ (0, 1]. The map is defined for every element in H in contrast
to the previous definition where it is defined for every production rule in h. For the case, we
are considering H = {Φ−,Φ+} and a fragment of one of the patterns can be seen in Figure 5.
New vertex configurations appear which are not present in T−, T+ or Penrose tilings.
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Figure 5: A fragment of (Φ+Φ−)
5.

3.2. Tile Rearrangements in the Inflation Rules

Another way to get nondeterministic tilings is to introduce tile rearrangements in the
inflation rules. First we derive a tiling with the deterministic inflation rules corresponding
to an m-system followed by prototile subdivision by the d-system which contains it (d =
2m, 4m, . . .), and then we apply tile rearrangements. In Figure 6(a) we can see the 10-system
with possible edge flips forming edges of a pentagon. The tiles corresponding to the 5-
system are represented in Figure 6(b). We begin by applying the substitutions Φ− or Φ+, and
then we get two possibilities for subdivision of one of the tiles and just one for the other
(Figure 6(c)).

The configurational entropy S for a sequence of patterns obtained by a random
substitution process is defined as the logarithm of the number of patterns of a given size
and shape (or level-n supertiles) divided by the number of tiles Nn in the thermodynamic
limit

lim
n→∞

Log #n
Nn

, (3.1)

where #n is the number of level-n supertiles after applying n times the inflation rules. Now
we compute S along the lines of [11] by randomizing T− or T+ in two cases: prototile
subdivision by d = 10 and d = 20 followed by tile rearrangements as indicated in Figures 6(b)
and 8.
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(a) (b)

(c)

Figure 6: (a) The 10-system with thick lines indicating flipped edges. (b) The first inflation step corre-
sponding to d = 5 is indicated by thick lines; prototile subdivision by the 10-system is represented with
thin lines and the thicker line indicates the possible tile flip. (c) First inflation step followed by prototile
subdivision and the two possibilities of subdividing one of the prototiles.

The frequencies of the tiles FA, FB in the tiling are given by the elements of the
normalized eigenvector corresponding to the eigenvalue with largest modulus, or Perron-
Frobenius eigenvalue, of the 2D prototile substitution matrix which in this case is

(
2 1

1 1

)
. (3.2)

The Perron-Frobenius eigenvalue is θ2 with algebraic conjugate θ−2, and the character-
istic polynomial is x2 − 3x + 1. The frequencies are then

(FA,FB) =
(
θ−1, θ−2

)
. (3.3)
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The general solution to the difference equation

T(n + 2) = 3T(n + 1) + T(n) (3.4)

is

T(n) = k1θ
2n + k2θ

−2n. (3.5)

The number ofA and B tiles after n iterations isNA
n = kA1 θ

2n+kA2 θ
−2n andNB

n = kB1 θ
2n+

kB2 θ
−2n, respectively, and the total number of tiles is Nn = k1θ2n + k2θ−2n, where kAi , k

B
i , ki,

i = 1, 2 are constants determined by the initial conditions about the prototiles content.
The number of patterns after iterating n times (level-n supertiles) is

2ω(Φ(A))NA
n−1+ω(Φ(B))NB

n−1 , (3.6)

where ω(Φ(X)) is the number of tile rearrangements in the first inflation step of X = A,B. By
taking into account

lim
n→∞

Nx
n−1

Nn
=

1
θ2

kx1
k1

=
1
θ2 Fx, (3.7)

we have

S =
1
θ2

∑
X

ω(Φ(X))FXLog 2. (3.8)

By examining the case d = 5 included in d = 10, we get ω(Φ(A)) = 1, ω(Φ(B)) = 0, as
indicated in Figure, 6(c), therefore,

S =
1
θ3 Log 2 ≈ 0.16. (3.9)

The case d = 5 included in d = 20 can be seen in Figure 7. We have now ω(Φ(A)) = 5,
ω(Φ(B)) = 3 (Figure 8) and

S = θ Log 2 ≈ 1.12. (3.10)

If we randomize T− or T+ by considering the 5-system included in a d-system with
higher d, we can obtain random tilings with increasing entropy values. Also the combination
of the two methods discussed in this section is possible, and they give always edge to edge
tilings.

The relation between diffuse scattering and randomness has been studied in [4, 16]. By
comparing diffraction of point sets ranging from deterministic to fully stochastic, the authors
show that diffraction is in some cases insensitive to the degree of order. The following is
an open question: what is the role of entropy in the diffraction patterns of the structures
described above.
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Figure 7: The 20-system with thick lines indicating flipped edges and the d = 5 system.

(a) (b)

Figure 8: Prototile subdivision by the 20-system is represented with thin lines and the thicker line indicates
the possible tile flips.

4. Cohomology Groups of the Deterministic Tiling Spaces

A tiling space ΩT can be seen as the set of tilings that locally look like translates of a tiling T .
Anderson and Putnam studied the cohomology of substitution tiling spaces as inverse limits
of branched manifolds [17]. They proved that the cohomology can be computed by means
of a CW complex Γ1 on collared tiles which are formed to get a substitution that “forces its
border”, a concept introduced in [6]. The cell complex Γ0 contains one copy of every kind of
tile that is allowed with some edges identified for the 2D cases, and the result is a branched
surface. If somewhere in the tiling, a tile shares an edge with another tile, then those two
edges are identified. Tiles labelled by the pattern of their nearest neighbors are called collared
tiles, and the cell complex Γ1 is obtained by stitching one copy of each collared tile. If σ is the
map representing the substitution rule, we denote by γk (k = 0, 1) the map induced on the cell
complex Γk by σ. A substitution is said to force the border if there is a positive integer n such
that any two level-n supertiles of the same type have the same pattern of neighboring tiles. A
method for describing an arbitrary substitution tiling space by a substitution that forces the
border was introduced in [17]. It is obtained by rewriting the substitution in terms of collared
tiles. If Hk(Γ1,Z) denotes the Čech cohomology with integer coefficients of the complex Γ1,
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then it is shown in [17] that the cohomology Ȟk(Ωσ) of the tiling space associated with σ is
isomorphic to the direct limit of the system of abelian groups

Ȟk(Γ1,Z) −→γ ∗1
Ȟk(Γ1,Z) −→γ ∗1

Ȟk(Γ1,Z) −→ · · · = lim
→ γ∗1

Hk(Γ1,Z) (4.1)

for k = 0, 1, 2, . . .. If the substitution forces its border, then the same conclusions hold replacing
Γ1 and γ1 by Γ0 and γ0.

4.1. Penrose Tiling Space

Now we study the cohomology of Penrose tiling spaces ΩP along the lines of [8, 18] but with
different inflation rules. The rotation group Z10 acts freely on edges and tiles. We have two
edges α, γ with length s2, 2 edges β, δ with length s1, and four tile typesA = T(r5δ, r8γ, r7α),
B = T(r5γ, r9δ, rβ), Ã = T(δ, r8α, r7γ), and B̃ = T(γ, r4β, r6δ) with r10 = 1 and each appears
in 10 orientations. The vertices of A and B can be seen in Figure 2(b), while the vertices of Ã
and B̃ can be obtained by replacing {a, b, c} �→ {b, d, a} and {c, d, b} �→ {d, a, c} on A and B.
They satisfy a = rb, b = ra, c = rd, and d = rc. The uncollared Anderson-Putnam complex Γ0

has Euler characteristic χ = 4.
The four irreducible representations of Z10 over the integers are the 1-dimensional

scalar (r = 1) and pseudoscalar (r = −1) representations and two 4-dimensional representa-
tions. The vector and the pseudovector representations have r acting by multiplication on the
rings R1 = Z[r]/(r4 − r3 + r2 − r + 1) and R2 = Z[r]/(r4 + r3 + r2 + r + 1), respectively. In this
case the vertices appear in the scalar and pseudoscalar representations, while the edges and
faces appear in all representations. If the cochain groups are denoted by Ck , then, for k = 0, 1,
the coboundary maps δk = ∂Tk+1 : Ck �→ Ck+1 are obtained from the boundary maps:

∂2 =

⎛
⎜⎜⎜⎜⎜⎝

r7 0 −r8 0

0 −r 0 r4

−r8 −r5 r7 1

−r5 −r9 1 r6

⎞
⎟⎟⎟⎟⎟⎠

(4.2)

in all representations and

∂1 =

(
1 − r 0 −1 1

0 r − 1 1 −r

)
(4.3)

in the scalar and pseudoscalar representations.

Scalar Representation r = 1

In the scalar representation, C0 = Z2, C1 = Z4, C2 = Z4. We have rank δ0 = 1 and rankδ1 = 2
and H0 = Ker δ0 = Z, H1 = Ker δ1/Imδ0 = Z, and H2 = Z4/ Im δ1 = Z2.
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Figure 9: The superposition of Φ4
P [A1] and Φ8

P [A1].

Pseudoscalar Representation r = −1

In the pseudoscalar representation, C0 = Z2, C1 = Z4, and C2 = Z4 also. But now both δ0 and
δ1 have rank 2 and H0 = H1 = 0, H2 = Z2.

Vector Representation

There are no vertices in the vector representation, while C1, C2 are free modules of
dimensions 4 over the ring R1. The matrix δ1 has rank 3 over R1 and, as abelian groups,
we have H1 = H2 = Z4.

Pseudovector Representation

In the pseudovector representation, C1, C2 are free modules of dimensions 4 over the ring
R2. The map δ1 is an isomorphism and H0 = H1 = H2 = 0.

We have obtained the cohomology of the uncollared complex Γ0 which is enough
because the Penrose tiling forces the border [17], in four steps (Figure 9). To get the cohomol-
ogy of the tiling space ΩP , we need to compute the direct limit of the cohomologies under the
substitution. But the substitution is invertible and the direct limit of each Hk is simply Hk.
By taking into account all the irreducible representations, we get the well-known result:

Ȟ0(ΩP ) = Z, Ȟ1(ΩP ) = Z5, Ȟ2(ΩP ) = Z8. (4.4)

4.2. The Tiling Space ΩΞ+

The tiling space ΩΞ+ is associated with Φ+ described in Section 2. Iteration of the inflation
rules shows that the tiles appear in 5 different orientations. We modify the inflation rules
in such a way that, in any inflation step, the prototiles appear in the same 5 orientations
(Figure 10). The possible vertex configurations can be seen in Figure 11. The analysis of level-
6 supertiles shows that the substitution forces the border. In fact, the level-6 superedges with
relative length s2 have the following pattern of vertex configurations (Figure 12)

5327329253273292532925, (4.5)
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(a)

(b)

(c)

(d)

Figure 10: The inflation rules for the tiling space ΩΞ+ .

and the sequence of vertices in the superedges with relative length s1 is

53273292532925 (4.6)
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1 2 3

4 5 6

7 8 9

10 10 11

12

Figure 11: Atlas of vertex configurations of T+.
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(a)

(b)

Figure 12: Vertex sequences in the level-6 superedges of types α (a) and β (b) in T+.

Therefore, it is enough to consider, up to rotation, 2 edges α, β with lengths s2, s1, respec-
tively, and 4 tiles: A = T(r2α, β, α), B = T(r2α, r4α, r2β), C = T(r2α, r3β, r4β), and D =
T(r2α, r3β, r4β) with r5 = 1. The substitution rules, with m ∈ Z5, are (Figure 10)

Am �−→ (DmBm+2Am+1),

Bm �−→ (Cm+4Am+2Bm+3),

Cm �−→ (DmBm+2),

Dm �−→ (Cm+4Am+2),

) �−→),

(�−→ . (

(4.7)

The rotation group Z5 acts freely on edges and tiles. We have four tile types and two
edges, each in five orientations. All the vertices are identified to one vertex a with a = ra.
A different case with the same property is the Ammann-Beenker octagonal tiling [19]. The
Anderson-Putnam complex Γ0 of ΩΞ+ has Euler characteristic χ = 11.

The two irreducible representations of Z5 over the integers are the 1-dimensional scalar
(r = 1) representation and the 4-dimensional vector representation which has r acting by
multiplication on the ring Z[r]/(r4 + r3 + r2 + r + 1). The vertex appears only in the scalar
representation, while the edges and faces appear in all representations. For k = 0, 1, the
coboundary maps δk = ∂T

k+1 : Ck �→ Ck+1 are deduced from the boundary maps:

∂2 =

(
−r2 − 1 r2 + r4 −r2 r2

−1 r2 r3 + r4 −r3 − r4

)
(4.8)

and ∂1 = 0.

Scalar Representation r = 1

In the scalar representation, the cochain groups are C0 = Z, C1 = Z2, and C2 = Z4. The rank of
δ1 is 2, and then we have H0 = Ker δ0 = Z, H1 = Ker δ1/Imδ0 = 0, and H2 = Z4/Imδ1 = Z2.
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Now we look at the direct limit of the cohomologies. The substitution acts as the
identity on the vertex a. The substitution matrix on 2-chains is, according to (4.7),

σ2 =

⎛
⎜⎜⎜⎜⎜⎝

r r2 0 r2

r2 r3 r2 0

0 r4 0 r4

1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠
, (4.9)

while the matrix on 1-chains is

σ1 =

(
r2 r3

r 0

)
. (4.10)

The induced matrix on 2-cochains is σ∗
2 = σT2 which is an isomorphism, and the direct

limit gives a contribution of Z2 to Ȟ2.

Vector Representation

In the vector representation, C0 is trivial while C1, C2 are free modules of dimensions 2 and
4 over the ring R = Z[r]/(r4 + r3 + r2 + r + 1). The matrix δ1 has rank 1 over R. In this case,
H0 = 0,H1 has one copy of the ring R, and H2 has three copies of R; therefore, as abelian
groups, we have H1 = Z4, H2 = Z12. The ranks of σ∗

1 , σ
∗
2 over R are 2 and 4, respectively, and

the direct limit gives a contribution of Z4 to Ȟ1 and Z12 to Ȟ2.
Adding up the contributions of each representation, we get

Ȟ0(ΩΞ+) = Z, Ȟ1(ΩΞ+) = Z4, Ȟ2(ΩΞ+) = Z14. (4.11)

The group Ȟ1 has one copy of the vector representation for both ΩΞ+ and ΩP and
one of the scalar representation only for ΩP . We also see that Ȟ2 contains two copies of the
scalar representation for both ΩΞ+ and ΩP , and the additional terms are two copies of the
pseudoscalar representation for ΩP , while the vector representation gives a contribution of
Z4 for ΩP and Z12 for ΩΞ+ . The tiling spaces ΩT that we consider in this paper are formed
by the closure of the translational orbit of one tiling. The finite rotation group Zn acts on ΩT ,
and the quotient ΩT/Zn yields the space ΩT of tilings modulo rotation about the origin [8].
The cohomology of ΩT is the rotationally invariant part of the cohomology of ΩT , and we
have

Ȟ0
(
ΩT

)
= Z, Ȟ2

(
ΩT

)
= Z2 (4.12)

for T = P,Ξ+, but Ȟ1(ΩP ) = Z whereas Ȟ1(ΩΞ+) = 0.
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7 8 9

10 11

Figure 13: Atlas of vertex configurations of T−.

4.3. The Tiling Space ΩΞ−

In this case, connected with Φ− in Section 2, the substitution does not force the border and
we have to use collared tiles. We have now eight vertices 1, 2, 3, 4, 5, 5̃, 6, 6̃. In Figure 13,
where we have represented the uncollared vertex configurations, the vertices without
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bilateral symmetry correspond to 5, 6̃, 7, 1̃1. Disregarding the vertices in the borders, there
are, in the collared tiles, eight edge types: α, β, γ, γ̃ with length s2 and δ, η, ε, ε̃ with
length s1 associated with the following vertex sequences (Figure 14) in the level-6 superedges
(commas are used when a vertex is represented by two digits):

α : (48)22(48)2(248)248248,

β : (10, 9193)210, 93, 10, 193, 10, 9,

γ : 11, 7675, 11, 76(75, 11)27675, 11, 7,

δ : 84284(842)28,

η : 9, 10, 3919(10, 39)2,

ε : 7, 11, 5767(11, 57)2,

(4.13)

and γ̃ , ε̃ are mirror images of γ, ε.
The seven tile types A, B, C, D, E, F, G have edges A(ε, γ, γ̃), B(η, γ, β), C(ε, γ, β),

D(ε, α, β), E(γ̃ , ε, δ), F(β, ε, δ), and G(γ̃ , ε, ε), respectively. Observe that with this notation
A, B, C, D have Section 2A-shape and E, F, G the B-shape. Now by taking into account
the 8 vertices, we have, up to rotation, 86 edges and 106 prototiles. The edges and tiles appear
in five different orientations and the complex Γ1 of ΩΞ− has Euler characteristic χ = 108.
The inflation rules for the prototiles, up to mirror reflection, can be seen in Table 1, where
each letter representing a tile type is followed by their vertices and by the prototiles that
appear in the substitution rules. In Figure 15, it is shown a fragment of a pattern obtained
by assigning colors to the collared prototiles. We have treated this case without the use of
representations, along the lines of [17] (see also [20] for recent results applicable when the
tiling does not force the border). The matrices are to large to list here but may be read off
from Table 1. The cochain groups are C0 = Z8, C1 = Z430, and C2 = Z530. The ranks of
δ0, δ1 are 7 and 419, respectively and H0 = Ker δ0 = Z, H1 = Kerδ1/Im δ0 = Z4, and
H2 = Z530/Imδ1 = Z111.

The substitution matrix on vertices is

σ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.14)

with σ2
0 = 1.
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Figure 14: The superposition of Φ6
−[A1] and Φ12

− [A1].

Figure 15: Fragment of a pattern obtained by assigning colors to the collared tiles, after iteration of the
inflation rules in Table 1 for ΩΞ− .
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We now denote the edges by ωxy if the edge type ω has vertices x, y on its border and
∂1ωxy = y − x. If φ(x) represents the image of the vertex x under substitution, then the edge
inflation rules are

αxy �−→ β3φ(y)r
3η3φ(x), βxy �−→ α2φ(y)r

3δ2φ(x),

γxy �−→ γ̃5̃φ(y)r
3ε̃5̃φ(x), γ̃xy �−→ γ5φ(y)r

3ε5φ(x),

δxy �−→ r2βφ(y)φ(x), ηxy �−→ r2αφ(y)φ(x),

εxy �−→ r2γ̃φ(y)φ(x), ε̃xy �−→ r2γφ(y)φ(x).

(4.15)

The substitution matrices for the edges and tiles and the corresponding induced matri-
ces on cochains σ∗

1 , σ
∗
2 can be obtained from Table 1 having in mind the relative orientations

given by the following rules:

A �−→ r2Gr3Cr4C̃, B �−→ r2Er3Dr4D̃, C �−→ r2Er3Dr4C̃, D �−→ r2Fr3Dr4B̃,

E �−→ r2Gr3C, F �−→ r2Er3D, G �−→ r2Gr3A,

Ã �−→ G̃r2C̃rC, B̃ �−→ Ẽr2D̃rD, C̃ �−→ Ẽr2D̃rC, D̃ �−→ F̃r2D̃rB,

Ẽ �−→ r3G̃C̃, F̃ �−→ r3ẼD̃, G̃ �−→ r3G̃Ã.

(4.16)

The map σ∗
1 preserves the quotient Kerδ1/Im δ0, while the direct limit of H2 under σ∗

2
is isomorphic to Z290/Z229, and hence the cohomology groups of the tiling space are

Ȟ0(ΩΞ−) = Z, Ȟ1(ΩΞ−) = Z4, Ȟ2(ΩΞ−) = Z61. (4.17)

The cohomologies of other tilings significant in quasicrystal research like the Am-
mann-Beenker tiling spaces ΩAB are well known [19]. Its Anderson-Putnam complex has 1
vertex, 16 edges, and 20 faces with Euler characteristic χ = 5. In this case, Ȟ0(ΩAB) =
Z, Ȟ1(ΩAB) = Z5, Ȟ2(ΩAB) = Z9. We observe that

χ =
2∑

m=0
(−1)l rank

(
Ȟm(ΩT )

)
(4.18)

for T = P,AB,Ξ+ but not for Ξ−.
The integer Čech cohomology of a tiling space is related to the algebraic K-theory. K0

is the direct sum of the cohomologies of even codimensions, while K1 is the direct sum of the
cohomologies of odd codimension. If a tiling T represents the atoms of a quasicrystal, then the
K-theory of ΩT gives information about the electrical properties of the quasicrystal. The K0

groups for Ξ−, Ξ+ and Penrose tiling spaces are then Z⊕Z61, and Z⊕Z14,Z⊕Z8 respectively.
There is a trace operator that maps K0 to R. The image of this map is an additive subgroup of
R, called the gap-labeling group of ΩT , which determines the energy gaps in the spectrum of
the Schrödinger operator with a pattern-equivariant potential [5, 19].
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Table 1: Prototile contents in the inflation rules for ΩΞ− .

A1 : [1, 5, 6̃] �→ G37 C12 C̃13; A2 : [5̃, 5, 6̃] �→ G39 C12 C̃13; A3 : [6̃, 5, 6̃] �→ G38 C12 C̃13
B4 : [2, 1, 3] �→ E27 D22b D̃22a; B5 : [4, 1, 3] �→ E28 D22b D̃22a; B6a : [6, 1, 3] �→ E30b D22b D̃22a
B6b : [6̃, 1, 3] �→ E30a D22b D̃22a; C7 : [2, 5, 1] �→ E27 D19 C̃8; C8 : [2, 6, 5] �→ E27 D25b C̃15
C9 : [3, 5, 1] �→ E29 D19 C̃8; C10 : [4, 5, 1] �→ E28 D19 C̃8; C11a : [5, 5, 1] �→ E31b D19 C̃8
C11b : [5̃, 5, 1] �→ E31a D19 C̃8; C12 : [5, 5, 5̃] �→ E31b D25a C̃16b; C13 : [5̃, 6, 5] �→ E31a D25b C̃15
C14a : [6, 5, 1] �→ E30b D19 C̃8; C14b : [6̃, 5, 1] �→ E30a D19 C̃8; C15 : [6, 5, 5] �→ E30b D25b C̃16a
C16a : [6, 6, 5] �→ E30b D25b C̃15; C16b : [6̃, 6, 5] �→ E30a D25b C̃15; D17 : [2, 2, 1] �→ F32 D18 B̃4
D18 : [2, 2, 3] �→ F32 D21 B̃5; D19 : [2, 2, 5̃] �→ F32 D24a B̃6b; D20 : [4, 2, 1] �→ F33 D18 B̃4;
D21 : [4, 2, 3] �→ F33 D21 B̃5; D22a : [4, 2, 5] �→ F33 D24b B̃6a; D22b : [4, 2, 5̃] �→ F33 D24a B̃6b;
D23a : [6, 2, 1] �→ F34b D18 B̃4; D23b : [6̃, 2, 1] �→ F34a D18 B̃4; D24a : [6, 2, 3] �→ F34b D21 B̃5
D24b : [6̃, 2, 3] �→ F34a D21 B̃5; D25a : [6, 2, 5̃] �→ F34b D24a B̃6b; D25b : [6̃, 2, 5̃] �→ F34a D24a B̃6b
E26 : [1, 2, 4] �→ G35 C9; E27 : [5̃, 2, 1] �→ G36 C7; E28 : [5̃, 2, 3] �→ G36 C10
E29 : [5̃, 2, 4] �→ G36 C9; E30a : [5̃, 2, 5] �→ G36 C14b; E30b : [5̃, 2, 5̃] �→ G36 C14a
E31a : [5̃, 2, 6] �→ G36 C11b; E31b : [5̃, 2, 6̃] �→ G36 C11a; F32 : [3, 2, 1] �→ E26 D17
F33 : [3, 2, 3] �→ E26 D20; F34a : [3, 2, 5] �→ E26 D23b; F34b : [3, 2, 5̃] �→ E26 D23a
G35 : [1, 5, 2] �→ G40 A1; G36 : [1, 5, 6] �→ G40 A2; G37 : [5̃, 5, 2] �→ G42 A1
G38 : [5̃, 5, 5] �→ G42 A3; G39 : [5̃, 5, 6] �→ G42 A2; G40 : [6̃, 5, 2] �→ G41 A1
G41 : [6̃, 5, 5] �→ G41 A3; G42 : [6̃, 5, 6] �→ G41 A2

5. Concluding Remarks

Several types of deterministic and random substitutions have been analyzed. We have shown
that, apart from the vertex configurations and relative orientations, an essential difference
between the spaces of pentagonal tilings ΩΞ+ , ΩΞ− and the very well-known space of Penrose
tilings ΩP is the cohomology, in spite of the fact that the first inflation step in the tiling growth
seems to be very similar. Both tiling spaces have finitely generated torsion-free cohomology
groups (see [21] for cartesian product tiling spaces related to the constructions in Section 1).

For projection tilings, it has been shown in [22] that in the first cohomology group
there is at least a subgroup isomorphic to the reciprocal lattice of the tiling. The minimal
dimension of the lattice for an N-fold symmetry tiling in 2D obtained by projection is given
by the Eulers totient function φ(N), which counts the number of positive integers less thanN
that are coprime toN. For the Penrose tiling φ(10) = 4 and its description by projection can be
done with the root-latticeA4 [23]. As far as the author knows, ΩΞ+ , ΩΞ− have the simplest first
cohomology group (and hence K1-group) of a tiling space in 2D with noncrystallographic
symmetries, and its rank coincides with φ(5). The complexity of the tiling spaces, if measured
with the set of (possibly collared) vertex configurations, is reflected in the rank of the second
cohomology group and as a consequence in the K0-group. For certain cases [8], only the
rotationally invariant part of the second cohomology group contributes to the gap labeling
group, and therefore the Penrose and T+ tilings have isomorphic groups. However, in contrast
to the Penrose tiling, T+ has a vanishing first cohomology group on the space of tilings modulo
a rotation. Another tiling with the same prototiles was derived by the Tübingen group [23].
For a study of its cohomology, which is computationally demanding, see [24].

We have obtained the configurational entropy of sequences of finite patterns generated
by particular random substitution processes. In general, the determination of the entropy of
the tiling spaces associated to the random tiling ensembles (defined possibly as direct sums
of uniquely ergodic spaces) and its physical meaning are open questions.
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The constructions studied in Section 2 have been used for the generation of non-
periodic ordered tilings in multiconnected flat manifolds. For instance, the d-systems
corresponding to d = 8, 12 were used in [10] to get random triangulations of the torus and
the Klein bottle. In Figure 6(a), it can be seen how a pentagon appears in the modification
of the 10-system, the decagon is contained in the 20-system modification (Figure 6) and
in general we have an m-gone included in the 2m-system. This fact can be used to get
recursive random simplicial structures for all the closed 2-manifolds, by using two polygons
with certain identifications. By considering also higher dimensional manifolds this type of
constructions could be of interest in different fields.

Some open problems that should also be considered in the future are the relationship
with projection methods, matching rules [25], and the analysis of the topological invariants
for both deterministic and random substitution tiling spaces with N-fold symmetries
generated with the constructions given in Section 2 and in [11].
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