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Abstract

Increasing trends towards adaptive, distributed, generative and pervasive software
have made object-oriented dynamically typed languages become increasingly pop-
ular. These languages offer dynamic software evolution by means of reflection, fa-
cilitating the development of dynamic systems. Unfortunately, this dynamism com-
monly imposes a runtime performance penalty. In this paper, we describe how to ex-
tend a production JIT-compiler virtual machine to support runtime object-oriented
structural reflection offered by many dynamic languages. Our approach improves
runtime performance of dynamic languages running on statically-typed virtual ma-
chines. At the same time, existing statically-typed languages are still supported by
the virtual machine.

We have extended the .Net platform with runtime structural reflection adding
prototype-based object-oriented semantics to the statically typed class-based model
of .Net, supporting both kinds of programming languages. The assessment of run-
time performance and memory consumption has revealed that a direct support of
structural reflection in a production JIT-based virtual machine designed for stati-
cally typed languages provides a significant performance improvement for dynami-
cally typed languages.
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Garćıa Perez-Schofield).

URLs: http://www.di.uniovi.es/∼ortin/ (Francisco Ortin),

Preprint submitted to Elsevier 5 February 2009



1 Introduction

Object-oriented dynamically typed languages like Python [1], Ruby [2], Dylan
[3], Lua [4] or Groovy [5] are becoming increasingly popular for developing dif-
ferent kinds of applications such as Web development, game scripting, interac-
tive programming, rapid prototyping, dynamic aspect-oriented programming,
and any kind of software that requires dynamic adaptiveness. These languages
build on the Smalltalk idea of supporting reasoning about (and customizing)
program structure, behavior and environment at runtime. That is the reason
why this trend is commonly referred to as the revival of dynamic languages
[6].

The main objective of dynamically typed languages is to model the dynamicity
that is sometimes required for building highly context-dependent software, due
to the mobility of both the software itself and its users. Features such as meta-
programming, reflection, mobility, dynamic reconfiguration and distribution
are the domain of these languages. These benefits of dynamism are offset
by the lack of static type checking and a considerable runtime performance
penalty.

Looking for code portability, dynamically typed languages commonly execute
programs using a virtual machine. Implementing virtual machines as inter-
preters involves a significant performance penalty compared to native code
execution. Consequently, there has been considerable research aimed at im-
proving the performance of virtual machines. Techniques like virtual machine
Just In Time (JIT) compilation [7] or runtime adaptive optimization [8] have
reached such maturity that many vendors distribute this kind of platforms as
appropriate to implement efficient applications. Nowadays, commercial lan-
guages like Java or C#, widely used in software development, are compiled
down to virtual machines.

In order to improve runtime performance of existing implementations of dy-
namically-typed object-oriented languages, our work has been focused on ap-
plying the same techniques that have made virtual machines a valid alternative
to develop commercial software. Therefore, we have extended a production
virtual machine JIT-compiler to evaluate whether it is suitable for improving
runtime performance of existing implementations of these languages. More-
over, extending a widely used virtual machine entails maintaining the support
of existing languages compiled down to this machine.

The main contribution of this work is the design, implementation and evalu-
ation of an extension of a commercial JIT-based virtual machine designed for

http://www.di.uniovi.es/∼redondojose/ (Jose Manuel Redondo),
http://webs.uvigo.es/jbgarcia/ (J. Baltasar Garćıa Perez-Schofield).
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non-reflective static languages in order to efficiently support runtime struc-
tural reflection of object-oriented dynamically typed languages. The result-
ing system not only obtains a significant improvement of dynamically typed
object-oriented languages implementations, but also supports the execution of
any existing .Net programming language.

The rest of this paper is structured as follows. In the next section, we provide
motivation and relevant background. Section 3 summarizes the structure of the
Microsoft Shared Source CLI implementation of the .Net platform. Section 4
discusses the design of our reflective object model, and the implementation
is presented in Section 5. We assess runtime performance in Section 6, and
Section 7 discusses related work. Finally, Section 8 presents the ending con-
clusions.

2 Motivation & Background

2.1 Object-Oriented Dynamically Typed Languages

Due to the flexibility they offer, object-oriented dynamically typed languages
are becoming increasingly popular. Some examples of the success of such lan-
guages are the Ruby on Rails framework [9] and the AJAX (Asynchronous
JavaScript And XML) development technique for creating Web applications
[10]; the incorporation of a standard framework to allow dynamic scripting pro-
grams to be executed from, and have access to, the Java platform version 1.6
(JSR 223) [11], and the invokedynamic instruction to support the implemen-
tation of dynamically typed object oriented languages to be included in Java
SE 1.7 [12]; the Dynamic Language Runtime (DLR), launched by Microsoft
to add to the .Net platform a set of services to facilitate the implementation
of dynamic languages; the wide range of dynamic aspect-oriented tools that
has been built on top of dynamically typed languages [13–17]; and the Zope
application server for building content management systems, intranets and
custom applications [18].

2.2 Limitations of Dynamic Typing

Unlike statically typed languages (Java, C# or C++), dynamically typed
ones do not perform type checking at compile time. Static typing offers the
programmer the early detection of type errors, making possible to fix them
immediately rather than discovering them at runtime —when the program-
mer’s efforts might be aimed at some other task, or even after the program

3



has been deployed [19]. Another important limitation of existing implemen-
tations of dynamically typed languages is that their runtime performance is
commonly slower than commercial static programming languages (discussed
in the following section).

In order to reduce the lack of early type error detection, dynamically typed
languages have been designed to be easily integrated with unit testing facilities
and suites —in fact, the SUnit testing framework for Smalltalk [20] was the
first implementation of the xUnit family of frameworks such as JUnit. In the
case of Python, the programmer typically implements testing routines at the
end of every module; it is also common to use the PyUnit test suite; finally,
PyChecker is a static analysis tool that is also used for finding bugs in Python
source code.

Another approach to overcome the limitations of dynamic typing is the in-
tegration of static and dynamic typing into the same language [21]. Static
typing allow earlier detection of programming mistakes, better documenta-
tion, more opportunities for compiler optimizations, and increased runtime
performance. Dynamic typing languages provide a solution to a kind of com-
putational incompleteness inherent to statically typed languages, offering, for
example, storage of persistent data, inter-process communication, dynamic
program behavior customization, or generative programming [22]. There are
situations in programming when one would like to use dynamic types even in
the presence of advanced static type systems [23]. Instead of providing pro-
grammers with a black or white choice between static or dynamic typing, it
could be useful to strive for softer type systems [24]. That is what Meijer and
Drayton refer to as static typing where possible, dynamic typing when needed
[21].

Using one of the approaches mentioned above, the programmer can benefit
from both the robustness of statically typed languages and the flexibility dy-
namically type ones. That is the reason why we have focused our efforts on
optimizing the implementation of dynamically typed languages.

2.3 Dynamically Typed Languages on the .Net and Java Platforms

Looking for code mobility, portability, and distribution facilities, dynamically
typed languages are usually compiled to the intermediate language of an ab-
stract machine. Since the computational model of these abstract machines is
more complex than the one implemented by statically typed languages, it is
more difficult to implement a JIT-compiler for these dynamic platforms. This
inherent complexity plus the performance cost of inferring and checking types
at runtime commonly involve a runtime performance penalty when compared
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to statically typed languages.

Since the research done by Chambers and Ungar in customized dynamic com-
pilation applied to the Self programming language [25], virtual machine im-
plementations have become faster by optimizing the binary code generated at
runtime. These optimizations were successfully applied to both Self [26] and
Smalltalk [7] dynamically typed reflective programming languages. Nowadays,
dynamic adaptive HotSpot optimizer compilers combine fast compilation and
runtime optimization of those parts of the code that are most frequently ex-
ecuted. These techniques have made Java and .Net virtual machines a real
alternative to develop many types of software products.

Taking an existing production JIT-based virtual machine (like Java or .Net)
that supports statically typed languages, and enhancing it to support reflective
dynamically typed languages might involve two mayor benefits: first, an impor-
tant performance improvement, as demonstrated with Self [26] and Smalltalk
[7]; second, the support of both dynamic and static typing in a language-
neutral way.

Most works aimed at supporting reflective dynamically typed languages over
the .Net and Java platforms are restricted to compilers that generate Java
or .Net bytecodes. Taking Python as an example, there exist different im-
plementations for the Microsoft .Net platform that simulate Python features
(Python for .Net from the Zope Community, IronPython from Microsoft, and
the Python for .Net research project from ActiveState). The implementations
that use the Java Virtual Machine (Jython, formerly called JPython) follow
the same approach. As we will show in Section 6, these approaches show poor
runtime performance in reflective scenarios.

Although Microsoft and Sun platforms are increasingly incorporating dynamic
languages features such as dynamic code generation and code instrumentation,
they were created to support class-based static languages. At the moment,
these platforms do not provide dynamic modification of structures of classes
and objects once the application is running (dynamic structural reflection).
Therefore, existing compilers of dynamically typed languages that generate
code to these platforms (e.g., IronPython and Jython) must implement an ad-
ditional layer to support these features, leading to a poor runtime performance
[27] –we will evaluate them in Section 6.

The work presented in this paper uses a virtual machine with JIT compila-
tion to directly support structural reflection in a language-neutral way. Unlike
existing implementations, our approach is based on extending the statically
typed computational model of a production virtual machine designed for stat-
ically typed languages, adding the reflective services of many dynamically
typed languages. This new computational model is then translated into the
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native code of a specific platform at runtime, using a JIT compiler. Instead
of generating extra code to simulate the computational model of dynamically
typed languages, the virtual machine will support these services directly. As a
result, a significant performance improvement is achieved, and both dynami-
cally typed and statically typed languages are supported.

2.4 Structural Reflection

Reflection is the capability of a computational system to reason about and act
upon itself, adjusting itself to changing conditions [28]. In a reflective language,
the computational domain is enhanced with its self-representation, offering at
runtime its structure and semantics as computable data. Reflection has been
recognized as a suitable tool to aid the dynamic evolution of running systems,
being the primary technique to obtain meta-programming, adaptiveness, and
dynamic reconfiguration features of dynamic languages [29]. Computational
reflection is the activity performed by a computational system when doing com-
putation about (and by possibly affecting) its own computation [28].

Considering that observation and modification of the system’s self-represen-
tation are two aspects of reflection, we have [30]:

• Introspection: Self-representation of programs can be dynamically con-
sulted but not modified. Both Java and .Net platforms offer introspection
by means of the java.lang.reflect package (Java) and System.Reflection

namespace (.Net). With these services, the programmer can obtain infor-
mation about classes, objects, methods and fields at runtime.
• Intercession: The ability of a program to modify its own execution state, or

alter its own interpretation or meaning. The Python capability of modifying
the inheritance graph at runtime is an example of intercession.

Another criterion to categorize runtime reflective systems is taking into con-
sideration what can be reflected. According to this condition, two levels of
reflection are identified:

• Structural Reflection: System structure can be accessed. In case a struc-
ture is modified, changes will be reflected at runtime. An example of this
kind of reflection is the Python feature of adding fields or methods to both
objects and classes.
• Behavioral Reflection: Access to system semantics is offered. In case the

semantics is modified, it will involve a customization of the runtime behavior
of programs. For instance, MetaXa (formerly called MetaJava [31]) is a Java
extension that offers the programmer the ability to dynamically modify the
method dispatching mechanism. The most common technique to reach this
level of reflection is a Meta-Object Protocol (MOP) [32].
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Many dynamically typed languages provide runtime intercession at the struc-
tural level of reflection, offering a high level of adaptiveness at runtime. Much
research on MOPs has revealed that behavioral reflection impose a high per-
formance penalty in comparison with the benefits it provides, and its imple-
mentation is certainly difficult [33]. Moreover, many behavioral features could
be simulated with structural reflection (e.g., adapting method invocation se-
mantics could be simulated with a class or object method wrapping service
developed with structural reflection). These are the reasons why we have im-
plemented structural reflection services but not behavioral ones, offering a
good trade-off between flexibility and efficiency.

We have focused our efforts on optimizing the structural reflective services
offered by many object-oriented dynamically typed languages (such as Python
or Ruby). For that purpose, we have taken a production JIT-based virtual
machine that supports statically typed languages. Although its JIT compiler
generates optimized native code, it difficult to support a reflective model where
structures of objects and classes can be modified at runtime, because its design
is highly focused on statically typed languages.

2.5 Structural Reflection and Dynamic Typing

Runtime intercession, at the structural reflection level, offers the programmer
dynamic structure modification of classes and objects. Although this structure
alteration is performed at runtime, it is not strictly necessary to implement
it with dynamic typing. A static type system could be able to infer dynamic
types at compile time. For instance, the Fickle language permit statically
typed object re-classification (changing the type of objects at runtime) [34].
However, depending on dynamic values, an object type cannot be changed to
classes whose common interface cannot be safely deduced at compile time.

Static type checking is a compile-time abstraction of the runtime behavior
of programs, and hence it is necessarily only partially sound and incomplete
[21]; there are programs that cannot go wrong, but they cannot be statically
type-checked. For these scenarios, dynamic typing is more appropriate. As an
example, the wide classes approach allows an object to be temporarily widened
to a subclass, extending the object structure with additional members [35]. It
is possible to widen an object with two disjoint sets of messages and, depending
on runtime values, pass those recently added specific messages. This is possible
because, unlike Fickle, they implement a dynamic type system.

Since our work is focused on building a structural reflective platform to support
both dynamically and statically typed programming languages, we decided to
add dynamic typing to the virtual machine. As an example, it should be
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possible to pass a message to an object when that message could have been
added at runtime using structural reflection, checking its suitability and the
returning type at runtime. High-level programming languages may implement
a reflective static type system (like the Fickle approach), a dynamic one (like
wide classes), or even a hybrid approach [36].

2.6 A Motivating Example

Our objective is to extend the semantics of a virtual machine to support
fully-fledged dynamic structural reflective primitives built into the platform
internals, evaluating the performance benefits provided by its JIT native code
generator. The statically typed object-oriented model must be maintained in
order to be backward compatible.

As an example to clarify the objectives of our project, Figure 1 shows the same
program written in Python and Ruby. This program modifies the structure
of classes and objects at runtime, using the structural reflective primitives of
both languages. Our platform should support this kind of services.

We first create a Point class with its constructor and the move and draw

methods. An instance is then created (point) and a draw message is passed.
Then, we modify the structure of a single object adding a new z field and
its respective draw3D method. A new getX method is set to the Point class,
making any Point instance capable of responding to the getX message. Finally,
a new isShowing field is added to the Point class.

The last reflective primitive is implemented in a different way in both lan-
guages. In Python, the structure of every Point instance is extended with the
isShowing field. However, Ruby interprets this operation as the addition of a
new isShowing field to the Point class. In the design section, we will analyze
how to support both behaviors by the same virtual machine.

3 Shared Source Common Language Infrastructure

Compiling languages to the intermediate code of a virtual machine offers many
benefits such as platform neutrality, compiler simplification, application distri-
bution, direct support of high-level paradigms and application interoperabil-
ity [37]. In addition, compiling languages to a virtual machine with a lower
abstraction level improves runtime performance in comparison with direct in-
terpretation of programs.

We have used the Microsoft .Net platform as the targeted virtual machine
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class Point:
"Constructor"
def __init__(self, x, y):

self.x=x
self.y=y

"Move Method"
def move(self, relx, rely):

self.x=self.x+relx
self.y=self.y+rely

"Draw Method"
def draw(self):

print "("+str(self.x)+
","+str(self.y)+")"

point=Point(1,2)
point.draw()   # (1,2)

# Modifies attributes of a 
single object
point.z=3
print point.z # 3

class Point
def initialize(x, y) # Constructor

@x=x
@y=y      

end
def move(relx, rely) # Move method

@x+=relx
@y+=rely

end
def draw() # Draw method

puts "("+String(@x)+","+String(@y)+")"
end

end

point=Point.new(1,2)
point.draw() # (1,2)

# Modifies attributes of a single object
def point.z=(value)

@z=value
end
point.z=3

# Modifies methods of a single object
# Modifies methods of a 
single object
def draw3D(self):

print "("+str(self.x)+
","+str(self.y)+
","+str(self.z)+")"

point.draw3D=draw3D
point.draw3D() # (1,2,3)

# Modifies methods of a class 
def getX(self):

return self.x

Point.getX=getX
print point.getX() # 1

# Modifies attributes of 
# every Point instance
Point.isShowing=0

# Modifies methods of a single object
def point.draw3D()

puts "("+String(@x)+","+String(@y)+
","+String(@z)+")"

end
point.draw3D() # (1,2,3)

# Modifies methods of a class
class Point

def getX()
return @x

end
end
puts point.getX() # 1

# Modifies attributes of a class
def Point.isShowing=(value)

@@isShowing=value
end
Point.isShowing=false

a) Python Source Code b) Ruby Source Code

Fig. 1. Python and Ruby examples of structural reflection.

to benefit from all the advantages mentioned above. The main reason why
we have selected the .Net abstract machine was its design focused on sup-
porting a wide number of languages [38,39]. The approach of using a free
JIT compilation framework, such as OpenJIT [40], would involve a lower run-
time performance and limitations on reusing existing libraries, frameworks
and tools. Conversely, extending the .Net platform to support dynamically
typed languages facilitates future interoperation with existing languages and
any .Net application or component.

Once we had decided to use the .Net abstract machine, our next decision was
the selection of an implementation (a specific virtual machine). As we have ex-
plained in the motivation section, we need a shared source implementation to
extend its semantics and an efficient JIT compiler to improve runtime perfor-
mance of reflective primitives. The SSCLI (Shared Source Common Language
Infrastructure) implementation of the Microsoft .Net platform has been our

9



choice because, although there exist other .Net platform implementations
(such as Mono [41] or DotGNU Portable.NET [42]), the SSCLI it is nearer
to the commercial virtual machine implementation: the Common Language
Runtime (CLR).

Microsoft SSCLI, also known as Rotor, is a source code distribution that in-
cludes fully functional implementations of the ECMA-334 C# language stan-
dard and the ECMA-335 Common Language Infrastructure specification, var-
ious tools, and a set of libraries suitable for research purposes [43]. The SSCLI
runs on Windows XP, FreeBSD 4.5 and Mac OS X.

SSCLI consists of 3.6 million lines of code that can be divided into 4 groups:

(1) The Execution Environment. This is the virtual machine of the .Net
platform that includes the JIT compiler, a generational garbage collector,
the class loaders, and the Common Type System. The source code of the
execution environment, commonly called IL (Intermediate Language), is
encapsulated in managed executables.

(2) The Libraries. The SSCLI distribution includes the source code of its
Base Class Library (BCL), runtime reflection (structural introspection),
XML processing, and extended array classes. There are also additional
libraries included in this distribution, most notably the support for regu-
lar expressions and an extensive framework for type serialization, object
remoting, and automatic type marshalling. The BCL provides types to
represent the built-in data types of the CLI (Common Language Infras-
tructure), simple file access, custom and security attributes, string manip-
ulation, formatting, streams, collections, and so forth. All these services
are included in the System namespace.

(3) Compilers and tools. SSCLI includes compilers for C# (ECMA-334)
and JScript entirely written in C#. It also consists of a set of tools such
as a managed code debugger, an assembler, a disassembler, an assembly
linker, and a stand-alone verification tool.

(4) Platform Abstraction Layer (PAL). This code implements the ab-
straction layer between the runtime environment and the operating sys-
tem. The PAL exposes a collection of 242 interfaces that must be imple-
mented on each target platform.

In this project we have extended the execution environment to adapt the se-
mantics of the abstract machine, obtaining a new reflective computational
model that is backward compatible with existing programs –see the next sec-
tion. We have also extended the Base Class Library (BCL) to add new struc-
tural reflection primitives, instead of defining new IL statements. We refer to
this new platform as Reflective Rotor or zRotor
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4 Design

As we have mentioned, runtime reflective features of the SSCLI are restricted
to the introspection level: system structure can be dynamically consulted but
not modified. At the same time, the .Net platform offers the facility to dynam-
ically generate IL code at runtime in a limited way (it only permits to create
new types, not modifying existing ones) by means of its System.Reflec-

tion.Emit namespace.

In our project, we have extended the introspective capabilities of .Net CLI
at the abstract machine level, adding the set of structural reflective primitives
offered by many dynamically typed languages. A new namespace has been
added to the BCL: System.Reflection.Structural. We will show in Sec-
tion 5.1 which are its specific services, but its functionality can be grouped
into:

• Field manipulation. Besides modifying the structure of a class (altering
the structure of all its instances), we can also alter the composition of a
single object (object-level reflection). Fields may be added, deleted or re-
placed.
• Method manipulation. Methods of classes can be dynamically added,

replaced and erased. Therefore, the set of messages accepted by an object
could change at runtime depending on its dynamic context. This dynamic
typing scheme is also known as “duck typing”: if it walks like a duck and
quacks like a duck, it must be a duck [2]. It means that an object is in-
terchangeable with any other object that implements the same dynamic
interface, regardless of whether the objects have a related inheritance hier-
archy or not.

A new method could also be placed in a single object (object-level re-
flection). The body of these new methods can be obtained from existing
ones, or dynamically generated by means of the System.Reflection.Emit

namespace.

The programmer could combine these facilities with the introspective services
that .Net already offers, making the CLI an appropriate platform to develop
language-neutral adaptive software.

4.1 Class-Based Object-Oriented Model

There exist some conceptual inconsistencies between the class-based object-
oriented computational model and structural reflection. These inconsistencies
were first noticed and partially solved in the field of object-oriented database
management systems [44]. In this area, objects are stored but their structure,
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or even their types (classes), could be altered afterwards as a result of software
evolution.

The first scenario of modifying the structure of a class implies updating the
structure of all its instances. This mechanism has been defined as a type re-
classification operation in class-based languages, meaning that it is possible
to change the class membership of an object while preserving its identity
[34,45]. It has also been referred to as schema evolution in the database world.
The modification of class instances could be performed as soon as the class
is evolved (eager) or when the object is up to be used (lazy) [46]; it is only
necessary to know the type (class) of an object at runtime. Dynamic evolution
of class methods and fields can produce situations such as accessing fields or
methods that do not exist in a specific execution point; these situations are
detected by a dynamic type checking mechanism, in order to make sure that
no incorrect behavior is produced. This is how Smalltalk provides dynamic
modification of classes.

There is another situation that a structurally reflective computational model
should support, but in this case is much more difficult to model it in a class-
based language. How can the structure of an object be modified without alter-
ing the rest of its class instances? This problem was detected in the develop-
ment of MetaXa, a reflective Java platform implementation [31]. The approach
they chose was also adopted by some object-oriented database management
systems: schema versioning [47]. A new version of the class (called “shadow”
class in MetaXa) is created whenever an object is reflectively modified. This
new class is the type of the recently customized object.

The schema versioning approach causes different problems such as maintain-
ing the class data consistency, class identity, using class objects in the code,
garbage collection, inheritance reliability, and memory consumption, involv-
ing a really complex and difficult to manage implementation [48]. One of the
conclusions of the MetaXa research project was that the class-based object-
oriented model does not fit well in structural reflective environments. They
finally stated that the prototype-based model would express reflective features
better than class-based ones [48].

4.2 Prototype-Based Object-Oriented Model

In the prototype-based object-oriented computational model the main ab-
straction is the object, suppressing the existence of classes [49]. Although
this computational model is simpler than the one based on classes, there is
no loss of expressiveness; i.e. any class-based program can be translated into
the prototype-based model [50]. A common translation from the class-based
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draw()
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point:Point
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a) Class-based model b) Prototype-based model
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draw Method implementation
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Prototype 
object

Common 
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Fig. 2. Common translation scheme between class-based and prototype-based object
models.

object-oriented model is the one shown in Figure 2:

• Similar object behavior (methods of each class in the class-based model) can
be represented by trait objects: objects whose members are only methods
[51]. Thus, their derived objects share the behavior they define.
• Similar object structure (fields of each class in the class-based model) can

be represented by prototype objects. A prototype object holds a set of ini-
tialized fields that represent a common structure.
• Copying prototype objects (constructor invocation in the class-based model)

is equivalent to the creation of a new class instance. A new object with a
specific structure and behavior is created by cloning a prototype object.

There exist class-based languages (Java, Smalltalk or C#) where classes are
first class objects represented by objects at runtime (e.g., in the .Net platform,
instances of System.Type are objects that represent classes or another type).
This demonstrates that, without any loss of expressiveness, this translation
is intuitive and facilitates application interoperability. This is the reason why
this model has been considered as a universal substrate for object-oriented
languages [52,53].

For our project, the most important feature of the prototype-based object-
oriented computational model is that it models structural reflective primitives
in a consistent way. Structural reflective languages such as Moostrap [54], Self
[55] or Lua [4] have successfully employed this model. The prototype-based
object model overcomes the schema versioning problem stated in the previous
section [56]. Modifying the structure (fields and methods) of a single object
can be performed directly, because any object maintains its own structure and
even its specialized behavior. Since shared behavior is placed in trait objects,
their customization implies type adaptation (schema evolution).

Figure 3 shows the example scenario described in the source code of Figure 1.
The initial point and p2 objects are clones of the pointPrototype object and
their shared behavior is placed in the Point trait object. A new coordinate
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Fig. 3. Structural Reflection over the prototype-based object-oriented model.

field (z) has only been added to point. Using the same approach, only the
point object is able to draw3D its three coordinates. Finally, all the objects
derived from the Point trait object will be able to use the new getX method.

Adding a field to a trait object represents a new variable shared by all of
the instances. As we have seen in the motivating example (Figure 1) Ruby
follows this approach, whereas Python implements a schema evolution tech-
nique where all class instances should be involved. We will show how we have
implemented both approaches in Section 5.

Although most structural-reflective dynamically-typed languages provide classes,
the concept of class many of them use (e.g., Python, Ruby and JavaScript)
is not exactly the same as the one used by other class-based languages such
C++, Java or C#. Classes in the former group of languages do not represent
both shared behavior and structure of objects. Structures of objects can be
modified at runtime (object-level reflection) without changing their classes.
That is, classes simply model shared behavior, the same as trait objects in
the prototype-based computational model. Objects are responsible for storing
their own structure, and they can also contain specific behavior (methods)
—like in the prototype-based computational model.

4.3 The New Virtual Machine Computational Model

Object-oriented dynamically typed languages that offer object-level structural
reflection use the prototype-based model to implement structural reflection in
an appropriate way. However, although the so called Common Language In-
frastructure (CLI) tries to support a wide set of languages, the .Net platform
only offers a class-based object-oriented model optimized to execute statically
typed languages. For example, Visual Basic .Net and Boo [57] are two of
programming languages that offer class-based dynamic (and static) typing
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Fig. 4. Supporting different object-oriented languages’ models.

features. They use the introspective services of the .Net platform in order
to implement dynamic typing, but this approach implies a significant perfor-
mance detriment at runtime.

In order to make prototype-based dynamically typed languages interoperable
with existing .Net languages and applications, the class-based model should
be maintained, ensuring backward compatibility. The reflective virtual ma-
chine should be able to run any existing .Net application, producing the same
original behavior.

Taking into account that the CLI virtual machine is a low level platform
for executing a wide variety of high-level programming languages, our work
is aimed at supporting both class-based and prototype-based object-oriented
models: the former for running static class-based .Net applications; the latter
for executing dynamic reflective programs. Each .Net compiler could then
select services of the appropriate model, depending on the language being
compiled. Figure 4 shows this scheme.

(1) In our reflective version of Rotor (zRotor), it is possible to execute any
existing .Net language (e.g., C# or J#) application, previously com-
piled for the original SSCLI. Since we have just extended its computa-
tional model, our reflective version of the SSCLI is backward compatible.
Existing programs will use the original class-based model of the CLI.

(2) To support different dynamically typed languages that offer structural
reflection (e.g., Python or Ruby), we have added structural reflection
primitives with prototype-based semantics. Consequently, a compiler of
any dynamically typed language will be able to directly use these new
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services of the reflective platform. It is not necessary to generate extra
code for simulating a reflective model over a static one.

(3) There are also programming languages compiled to .Net that use both
dynamic and static typing. Two examples are Visual Basic for .Net
and Boo [57]. These languages do not support structural intercession; its
dynamic type system only supports introspection. Dynamic features of
these languages will benefit from the performance improvement granted
by our reflective virtual machine.

(4) Strongtalk is a Smalltalk modification where static typing is optional,
introducing type-checking in a reflective prototype-based object-oriented
language without compromising flexibility [58]. It supports runtime struc-
tural reflection at the class level —it does not permit the modification
of a single object. A Strongtalk compiler may statically infer types or
postpone type-checking to runtime, using both capabilities of our virtual
machine.

In conclusion, the objective of our reflective extension of the .Net platform is
supporting structural reflection with both class and prototype based compu-
tational models, implementing static and dynamic typing (performed by the
compiler or the virtual machine, respectively). Future work will include defin-
ing the interaction between different models that are executed over the same
runtime environment –see the conclusions and acknowledgments sections.

As we have previously mentioned, we have maintained the use of classes to
achieve both backward compatibility and class-based structural reflection.
Therefore, the structural manipulation of classes could involve the following
scenarios:

• Schema evolution for class-based languages. Since classes are first
class objects in the .Net platform, their structure is customized by means
of System.Type instances. Altering their methods produces adaptation of
object behavior. In case we adapt fields of System.Type objects (classes),
what we obtain is the customization of all the existing instances of the
adapted class. Looking for a good runtime performance, we have developed
a lazy schema evolution mechanism [46]. This adaptation of classes has been
parameterized with a boolean argument indicating whether the new member
is an instance or class field (static in C++, Java and C#). Dynamic typing
detects the use of non-existing members, throwing the appropriate runtime
exception if necessary —see Section 5.1.
• Traits customization in the prototype-based model. Modifying the

interface of a trait object implies the customization of object shared behav-
ior (the same semantics as described above). However, the meaning of class
structure modification (its fields) depends on the language. As we have seen
in our example, Python interprets this modification as the adaptation of
all the existing instances of the class being customized (lazy schema evolu-
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tion); in Ruby, however, it simply implies the manipulation of class (static)
members. Both functionalities are included in the paragraph above.

Finally, the scenario of modifying the structure of objects is only applicable
to dynamic prototype-based languages. This operation is meaningless in class-
based languages because classes define the invariant behavior and structure of
all their instances. However, in a reflective prototype-based model it is possible
to customize the specific behavior (methods) of a single object and its struc-
ture (fields). These operations do not need to adjust the structure of classes
because they only represent shared behavior (trait objects), overcoming the
schema versioning problem described above. Note that compilers of statically
type-checked .Net languages (e.g., C#) will never use these object-oriented
reflective features because of its statically typed class-based model.

5 Implementation

Implementing structural reflective services in the SSCLI requires the extension
of the CLI platform, involving two discussions:

(1) Where to place the structural reflection primitives. New reflective
services could either be added to the Base Class Library (BCL), or repre-
sented by new IL statements. Adding new reflective IL statements would
provide two benefits: the JIT-compiler would have more opportunities for
optimization, and the virtual machine loader could detect some semantic
errors prior to program execution.

On the other hand, placing the reflection services inside the BCL also
provides some advantages. With the library-centric approach, a trans-
parent use of reflection would be offered to every .Net programming
language, improving the reusability of the reflective services [59]. It is
not necessary to modify existing compilers to use the reflective library.
Future implementations might even reuse the runtime if they are im-
plemented with bytecode transformation at load-time, like Javassist [60]
and Kava [61]. Finally, the most important advantage of maintaining the
ECMA-335 standard is that existing Commercial Off-the-Shelf (COTS)
.Net software could be reflectively manipulated. COTS programs are de-
ployed in the binary IL format. With the BCL-based approach, it would
be possible to load third-party binary code into memory and reflectively
manipulate its classes and objects, reflecting the changes on its execu-
tion. Therefore, we finally decided to place the reflective primitives in
the BCL, maintaining the existing IL instruction set. These new services
have been added to the Base Class Library (BCL) in a new namespace
called System.Reflection.Structural.

(2) Execution of third-party components. Using third-party compo-
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nents in reflective scenarios can be performed in two different ways. The
first one is extending the semantics of the platform, maintaining the orig-
inal components intact. The other approach is adapting the ECMA-335
to a new reflective specification, translating existing binary components
to our new platform.

The adaptation of the ECMA-335 would be done refining the type sys-
tem of the CLI to represent this dynamism [62], including, for instance, a
static mechanism for supporting duck typing similar to structural types
in Scala [63] or a constraint-based type system [64]. At the same time,
aliasing would be another issue to tackle. Modifying the structure of an
object would imply the static modification of its structure. All the refer-
ences that may be pointing to the modified object should be identified
to statically type-check its new structure. This problem can be addressed
by implementing an alias analysis algorithm [65].

The alternative we have chosen is extending the semantics of IL, be-
cause it implies, from our point of view, an important benefit: it main-
tains the portability of existing executable COTS components taken from
third-parties. This approach preserves the Common Type System (CTS,
ECMA-335 Partition I) and the Common IL instruction set (CIL, ECMA-
335 Partition III). Therefore, our selected approach has been to enhance
(but not to modify) the semantics of some IL statements, to represent
the new reflective prototype-based model. As an example, the inheritance
strategy commonly used in static languages is based on concatenation,
whereas some dynamic languages implement a delegation-based inheri-
tance strategy [66]. In order to obtain this behavior, we have extended
the semantics of the call and callvirt IL statements, maintaining back-
ward compatibility with existing applications.

5.1 New Reflective Primitives

We present a summary of the most significant reflective primitives added to the
System.Reflection.Structural namespace (all of them are static methods
of the NativeStructural utility class). The semantics of these services are
the one described in Section 4:

• The {add, remove, alter, get, exist}Method methods receive an object
or class (System.Type) as the first parameter, indicating whether we want
to modify (or inspect) a single object or a shared behavior. The second pa-
rameter is a MethodInfo object of the System.Reflection namespace. This
object uniquely describes the identifier, parameters, return type, attributes
and modifiers of a method. The IsStatic property of the MethodInfo in-
stance is used to select the schema evolution behavior (prototype-based
language) or class member adaptation (class-based language).
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If the programmer needs to create a new method, he or she can generate
it by means of the System.Reflection.Emit namespace, and add it later
to an object or class using its MethodInfo instance.
• The invoke primitive executes the method of an object or class specifying

its name, return type and parameters. If no reflection has been used, a fast
concatenation strategy is used. However, in the execution of reflective dy-
namically typed languages, method invocation is based on delegation: when
a message is passed to an object, it is checked whether the object has a suit-
able method or not; in case it exists, it is executed; otherwise, the message is
passed to its class (its trait object) recursively. A MissingMethodException

is thrown if the message has not been implemented in the hierarchy.
• The {add, remove, alter, get, exist}Field methods modify the runtime

structure of single objects (prototype-based model) or their common schema
(classes or traits) passed as the first parameter. The second parameter is
an instance of a new RuntimeStructuralFieldInfo class (derived from
the .Net FieldInfo class) that describes the type of the field, its visibility,
and its attributes. Once again, the Static attribute of the second parameter
selects the schema evolution behavior (class-based and Python models) or
class member adaptation (class-based and Ruby semantics).

The code in Figure 5 is a partial C# translation of the Python reflective pro-
gram shown in Figure 1 that uses the new reflective primitives. The addition
of the new isShowing field to the Point class has been done following both
the Python and Ruby style.

The functionality of these BCL services has been implemented in the C pro-
gramming language inside the execution environment. The most important
implementation decision was finding the place to add the reflective informa-
tion of each object and class. Whenever an object is created in the heap, it
holds two pointers followed by the instance data (values of fields). The first on
is a MethodTable pointer that holds the memory address of the type method-
table, which follows a concatenation inheritance strategy [66]. The second
pointer points to the object’s syncblock: a 32-bit integer index into a cache of
SyncBlocks. The syncblock memory contains additional control structures of
each object such as thread synchronization locks or value types [43].

Since instance data of each object is placed after the method table pointer
and the syncblock index, our first approach was trying to enhance this in-
stance data at runtime. However, direct object structure manipulation turned
to be much more problematic than we expected. Since the SSCLI internals
has been designed to aggressively optimize the support of static class-based
languages, objects and classes have fixed-size data and a very tight memory
layout. This fact made us pursue a different implementation path: we stored
additional members into each object’s syncblock, which was designed to hold
additional control structures of each object or class. The syncblock is stored
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public class Point {

... // * Fields and methods of the Point class

public static void Main() {

Point point = new Point(1, 2);

point.draw();

// * Modifies fields of a single object

RuntimeStructuralFieldInfo rsfi = new RuntimeStructuralFieldInfo("z",

typeof(int), 3, FieldAttributes.Public);

NativeStructural.addField(point, rsfi);

Console.WriteLine(NativeStructural.getValue(point, "z"));

// * Modifies methods of a single object

MethodInfo draw3D = typeof(Point3D).GetMethod("draw3D");

NativeStructural.addMethod(point, draw3D);

NativeStructural.invoke(point, draw3D, draw3D.GetParameters(), null);

// * Modifies methods of a class

MethodInfo getX = typeof(Point3D).GetMethod("getX");

NativeStructural.addMethod(typeof(Point), getX);

Console.WriteLine(NativeStructural.invoke(point, getX,

getX.GetParameters(), null));

// * Modifies fields of a class// * Modifies fields of a class

rsfi = new RuntimeStructuralFieldInfo( "isShowing",

typeof(bool),false, FieldAttributes.Public);

NativeStructural.addField(typeof(Point), rsfi); // the Python way

rsfi.SetAttributes(rsfi.Attributes | FieldAttributes.Static);

NativeStructural.addField(typeof(Point), rsfi); // the Ruby way

}

// * The following code could also be generated at runtime 

//   with Refleciton.Emit

class Point3D {

public void draw3D() {

Console.WriteLine("({0},{1},{2})", this.x, this.y, this.z);

}

public int getX() {

return this.x;

}

}

Fig. 5. C# version of the motivating example.

into the private execution engine memory rather than in the heap managed by
the garbage collector [43]. Every object in the system could have an associated
syncblock. If an object is removed from memory, the runtime environment au-
tomatically deletes it [43]. This behavior provides a way to adequately manage
data stored in the syncblock.

The syncblock size can be safely modified, so we added specific structures
to store reflective information (Figure 6). These new structures are two hash
tables (dynamically added methods and fields are stored separately) that map
member identifiers to member handles. The syncblock of every class and object
in the SSCLI follows a lazy creation strategy. No syncblock is created if it is
not necessary, involving no memory consumption overhead. In case the SSCLI
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requires a syncblock for non-reflective purposes (e.g., thread synchronization
or saving value types), the space overhead introduced by our approach is
limited to a pair of null pointers.

This memory representation is valid for modeling both concatenation and
delegation inheritance semantics. If a statically typed class-based language is
being processed, the information is obtained from the original SSCLI structure.
In case it is a prototype-based reflective language, information is also consulted
in the object’s syncblock following a delegation strategy [66].

The inclusion of structural reflective information into the syncblock made us
tackle with the following key issues:

(1) Representation of dynamic fields. Information of dynamically cre-
ated fields must be accurately represented. For that, we have added the
RuntimeStructuralFieldInfo class to the System.Reflection.Struc-
tural namespace. This class inherits from the RuntimeFieldInfo stan-
dard BCL class, used to store field meta-information. This new class
stores the data needed to handle dynamic fields, making it compatible
with static ones (that use RuntimeFieldInfo instead). As a result, the
system could use both types indistinctly.

(2) Representation of dynamic methods. Classes and objects are able
to store new methods. These methods can be either created at runtime,
or copied from existing ones. New methods can be dynamically created
with the System.Reflection.Emit namespace. Since copying existing
methods to create new ones may imply a performance cost, we have
used method wrappers to simulate this copy. When an existing method
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obtained from an object or class is copied to another one, an instance
of the MethodWrap class is created, holding a pointer to the original
method. When a MethodWrap is executed, it delegates the invocation
to the method it is pointing to.

(3) Method invocation. Depending on the computational model of the lan-
guage, method invocation should be implemented using a concatenation
strategy or a delegation-based one. If no structural reflection service has
been used, we maintain the concatenation-based message passing mech-
anism implemented by the SSSLI [43]: the syncblock is not analyzed and
the SSCLI MethodTable (vtable) is directly used. In case structural reflec-
tion has been used, we follow the delegation approach instead. The search
of the method to be executed starts by analyzing the object’s syncblock.
If the method is not found, its actual type (class) is checked at runtime.
The syncblock of the class (reflective member set) is analyzed first, and
then its MethodTable (original member set). If the method is still not
found, this algorithm is recursively applied to its superclass. Finally, in
case no superclass exists, a MissingMethodException is thrown. With
this scheme, both computational models are supported. At the same time,
dynamic binding semantics is not changed because we start searching at
the actual type of the object.

(4) Alteration and deletion of members. Since data and method ta-
bles of instances have fixed sizes, member handles in the syncblock are
also responsible for managing the deletion of non-reflective members —
implementation details are described in the following section. When a
method is deleted, we do not physically erase it; it is only marked as
deleted. This way, it is possible to maintain the execution of a method
that is on the call stack while it is being removed. If the method is then
called, a MissingMethodException will be thrown. Method alteration is
actually performed using the deletion and addition operations.

(5) Interaction with garbage collector (GC) operations. The reflective
information is stored into the execution engine memory (the syncblock),
which is not part of the GC heap. However, dynamically created fields
and methods refer to memory placed in the GC heap that may be moved
or deleted by the GC. Fortunately, the SSCLI manages a data structure
(the handle table) that allows data stored into the execution engine mem-
ory to point to data placed in the GC heap [43]. This way, the hash tables
added to the syncblock store member handles pointing to entries into a
handle table, holding the actual member data. Since we decided to use
GC data structures offered by the SSCLI, the main consequence expected
of our enhancement is a performance cost of scanning a higher amount
of members (those added at runtime), and the consequent memory con-
sumption –evaluated in Section 6.

(6) Concurrency. The fact that methods code is not physically removed is
particularly important when different threads that use structural reflec-
tion are created. Since the SSCLI does not implement a code pitching
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// * Static typing message passing
ldloc point
callvirt instance void Point::draw()
// * Dynamic typing message passing
ldloc point
callvirt instance void System.Object::draw3D()

Fig. 7. Part of the IL version of the motivating example.

mechanism (act of releasing native code from the JIT heap), the binary
code of the method is actually never freed. This is one of the reasons
why structural reflection could cause important memory consumption in
the SSCLI —see Section 6.2. Regarding to synchronization, the handle
table not only supports GC interaction, but also thread synchronization.
The CreateHandle function is used when members are about to be added,
and the DeleteHandle one is used for deleting them. These two functions
are synchronized to manage handles in a thread-safe way, supporting the
concurrent manipulation of fields.

5.2 Extending the Semantics of the Abstract Machine

The use of the new reflective BCL services should involve the adaptation of
running programs. However, legacy non-reflective code does not make explicit
calls to the BCL Reflection.Structural namespace and, thus, reflective
changes will not be taken into account within the original program. For in-
stance, a third-party binary application uses the callvirt IL statement to
pass a message to an object, instead of our BCL invoke primitive. This is
the reason why the reflective model defined in Section 4 requires extending
the semantics of some specific IL statements, making existing COTS applica-
tions adaptable. What we achieve with this approach is making existing .Net
components adaptable without needing to recompile them.

Following our motivating example, Figure 7 shows how to invoke a method
following both the static and dynamic typing approaches. We first send a
draw message of the statically inferred type Point. In case the compiler does
not know the type of the object, a dynamically typed message call is needed
(draw3D); then, the Object (or any other) type should be used instead. What
we have done to produce this behavior is extend the semantics of the callvirt
IL statement with the dynamically typed computational model described in
this paper.

In order to achieve this goal, we have modified the native code the JIT compiler
generates for the following IL statements:

• ldfld, ldsfld and ldflda: Loads the (instance or class) field value (or
address) into the stack following the computational model described in Sec-
tion 4.3.
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• stfld and stsfld: Stores a value into a (instance or class) field, allocating
its appropriate memory location at runtime.
• call and callvirt: Executes a method following both the concatenation

and delegation inheritance strategies.

The semantics of these IL statements have been extended to allow dynamic
access to its reflective information, not available when the code is compiled.
This has been accomplished with two major actions:

(1) Modifying the assembly code that the JIT compiler generates at run-
time, when the above statements are about to be executed: functions
compileCEE {LDFLD, LDFLDA, STFLD, CALL, CALLVIRT}. The original JIT
compiler chooses between two methods to generate member accesses: 1)
generating assembly code that makes direct access to object members,
whose memory addresses are statically calculated; or 2) generating code
that performs calls to special SSCLI helper functions that access system
data at runtime, looking for the appropriate member. In the original JIT
compiler, 1) is the preferred method leaving 2) to handle some special
cases. We have moved a hefty amount of 1) cases to the 2) category,
enabling member accesses to explore the reflective information added at
runtime through calls to helper functions. It has also been required to
move some existing JIT static type-checking code to these helper func-
tions. It is necessary to avoid JIT compilation errors and perform type
checking at runtime, which is when member types are actually known.

(2) Modifying the previously mentioned helper functions that are called at
runtime by the generated assembly code: JIT {Set, Get}Field{32, 64,
Obj}, JIT GetFieldAddr, JIT GetStaticFieldAddr and JIT Test{Method,
VirtualMethod} functions. Two new helper functions were also added in
order to obtain a method call address: JIT Test{Method, VirtualMethod}.
These helpers take into account both the “static” member information
(the instance data and its method table) and the new reflective informa-
tion placed in the syncblock. The result is an extension of the original
SSCLI computational model, offering the behavior defined in Section 4.
Reflective primitives placed in the NativeStructural class also make use
of these helper functions, and hence both ways of accessing the structural
reflective services share the same internal code.

An important aspect of the described JIT modifications is that the IL instruc-
tion set remains unchanged. It is the assembly code that the JIT compiler
generates for each IL instruction what handles all the changes. When the JIT
compiler is about to generate native code that accesses an object member, the
kind of member and the type of access are analyzed to determine which helper
function is more suitable. A call to a helper is generated instead of a direct
access to the member. The returned value of this helper function is then used
by the native code as the offset of the member.
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In order to implement deletion of non-reflective members, information in the
syncblock prevails over the original member information of the SSCLI. In our
motivating example, if the x field of a point is removed, it cannot be actually
erased from the “static” instance data. To solve this, a deletion mark is added
to the dynamic information of the object (into its syncblock). The preference
of the reflective information will represent the elimination of the x field.

5.3 Generics and Structural Reflection

We have developed our reflective platform extending the SSCLI version 1.0.
Since generics has been included in the last version of the SSCLI (version 2.0),
this section describes the major issues that should be addressed to incorporate
generics to our current implementation.

The main issue is how the SSCLI 2.0 manages generic types. Types are rep-
resented by TypeHandles that may point to either a TypeDesc, or a new
TypeVarTypeDesc object that represents a type variable. Each class has a
MethodTable that collects a set of methods, described by MethodDesc ob-
jects. A generic non-instantiated class represents its generic types (type vari-
ables) by means of TypeHandles that point to TypeVarTypeDesc objects.
Whenever a generic class is instantiated specifying its actual types, a new
MethodTable object is created substituting its generic types with the concrete
ones (TypeHandles now point to TypeDesc objects). An ExposedClassObject

instance in the new MethodTable represents the class instance at runtime, and
its syncblock would be used to hold the reflective data of the instantiated class.
Therefore, a generic class has a representation for its non-instantiated version,
plus as many representations as existing instantiations of its type variables.
Structural reflection may be applied to each one of these different representa-
tions of a class.

If a non-instantiated generic class is modified with reflection, every instanti-
ated version of that class should also be modified; transitively, every object
should be altered as well. These changes could be reflected following the lazy
strategy described in Section 5.1. Since the SSSLI represents an instantiated
generic class as a non-generic one, its modification would not require any spe-
cial consideration. Adding methods or fields that use generic types should be
avoided when the class is not a non-instantiated generic class.

The SSCLI 2.0 also supports generic methods. Generic methods could be
placed in (and hence reflectively added to) any class. Types of generic methods
are also represented with TypeVarTypeDesc objects, but type instantiation is
much simpler. In this case, the compiler is the one that infers types at each
method call. Consequently, the call and callvirt IL instructions explicitly
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state actual types of parameters and return values. A dictionary holding sub-
stitutions of each generic type is used at method execution to replace type
variables with the corresponding actual types.

The BCL in SSCLI 2.0 has been extended with a set of classes and methods
that support generic types via reflection. The GenericTypeParameterBuilder
class represents a type variable. Considering that this class inherits from
System.Type, it could be used to represent generic types without changing
the interface of our reflective API.

6 Evaluation

This section presents detailed experimental results showing the effectiveness of
our work. The experimental methodology employed is firstly outlined. After-
wards, the benchmark classification and applications used for the evaluation
are discussed. Finally, we present a performance and memory consumption
assessment.

6.1 Methodology

Different benchmarks have been used to assess the efficiency of our imple-
mentation, measuring both runtime performance and memory consumption.
Three different sets of tests have been run to evaluate:

• Efficiency of structural reflection. A set of micro-benchmarks and a real
reflective application have been used to measure efficiency of programs that
make extensive use of the reflective features of dynamically typed languages.
• Non-reflective code. We have measured runtime performance and mem-

ory consumption of code that does not use reflection at all. Different bench-
marks have been used to evaluate efficiency of different dynamically typed
languages implementations.
• The cost of reflection. The original implementation of the SSCLI 1.0

for Windows on free mode (its fastest version, enabling optimizations and
disabling debug code and debugging symbols) has been compared with our
reflective platform. We have used real applications that do not employ any
of the new features added to the SSCLI described in this paper. In this
section we also compare the results with the CLR 1.1 build 1.1.4322 CLI
implementation.

In order to compare our reflective SSCLI 1.0 implementation with existing dy-
namically typed languages, we have selected both Python and Ruby program-
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ming languages because of their wide popularity and utilization at present.
The specific implementations of Python and Ruby we have used are:

• CPython 2.5.1 for Windows (commonly referred as simply Python).
This is the most widely used Python implementation; it is called CPython
because it has been developed in C.
• Jython 2.2 (formerly called JPython) over the Java HotSpot Client VM

build 1.6.0.01 for Windows. A 100% pure Java implementation of the Python
programming language. It is seamlessly integrated with the Java 2 platform.
• IronPython 1.1 over the CLR 2.0 build 2.0.50727 for 32 bits. A promising

implementation of the Python language targeting the Common Language
Runtime (CLR). It compiles Python programs into IL bytecodes that run
on either Microsoft’s .Net or the Mono open source platform.
• Ruby 1.8.6 for Windows. Ruby is a dynamic open-source programming

language with a focus on simplicity and productivity. Ruby has probably
become a popular programming language because of the success of the Ruby
on Rails Web development framework [9]. Its “official” implementation is
based on a C interpreter.

These implementations have been compared to zRotor, our extension of the
SSCLI 1.0 for Windows. The system has been compiled in the free opera-
tion mode, without debug information and with the highest degree of code
optimization.

The source code we have used to assess zRotor is the CLI intermediate
language (IL). In order to obtain the IL code, we first write high-level programs
in C# and then compile them down to IL. Since IL code has static type
annotations, we replace them with Object references —as the source code
shown in Figure 7. The resulting code not only measures structural reflection,
but also dynamic type checking. Therefore, we measure the same operations in
our platform and each implementation of the Python and Ruby programming
languages.

The code has been instrumented with hooks to evaluate runtime performance,
recording the value of the processor’s time stamp counter. We have measured
the difference between the value between the beginning and the end of each
benchmark to obtain the total execution time of each program. This assess-
ment method takes into consideration the time required to dynamically gen-
erate native code by the JIT compiler of the virtual machine.

All the benchmarks have been executed utilizing the Windows XP performance
monitor. We have measured the maximum size of working set memory used
by the process since it started (the PeakWorkingSet property). The working
set of a process is the set of memory pages currently visible to the process in
physical RAM memory. These pages are resident and available for an appli-
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cation to use without triggering a page fault. The working set includes both
shared and private data. The shared data comprises the pages that contain all
the instructions that the process executes, including those from the process
modules and the system libraries.

All tests have been carried out on a lightly loaded 3.2 GHz iPIV hyper-
threading system with 1 GB of RAM running Windows XP. To evaluate
average percentages, ratios and orders of magnitude, we use the geometric
mean.

6.2 Structural Reflective Code

In order to evaluate the efficiency of the structural reflective primitives added
to the SSCLI, we have implemented (in Ruby and Python) a micro-benchmark
that makes extensive use of all the reflective primitives described in this pa-
per (loops of 10,000 iterations). This assessment gives us an initial estimate
of runtime performance improvement and memory consumption cost of our
implementation, in comparison with the implementations described in Sec-
tion 6.1. We also evaluate the execution of a real program that makes use of
structural reflection.

Table 1: Performance and memory consumption of reflective primitives.

Reflective Primitive CPython Jython IronPython Ruby zRotor

1. Adding int fields to an
object

439 ms 18,240 ms 8,461 ms 219 ms 47 ms

4,700 KB 34,781 KB 24,839 KB 9,560 KB 6,028 KB

2. Adding object fields to an
object

486 ms 18,137 ms 10,277 ms 263 ms 31 ms

6,726 KB 34,984 KB 24,847 KB 9,236 KB 5,948 KB

3. Adding int fields to a class
530 ms 17,611 ms 8,279 ms 686 ms 47 ms

4,894 KB 34,970 KB 24,963 KB 9,976 KB 6,884 KB

4. Adding object fields to a
class

485 ms 17,378 ms 10,052 ms 657 ms 47 ms

5,894 KB 35,225 KB 25,671 KB 9,960 KB 5,952 KB

5. Adding int fields to a class
an access to its value

688 ms 32,716 ms 16,032 ms 829 ms 109 ms

4,906 KB 34,887 KB 24,259 KB 9,948 KB 6,863 KB

6. Adding object fields to a
class an access to its value

845 ms 31,392 ms 17,651 ms 799 ms 109 ms

5,916 KB 35,602 KB 24,514 KB 9,948 KB 6,622 KB

7. Deleting int fields from an
object

391 ms 16,526 ms 7,865 ms 204 ms 109 ms

4,704 KB 34,024 KB 24,689 KB 9,344 KB 6,288 KB

8. Deleting object fields from
an object

421 ms 16,929 ms 7,914 ms 188 ms 125 ms

5,702 KB 35,124 KB 25,362 KB 9,612 KB 6,270 KB

9. Deleting int fields from a
class

451 ms 16,737 ms 7,984 ms 421 ms 125 ms

4,900 KB 34,980 KB 24,323 KB 10,092 KB 6,504 KB

10. Deleting object fields from
a class

435 ms 16,932 ms 8,167 ms 406 ms 125 ms

5,894 KB 34,778 KB 25,482 KB 10,112 KB 6,270 KB
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Table 1: Performance and memory consumption of reflective primitives.

Reflective Primitive CPython Jython IronPython Ruby zRotor

11. Accessing fields from an
object

455 ms 16,959 ms 7,907 ms 219 ms 16 ms

4,820 KB 35,264 KB 24,347 KB 12,780 KB 5,590 KB

12. Accessing fields from a
class

421 ms 16,954 ms 7,963 ms 219 ms 16 ms

5,016 KB 35,136 KB 25,121 KB 12,780 KB 5,792 KB

13. Accessing added fields
from an object

455 ms 16,959 ms 7,907 ms 187 ms 94 ms

4,820 KB 35,264 KB 24,347 KB 10,164 KB 6,284 KB

14. Accessing added fields
from a class

421 ms 16,954 ms 7,963 ms 187 ms 78 ms

5,016 KB 35,136 KB 25,121 KB 10,576 KB 6,284 KB

15. Accessing non-existing
fields from an object

499 ms 18,604 ms 9,856 ms 593 ms 375 ms

4,240 KB 34,839 KB 24,311 KB 10,164 KB 5,202 KB

16. Accessing non-existing
fields from a class

469 ms 17,900 ms 9,926 ms 593 ms 391 ms

4,244 KB 34,537 KB 24,421 KB 10,576 KB 5,206 KB

17. Adding methods to an
object

110 ms 5,361 ms 2,369 ms 125 ms 187 ms

4,156 KB 33,281 KB 23,437 KB 8,680 KB 18,670 KB

18. Adding methods to a class
125 ms 4,863 ms 2,425 ms 109 ms 187 ms

4,224 KB 31,929 KB 23,971 KB 8,676 KB 18,670 KB

19. Invoking methods that
were added to an object using
reflection

141 ms 4,723 ms 2,671 ms 79 ms 63 ms

4,160 KB 32,702 KB 23,714 KB 8,652 KB 19,612 KB

20. Invoking methods coded
statically

141 ms 5,581 ms 2,671 ms 63 ms 16 ms

8,406 KB 35,391 KB 52,709 KB 9,232 KB 21,100 KB

21. Invoking non-existing
methods

157 ms 5,684 ms 3,197 ms 141 ms 94 ms

4,096 KB 30,675 KB 23,653 KB 9,904 KB 5,644 KB

22. Invoking methods that
were added to a class using
reflection

141 ms 4,914 ms 2,671 ms 63 ms 63 ms

4,210 KB 32,652 KB 24,081 KB 9,176 KB 19,610 KB

23. Deleting methods that
were added to an object

125 ms 4,521 ms 1,970 ms 110 ms 31 ms

4,158 KB 32,910 KB 23,834 KB 8,606 KB 18,920 KB

24. Deleting methods that
were added to a class

111 ms 4,457 ms 1,991 ms 78 ms 31 ms

4,214 KB 32,770 KB 23,980 KB 9,310KB 18,920 KB

Table 1 shows the measurement of each primitive execution time expressed in
milliseconds and the Kbytes needed to execute them (following the methodol-
ogy described in Section 6.1). As we can appreciate in this table, Jython and
IronPython obtain the worst performance results in all the tests. The require-
ment to implement Jython as a 100% pure Java offers interoperability with
any Java program, but it causes a significant performance penalty. The same
happens to IronPython: generating IL code that simulates the Python reflec-
tive model over a platform that does not support it involves low performance
at runtime. This performance penalty is surely caused by the amount of extra
code that must be generated to support the reflective model.

Data in Table 1 shows that CPython, Ruby and our implementation execute
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Fig. 8. Runtime performance and memory consumption of reflective primitives.

structural reflective primitives much faster than the two systems that generate
intermediate code: Jython and IronPython. Measurements also show that our
platform is more than 80 and 160 times faster on average than IronPython and
Jython respectively. Note that, since time values of Jython and IronPython
are much higher than the rest of implementations, we have decided not to
include them in Figure 8, displaying only the systems whose performance is
close enough to be compared. Regarding to memory consumption, Jython
requires more than 3 times the memory used by zRotor and the memory
needed by IronPython is almost twice higher than ours.

As Figure 8 shows, when running the reflection test suite with the new re-
flective prototype-based semantics added to the SSCLI runtime environment,
we are 3.317 times faster than CPython and 2.135 times faster than Ruby.
This performance improvement of zRotor compared to CPython involves a
memory consumption increase of 73.2%. However, our implementation utilizes
86.67% the memory employed by Ruby.

The only tests where Reflective Rotor has been slightly slower are those where
methods are added at runtime (primitives 17 and 18). This difference might
be caused by the way SSCLI manages methods. An object handle is the only
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Fig. 9. Runtime performance and memory consumption of the parrot benchmark.

way to access the members of an object (or class). This indirection is the
mechanism used to implement references managed by a generational garbage
collector. Regarding to methods, it is necessary to build their mangled name,
obtain their object handle, and access to their implementation. The cost of
this whole process might be the reason of the observed performance drop.

The three primitives that offer a lower benefit are those where the code tries to
access non-existing members (primitives 15, 16 and 21). This cost is due to the
complexity of the member searching algorithm (delegation strategy) necessary
in the dynamic reflective prototype-based model. This is a drawback produced
by the design of the CLI, which was built to simply support statically typed
programming languages.

These reflective micro-benchmarks illustrate a first performance assessment
of structural reflection. However, the impact of these results on the whole
performance of real applications depends on the amount of reflective code
used. Although dynamically typed languages are commonly chosen by their
flexibility, real applications that make use of these services must be evaluated
to estimate its overall performance.

Since we measure structural reflection in this section, we will evaluate a real
program benchmark that uses reflection. More real workloads are analyzed in
sections 6.3 and 6.4. The benchmark we have used is the Parrot benchmark
1.0.4. This benchmark was created to measure the corners of the Python lan-
guage, using the dynamic object model of this language to implement a Python
interpreter. It implements a parser for a subset of Python, instrumenting and
uninstrumenting the tree visiting algorithms at runtime, making use of com-
mon meta-programming services of dynamically typed languages. Runtime
performance and memory consumption are shown in Figure 9. Jython has not
been included because it does not support the yield statement, used many
times in the source code of the test.

The inclusion of code that does not use reflection produces different results
that will be even more obvious in the following tests. We can see how zRotor
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is significantly faster than CPython and IronPython (45% and 122.36% re-
spectively) and much faster (more than 48 times) than Ruby. In this case, our
reflective platform is the fastest one.

Analyzing the memory used to run the parrot benchmark, it becomes clear
that, excluding Ruby, the approaches that use a JIT-compiler virtual ma-
chine require considerably more memory than the interpreter-based ones. Iron-
Python and zRotor use 4.8 and 15.28 times more memory than CPython.
The difference between IronPython and zRotor could be because of the code
pitching mechanism (act of releasing native code from the JIT heap) imple-
mented in the CLR, which has not been included in the SSCLI implementa-
tion. Since the benchmark generates a lot of new code and replaces existing
methods at runtime, the CLR dynamically releases the compiled code that
becomes inaccessible, whereas the SSCLI does not.

6.3 Non-Reflective Code

The main advantage of so called dynamic languages is their capabilities (such
as reflection) to model dynamically adaptive and adaptable software. There-
fore, we thought that it is important to evaluate the efficiency of their dy-
namic features (previous point). However, there are pieces of “static” code
when developing an application in a dynamically typed language. Therefore,
this section is focused on assessing the efficiency of “static” programs that
do not make use of reflection at all. Note that, under these circumstances,
statically typed languages (C#, Java or C++) would be more appropriate to
develop this kind of software.

In this section we have used two benchmarks. The first one was designed by
Thomas Bruckschlegel to evaluate the characteristics of Java, C#, and C++
on Windows and Linux. This benchmark comprises a set of 14 elementary tests
that use fundamental data processing and arithmetic operations [67]. We have
translated the benchmark source code into Python and Ruby.

The second benchmark we have used is the Pystone benchmark. This bench-
mark is the Python version of the Dhrystone benchmark [68] and is commonly
used to compare different implementations of the Python programming lan-
guage. Pystone is included in the standard CPython distribution. We have
translated it into Ruby and C#.

Table 2 shows the results of executing both benchmarks in the languages
described in Section 6.1. CPU time is expressed in milliseconds and memory
consumption in Kbytes.
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Table 2: Performance and memory consumption of non-reflective benchmarks.

Test CPython Jython IronPython Ruby zRotor

1. Integer Arithmetic
20,641 ms 31,719 ms 10,480 ms 69,578 ms 1,500 ms

4,266 KB 15,118 KB 22,716 KB 6,852 KB 4,220 KB

2. Double Arithmetic
27,516 ms 37,813 ms 14,980 ms 94,359 ms 5,750 ms

4,266 KB 13,838 KB 21,323 KB 8,000 KB 4,640 KB

3. Long Arithmetic
45,625 ms 98,406 ms 33,558 ms 410,532 ms 3,781 ms

4,266 KB 14,476 KB 21,418 KB 8,262 KB 4,664 KB

4. Trigonometric
5,203 ms 14,453 ms 4,052 ms 4,453 ms 453 ms

4,278 KB 14,608 KB 23,980 KB 8,332 KB 4,668 KB

5. File Input / Output
32 ms 277 ms 203 ms 93 ms 312 ms

4,344 KB 14,828 KB 27,576 KB 8,332 KB 4,668 KB

6. Array set and get
operations

6,000 ms 41,484 ms 3,990 ms 19,157 ms 359 ms

4,406 KB 15,072 KB 27,576 KB 10,788 KB 4,668 KB

7. Exception Handling
859 ms 3,250 ms 10,255 ms 3,125 ms 1,812 ms

4,220 KB 15,118 KB 23,252 KB 9,151 KB 5,968 KB

8. Hashmap fill and find
operations

31 ms 360 ms 420 ms 125 ms 31 ms

6,858 KB 16,894 KB 27,994 KB 10,362 KB 5,968 KB

9. Nested Hashmaps find, get,
and set operations

62 ms 343 ms 217 ms 343 ms 203 ms

6,858 KB 17,616 KB 27,994 KB 10,362 KB 5,968 KB

10. Heap Sort Algorithm
2,407 ms 13,532 ms 1,731 ms 6,094 ms 281 ms

5,564 KB 17,604 KB 31,074 KB 12,452 KB 7,328 KB

11. Double-Linked Lists add,
get and remove operations

46 ms 250 ms 70 ms 78 ms 31 ms

5,564 KB 19,144 KB 31,074 KB 12,452 KB 7,328 KB

12. Matrix Multiply operation.
132,782 ms 347,610 ms 83,650 ms 569,719 ms 16,328 ms

5,564 KB 18,425 KB 26,149 KB 15,396 KB 8,128 KB

13. Nested Loops performing
add operations.

34,060 ms 58,328 ms 25,341 ms 318,438 ms 1,468 ms

5,564 KB 18,587 KB 22,297 KB 12,163 KB 8,132 KB

14. String Concatenation.
8,703 ms 39,164 ms 6,092 ms 30,461 ms 359 ms

16,944 KB 52,043 KB 57,694 KB 41,916 KB 23,952 KB

Pystone benchmark
1,069 ms 3,829 ms 764 ms 3,173 ms 156 ms

4,373 KB 12,912 KB 23,616 KB 8,208 KB 6,004 KB

Table 2 shows how Reflective Rotor executes non-reflective code significantly
faster than the rest of implementations. On average, zRotor is 2.95, 13.83,
4.36 and 5.06 times faster than CPython, Jython, IronPython and Ruby
respectively. Although zRotor requires more memory than CPython and
Python, these differences are lower than the performance benefit of our imple-
mentation: CPython uses 49.58% the memory required by Reflective Rotor.
Jython, IronPython and Ruby increase the memory consumption of zRotor

in 58.87%, 147.36% and 71.63%.

Figure 10 shows the ratios of execution time to CPython and the ratios of

33



2.5

3.0

3.5

0

2

4

6

8

10

12

14

Int 

Arithmetic

Double 

Arithmetic

Long 

Arithmetic

Trig IO Array Exception HashMap HashMaps HeapSort Vector Matrix 

Multiply

Nested 

Loop

String 

Concat

Pystone

Cpython Jython IronPython Ruby ЯRotor

Я
R

o
to

r)
R

a
ti

o
o

f 
E

x
e

cu
ti

o
n

T
im

e
 (

C
P

y
th

o
n

)

0

0.5

1.0

1.5

2.0

Int 

Arithmetic

Double 

Arithmetic

Long 

Arithmetic

Trig IO Array Exception HashMap HashMaps HeapSort Vector Matrix 

Multiply

Nested 

Loop

String 

Concat

Pystone

Cpython Jython IronPython Ruby ЯRotor

R
a

ti
o

o
f 

M
e

m
o

ry
C

o
n

su
m

p
ti

o
n

(Я

Fig. 10. Non-Reflective performance and memory consumption.

memory consumption to zRotor. Table 2 and Figure 10 illustrate how tests
were CPython is faster than zRotor are the same as those where CPython is
also faster than IronPython: file input/output, exception handling, hash map
fill and find operations, nested hash maps find, get, and set operations, and
matrix multiply operation of the Bruckschlegel benchmark. That coincidence
implies that both the CLR (IronPython) and the SSCLI (zRotor) perform
part of these tests slower than the Python interpreter. We think this difference
is because the key elements of these tests (hash-tables, vectors and files) are
implemented inside of the .Net library, whereas they are part of the inter-
preter in the case of Python. BCL access may cause this performance penalty.
Regarding to exception management, both the CLR and SSCLI have poor
performance in their implementations of the exception handling mechanism
[67].

On average, our extension of the SSCLI executes these tests that do not use
reflection 2.53 times faster than CPython, using 101.69% more memory. In
most cases (10 tests from 15), IronPython is also faster than CPython. Al-
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though IronPython uses the CLR implementation of the CLI, which is faster
than the SSCLI, IronPython is not as fast as zRotor. This dissimilarity is
caused by the additional layer that IronPython implements over the CLR to
simulate the whole computational model of Python. IronPython has to deter-
mine types of variables at runtime using introspection. Unlike zRotor, the
CLR shows an important performance penalty when introspection is used.

As we have previously mentioned, most implementations of dynamically typed
language runtimes are slower than statically typed ones when programs do not
need runtime adaptation. This is mainly caused by the fact that dynamically
typed languages discover the types of objects at runtime, whereas this pro-
cess is performed at compile-time by statically typed ones. Therefore, when a
programmer chooses a dynamically typed language to implement a program,
it is most likely motivated by the flexibility requirements of the application,
which are best offered by dynamically typed languages. This is the reason why
we believe it is more important to measure performance of reflective primi-
tives rather than non-reflective code. Good performance results obtained in
both scenarios implies that our reflective extension of the SSCLI is a really
appropriate platform to support hybrid scenarios.

6.4 The Cost of Reflection

This last evaluation section compares the SSCLI implementation with our
platform, using the same programming language (C#). We ran a set of bench-
marks that do not use reflection at all. The results will give us an estimate
of the cost of our reflective model when class-based static applications are
executed. We also compare our base system (the SSCLI) with the production
CLR. This assessment estimates what might be the efficiency of our system
in case it was included in the CLR implementation.

We have measured runtime performance and memory consumption of three
C# benchmarks: Thomas Bruckschlegel benchmark used in previous section
[67]; three real C# applications collected by Ben Zorn [69]; and a C# port of
a subset of the Java Grande benchmark [70].

The three C# real applications collected by Ben Zorn consist of a collection
of managed code benchmarks available for performance studies of CLI imple-
mentations. These programs are:

• LCSCBench. Based on the front end of a C# compiler. It uses a generalized
LR (GLR) parsing algorithm. This benchmark is compute and memory
intensive, requiring hundreds of megabytes of heap for the largest input file
provided (a C# source file with 125,000 lines of code).
• AHCBench. Based on compressing and uncompressing input files using
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Adaptive Huffman Compression. AHC bench is 1,267 lines of code compute-
intensive, requiring a relatively small heap.
• SharpSATBench. Based on a clause-based satisfiability solver where the

logic formula is written in Conjunctive Normal Form (CNF). SharpSAT-
bench is compute-intensive, requiring a moderate-sized heap. Its source code
has 10,900 lines of code.

Table 3: Performance and memory consumption costs of reflection.

Test zRotor SSCLI CLR

CPU Time Memory CPU Time Memory CPU Time Memory

Z
o
rn

LCSCBench 3,906 ms 29,729 KB 3,484 ms 26,896 KB 1,859 ms 34,764 KB

AHCBench 5,672 ms 5,807 KB 5,359 ms 5,375 KB 859 ms 5,320 KB

SharpSATBench 6,469 ms 10,888 KB 4,310 ms 10,358 KB 1,340 ms 14,942 KB

J
a
v
a

G
ra

n
d
e

Arith 5,188 ms 4,296 KB 5,188 ms 4,036 KB 4,530 ms 3,986 KB

Assign 1,134 ms 4,316 KB 469 ms 4,308 KB 31 ms 4,212 KB

Cast 859 ms 4,564 KB 859 ms 4,244 KB 422 ms 4,212 KB

Create 22,625 ms 6,498 KB 22,625 ms 6,300 KB 5,641 ms 4,216 KB

Loop 531 ms 4,556 KB 531 ms 4,232 KB 31 ms 4,148 KB

FFT 32,844 ms 37,247 KB 31,594 ms 36,994 KB 12,609 ms 37,196 KB

HeapSort 4,094 ms 8,182 KB 2,984 ms 7,924 KB 578 ms 6,158 KB

Sparse 13,516 ms 8,992 KB 13,078 ms 8,726 KB 5,406 ms 9,042 KB

RayTracer 131,422 ms 5,218 KB 90,063 ms 5,016 KB 4,938 ms 4,806 KB

B
ru

c
k
sc

h
le

g
e
l

Integer Arithmetic 1,500 ms 4,220 KB 1,500 ms 3,988 KB 593 ms 4,276 KB

Double Arithmetic 5,750 ms 4,640 KB 5,750 ms 4,312 KB 1,093 ms 4,288 KB

Long Arithmetic 3,781 ms 4,664 KB 3,781 ms 4,336 KB 1,531 ms 4,288 KB

Trigonometric 453 ms 4,668 KB 453 ms 4,336 KB 250 ms 5,496 KB

File Input / Output 312 ms 4,668 KB 312 ms 4,336 KB 46 ms 5,496 KB

Array 359 ms 4,668 KB 359 ms 5,464 KB 15 ms 5,496 KB

Exception Handling 1,812 ms 5,968 KB 1,703 ms 5,492 KB 1,093 ms 5,568 KB

Hashmap 31 ms 5,968 KB 31 ms 6,464 KB 15 ms 5,568 KB

Hashmaps 203 ms 5,968 KB 156 ms 6,464 KB 46 ms 5,568 KB

Heap Sort 281 ms 7,328 KB 265 ms 6,464 KB 31 ms 5,568 KB

Vector 31 ms 7,328 KB 31 ms 6,464 KB 15 ms 5,568 KB

Matrix Multiply 16,328 ms 8,128 KB 16,328 ms 7,648 KB 2,359 ms 8,988 KB

Nested Loops 1,468 ms 8,132 KB 1,468 ms 7,648 KB 453 ms 9,000 KB

String Concatenation 359 ms 23,952 KB 250 ms 23,468 KB 46 ms 17,936 KB

The last benchmark used in this section is a subset of the Java Grande bench-
mark ported to C# by Chandra Krintz [71]:

• Section 1 (low level operations). Arith, execution of arithmetic oper-
ations; Assign, variable, object and class variables, and array assignment;
Cast, casting between different primitive types; Create, object and array
creation; and Loop, loop overheads.
• Section 2 (Kernels). FFT, one-dimensional forward transformation of N

complex numbers; Heapsort, the heap sort algorithm over arrays of inte-
gers; and Sparse, management of an unstructured sparse matrix stored in
compressed-row format with a prescribed sparsity structure.
• Section 3 (Large Scale Applications). RayTracer, a 3D ray tracer of

scenes that contain 64 spheres, and are rendered at a resolution of NxN
pixels.
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Fig. 11. Performance and memory cost of runtime reflection.

Table 3 presents the results; time is expressed in milliseconds and memory
in Kbytes. Figure 11 shows execution time and memory consumption ratios
to the SSCLI. Both representations show how our implementation involves
an average runtime performance cost of 12.10%, and 4.27% more memory
utilization than the SSCLI. If we compare runtime performance of the SSCLI
with the CLR, the latter is 3.15 times faster than the former, using only 38%
more memory.

Although memory consumption variance is low (6.32%), the standard deriva-
tion of runtime performance penalty is 30.32%. This is because a large number
of tests have almost no performance cost, whereas others show a performance
penalty. This difference could be clearly seen in the two heap sort algorithm
implementations: although the cost is only 3% in the case of the JavaGrande
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benchmark, this percentage raises to 13% in the case of the Bruckschlegel
benchmark. Analyzing the code, we realized that the main difference is that
the former sorts an array local variable when the latter uses an object field.
This result was contrasted with the rest of the tests. Programs where a notable
performance penalty is observed are those that make more accesses to object
members. Consequently, we evaluated member access and method invocation
costs with a simple micro-benchmark. The results obtained converged to the
following percentages:

• The runtime performance cost of accessing an object’s field is 31.65%.
This value is 165.53% in the case of static (class) fields. The higher per-
formance penalty of static field access is due to the worse performance
of the JIT GetStaticFieldAddr helper function compared to the JIT Get

FieldAddr –see Section 5.2.
• Method invocation involves a performance penalty of 28.29% when the mes-

sage is sent to an object and 27.06% when the receiver is a class.

This assessment confirms performance penalties shown in Figure 11. The as-
sign benchmark evaluates different kind of assignments, making a wide use of
static fields (its performance penalty is 142%). The rest of the tests where the
cost is appreciable have penalties lower than 50%.

7 Related Work

There have been different approaches to speed up implementations of dynam-
ically typed object-oriented reflective languages using JIT compilation and
dynamically adaptive code optimization. However, not many have tried to do
it supporting both dynamically and statically typed programming languages.

7.1 Runtime Reflective Virtual Machines

The Smalltalk programming language could be identified as the first example
of a dynamically typed object-oriented reflective language. It supports class-
level intercession, but not object-level intercession. This is the reason why its
computational object-oriented model is class-based. Initial implementations
of Smalltalk (Dolphin, GNU Smalltalk, ObjectStudio or Berkeley Smalltalk)
were based on bytecode interpreters. Afterwards, different optimizations have
used dynamic JIT compilation to native code [7] involving important perfor-
mance improvements: VisualWorks, VisualAge Smalltalk and Digitalk. As an
example, average runtime performance of VisualWorks Smalltalk is more than
3 times better than GNU Smalltalk.
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Self is a prototype-based object-oriented language for exploratory program-
ming. It uses the prototype model to support runtime structural (and partially
behavioral) reflection. Its implementation is based on a virtual machine that
implements JIT compilation [55]. One of the most important features of Self
is the efficient execution of its dynamic code [26]. The Self compiler transpar-
ently specializes functions for specific argument types based on profiling and
gatherer statistics. To implement a consistent reflective object model, the Self
platform was designed following a prototype-based approach.

MetaXa, formerly called MetaJava, is an extension of the Java platform with
a reflective meta-level architecture [31]. Reflective services are provided by a
behavioral reflective Meta-Object Protocol (MOP) [32]. The MetaXa approach
is quite similar to the one presented in this paper: reflection support added
to a production statically typed class-based virtual machine (integrated into
its JIT compiler) to obtain significant performance benefits [72]. The main
difference was that MetaXa followed the class-based computational model of
the Java programming language. As described in Section 4, the class-based
object-oriented model of Java does not support object-level reflection in a
consistent way [48]. In fact, this model is not the one implemented by most
dynamically typed object-oriented reflective languages.

7.2 Python Implementations

Python is a dynamically typed reflective object-oriented programming lan-
guage used in many software development scenarios. Python has also been
ported to the Java and .Net platforms. Probably, the most widely used im-
plementation is Cpython, a free and efficient bytecode interpreter written in
C.

ActiveState tried to modify different free implementations of the .Net plat-
form in order to compile Python to .Net IL code, but they abandoned the
project because the abstract machine design was not friendly to dynamic lan-
guages [27]. They built some prototypes, but all of them had poor performance.

Python for .Net is an open source Zope Public License (ZPL) implementation
that extends CPython with a package that gives programmers nearly seamless
integration with the .Net Common Language Runtime (CLR). This package
does not implement Python as a first-class CLR language (it does not produce
managed code from Python code). Rather, it is an integration of the CPython
engine with the .Net runtime. This makes its implementation another version
of CPython.

Jython is an implementation of Python seamlessly integrated with the Java
platform. The predecessor to Jython, JPython, is certified as 100% pure Java.
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Concerning to performance, CPython 2.3 on Windows 2000 is about twice
as fast as Jython 2.1 on JDK 1.4. Due to its lower performance, Jython is
commonly used as a scripting language embedded in Java.

IronPython is a shared source platform implementation that supports the
Python interactive programming style with dynamic JIT compilation. Iron-
Python was created by Jim Hugunin (the creator of JPython/Jython) under
a Common Public License (CPL) until version 0.6. Then, Jim Hugunin has
worked in the IronPython project as a Microsoft employee, releasing Iron-
Python 0.7 to 1.0 as a BSD-style license (MS Shared Source Initiative). Iron-
Python 1.1 executes the Pystone benchmark 1.8 times faster than CPython
2.5. This benefit is because of the “static” code of the Pystone benchmark.
However, the dynamic field lookup and replacing type test of the Parrot bench-
mark runs 65 times slower over Mono and 1.5 times slower over the CLR 2.0.
IronPython has demonstrated how the JIT compiler of the CLR offers an im-
portant performance benefit when executing code that does not use dynamic
features of Python. However, the simulation of its dynamic services over the
statically typed .Net platform causes a performance penalty in dynamic sce-
narios compared to CPython.

7.3 Ruby

Ruby is a dynamic pure object-oriented programming language. It is nowa-
days getting widely popular, probably due to the success of the Ruby on
Rails framework for developing database-backed web applications [9]. Using
the runtime reflection and meta-programming features of Ruby, Rails notably
facilitates the development of Web-based programs.

Runtime performance of Ruby is poor because it is not compiled to a virtual
machine, and it uses neither native threads nor generational garbage collec-
tion. This is the reason why future implementation of Ruby 2 interpreter,
called Rite, will be a bytecode-based virtual machine to improve its runtime
performance [73].

Another approach to speed-up the execution of Ruby programs is the Cardinal
project. This open source project is intended to compile Ruby programs so
that they can be run over the Parrot JIT-based virtual machine. Cardinal is
still in version 0.1.0. Parrot virtual machine last version is 0.9.0.
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7.4 Dynamism in the Java Platform

The increasing popularity of dynamically typed languages has produced dif-
ferent approaches to make the Java Virtual Machine a platform to execute
dynamic languages. The Java instrument package (included in Java SE 1.5)
provides services that allow Java programming language agents to instrument
programs running on the JVM. This package has been used to implement
JAsCo, a fast dynamic AOP platform [74]. Other tools like BCEL [75] and
Javassist [60] have been successfully used in the implementation of application
servers like Spring Java and JBoss, obtaining good runtime performance.

Afterwards, the JSR 223 was included as part of the Java SE 1.6. It provides
an API to access scripting language programs developed in the Java Platform,
permitting the use of scripting language pages in Java server-side applications
[11].

Currently, the JSR 292 is another step forward to support dynamically typed
languages on the Java platform. JSR 292 is expected to be delivered in Java
SE 1.7 [11]. The JSR 292 extends the JVM instruction set with a new in-

vokedynamic opcode. This instruction has been designed to support the im-
plementation of the message passing mechanism of dynamically-typed object-
oriented languages (duck typing). The specification also investigates support
for hotswapping : the capability to modify the structure of classes at runtime.

Since the computational model of dynamically typed languages requires ex-
tending the JVM semantics, Sun Microsystems has launched the new Da Vinci
project in January 2008 [76]. This project is aimed at prototyping a number
of enhancements to the JVM, so that it can run non-Java languages, specially
dynamic ones, with a performance level comparable to that of Java itself.
Although capabilities of Da Vinci Machine are planned for inclusion in the
upcoming Java SE 7, Sun has not provided a release date for JDK 7 and it is
not known how many Da Vinci features might be actually included in JDK 7
[77].

The last approach taken by Sun Microsystems is similar to the one presented
in this paper. Instead of creating a new software layer (like IronPython or
Jython), they extend the virtual machine to take advantage of its JIT compiler.
At the same time, they will support both dynamically and statically typed
languages. However, the new invokedynamic instruction only supports the
duck typing feature of dynamic languages. No structural reflective services
have been described yet.
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7.5 Dynamic Language Runtime (DLR)

Microsoft first announced in the MIX 07 the Dynamic Language Runtime
(DLR): a set of services that run on the top of the CLR, offering a new level
of support for dynamic languages on .Net [78]. The DLR is shipped with
IronPython 2.0 beta 4 and SilverLight 2 beta 2.

Basically, the DLR is a redesign of the object model used in previous versions
of IronPython. The DLR has been developed to facilitate the implementation
of dynamically typed languages over .Net and to make these languages seam-
lessly work together, sharing libraries and frameworks. Its services have been
used to implement IronRuby, IronPython 2.0, dynamic Visual Basic .Net
and Managed JScript. Since the reflective code is executed over the CLR, the
performance of dynamic reflective code is similar to the previous versions of
IronPython.

7.6 Optimizations at the High Level

The execution of dynamically typed languages (and reflective features of other
statically typed languages like Java or C#) can also be optimized at a higher
level of abstraction. The following approaches implement performance opti-
mizations, using features of high-level programming languages.

Psyco is a just-in-time specializing compiler that runs existing Python software
faster, with almost no change in the source code [79]. Taking advantage of the
Python meta-programming features, Psyco gathers information of programs
at runtime, writes several optimized versions of each function, and executes
them properly. This runtime program translation is called specialization-by-
need : specialization is performed dynamically, when the code is about to be
executed. Psyco does not implement a JIT compiler of a virtual machine. It
follows the premise that high-level languages need not be slower than low-level
ones [80]. Therefore, its approach is based on just-in-time high-level code spe-
cialization. Although this approach is not the one presented in this paper, both
techniques can be combined to obtain an even better runtime performance.
Program specialization optimizes a specific high-level programming language.
A reflective JIT-compiler virtual machine improves the runtime performance
of a language-neutral platform. Notice that just-in-time program specializa-
tion requires runtime information of objects structure and dynamic method
invocation, and the runtime performance of these features is significantly bet-
ter in our reflective platform than in the original SSCLI.

PyPy is a concluded European project aimed at producing a fast Python im-
plementation, translating a Python-level description of the Python language
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itself to lower level languages. PyPy is based on a framework that supports
the generation of implementations of dynamic languages, separating language
specification and implementation aspects [81]. This separation improves flex-
ibility of implementation decisions such as platform, memory or optimiza-
tions. PyPy architecture is based on an interpreter of Python written in a
subset of Python called RPython. A translation tool compiles RPython pro-
grams into efficient lower-level programs for various target platforms, including
JIT-compiler virtual machines. This high-level JIT compilation obtains good
runtime performance but depends on the Python high-level programming lan-
guage, lacking the language interoperation feature offered by language-neutral
virtual machines.

The SmartReflection project consists on optimizing the Java core reflection
library [82]. The main idea of this approach consists of moving the most of the
overhead of Java dynamic introspection from runtime to compile-time. A static
bytecode processor creates stub classes that resolve the reflective method over-
loading statically, and delegates the real invocation to the standard mechanism
(not the reflective one). At runtime, method reification is modified using the
Java Native Interface (JNI) to dynamically locate appropriate stub classes and
transform reflective calls into direct method invocations. The resulting speed
up of the introspective invoke primitive is up to 60%.

8 Conclusion

This paper describes how to modify the computational model of an efficient
statically typed class-based JIT-compiler virtual machine in order to sup-
port structural object-oriented reflection at runtime, obtaining a significant
runtime performance improvement. Moreover, computational models of both
prototype-based and class-based programming languages are implemented.
Therefore, existing .Net programming languages are still supported by our
virtual machine.

Previous implementations that support dynamically-typed object-oriented lan-
guages over a .Net and Java virtual machines (e.g., Jython and IronPython)
have obtained no performance improvement when running structural reflec-
tive code. Due to the non-reflective object-oriented model of the virtual ma-
chines used, these compilers use an abstraction layer that simulates dynamic
reflective features over these statically typed platforms. This new abstraction
layer requires the execution of extra code, causing a runtime performance
penalty. When non-reflective code is executed, these platforms obtain better
performance than their interpreter-based counterparts. However, in the case of
running dynamic reflective code, they are much slower. Since statically typed
languages are faster and safer than dynamically typed ones, a programmer
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will presumably use a dynamically typed language when the program requires
runtime adaptiveness. Therefore, assessing reflective services of dynamically
typed languages is an important factor to be taken into account.

We have followed a different approach to support runtime reflection over a pro-
duction JIT-based virtual machine. Instead of generating extra code to simu-
late dynamic features over a statically typed platform, we have extended the
.Net SSCLI virtual machine to directly support the reflective primitives of dy-
namically typed languages. The class-based model of the virtual machine has
been extended with the semantics of a dynamic prototype-based model, where
classes represent trait objects. New functionality has been placed in a new BCL
namespace, and the semantics of some IL statements has been enhanced to
support the reflective model. Depending on the language to be compiled, the
compiler may use the legacy class-based model or the new prototype-based
one, allowing both static and dynamic typing.

The assessment of our Reflective Rotor implementation has shown that our
approach is the fastest when running reflective tests. The increase of memory
consumption has been lower than the performance benefit. When running
static code, we are at least 3 times faster than the rest of implementations
tested, requiring at most 102% more memory resources. This benefit is because
of the design of the virtual machine JIT compiler, which has been aggressively
optimized to generate non-reflective code. Finally, we have also evaluated the
cost of our enhancements. When running real applications that do not use
reflection at all, empirical results show the performance cost is generally below
50%, using 4% more memory.

Another conclusion of our work is that the performance cost of adding reflec-
tion to the SSCLI is due to its design, strongly optimized to support statically
typed languages. Its virtual machine has been optimized making assumptions
of non-reflective statically-typed languages. If it had been designed to support
both models, average performance of dynamic and static benchmarks would
probably have been better.

Future work will be adding the rest of dynamic features of dynamically typed
languages, such as dynamic inheritance and meta-classes, to give a full low-
level support of these languages. These new services will be developed making
use of the runtime reflective primitives described in this paper. We are also
interested in including a new set of security permissions to control the reflec-
tively manipulation of types and objects at runtime.
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