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We study three conditions of independence within evidence theory framework. The first
condition refers to the selection of pairs of focal sets. The remaining two ones are related
to the choice of a pair of elements, once a pair of focal sets has been selected. These three
concepts allow us to formalize the ideas of lack of interaction among variables and among
their (imprecise) observations. We illustrate the difference between both types of indepen-
dence with simple examples about drawing balls from urns. We show that there are no
implication relationships between both of them. We also study the relationships between
the concepts of ‘‘independence in the selection” and ‘‘random set independence”, showing
that they cannot be simultaneously satisfied, except in some very particular cases.

� 2010 Published by Elsevier Inc.
1. Introduction

The concept of stochastic independence is essential in probability theory. Factorization allows us to decompose complex
problems into simpler components. When generalizing to imprecise probabilities, the concept of independence, which is un-
ique in probability theory, can be extended in different ways. Different definitions of independence for imprecise probabil-
ities are studied and compared in [4,5,15].

Evidence theory [13] falls within the theory of imprecise probabilities. This way, definitions of independence for impre-
cise probabilities can be transferred to this context. The concept of independence is basic for important problems as local
computation in graphical models. The different concepts of independence give rise to different forms of constructing a joint
representation of information and, therefore the algorithms to compute in these models are also different [1,3]. So, it is very
important to clarify the relationships between these notions and the conditions under which they can be applied. In [8], for
instance, sets of joint probability measures associated to joint mass assignments are constructed. Different ways of choosing
the weights of the joint focal sets and the probability measures inside these sets are considered. Depending on these condi-
tions, different sets of joint probability measures are obtained. The author shows that some of these cases lead to types of
independence described in [5] such as strong independence, random set independence and unknown interaction. The author
initially considers the class of all probability measures on a product space whose marginals are dominated by a pair of plau-
sibility measures. Next he establishes three rules to construct probabilities within that class. Each rule is related to a partic-
ular aspect of independence and it determines a subclass in the initial set of probability measures. The first rule refers to the
choice of weights of the joint focal sets, and it is related to the concept of random set independence. The second and the third
rules are referred to the choice of the probability measures inside the focal sets. The author shows that the class of
probability measures based on these three rules satisfies independence in the selection. We will go further on this study.
First, we will recall these notions under a different framework. Then we will give an intuitive meaning for each rule, by
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means of simple examples about drawing balls from urns. Our main goal is showing that none of these rules is strictly nec-
essary to get independence in the selection. In fact, we will construct product probabilities without using any of these rules.
This will be possible because the same probability measure can be constructed by using different procedures. In fact, we can
choose weights of the joint focal sets and/or the probability measures inside the focal sets and finally get the same proba-
bility measure.

We will also go into further details about the relationships among random set independence [5] with independence in the
selection and type 1 independence [4]. It is well known that the class of probability measures associated to random set inde-
pendence includes the class of probability measures satisfying type 1 independence (see [5], for instance). We will check in
the paper that this is a strict inclusion, except for trivial situations (precise probabilities). We will also show that the inclu-
sion is also strict for the set of extreme points of these sets in most of the cases, but with more exceptions (at least one of the
masses has pairwise disjoint focal elements).

Our analysis does not apply to all interpretations of evidence theory, but only when the pair of plausibility and belief
functions is regarded as a family of probability measures. Different interpretations of evidence theory as the transferable be-
lief model [14] lead to different approaches (see [16], for instance) to the concept of independence.

The paper is organized as follows. Section 2 provides the necessary technical background about upper probabilities, evi-
dence theory and independence notions for imprecise probabilities. Section 3 is devoted to different representations of the
class of probability measures dominated by a particular plausibility function. Section 4 studies random set independence and
its relationships with the concepts of independence in the selection and type-1 independence. We end the paper with some
general concluding remarks and open problems.

2. Preliminary concepts and notation

Let us introduce some notation and recall some definitions needed in the rest of the paper.

2.1. Sets of probability measures

Consider a finite universe X. We will denote PX the class of all probability measures we can define on the power set of
X; }ðXÞ. Let P#PX an arbitrary subset. It induces upper and lower probability functions, respectively defined by
P�ðAÞ ¼ sup
Q2P

QðAÞ; P�ðAÞ ¼ inf
Q2P

QðAÞ ð1Þ
The set of probability measures dominated by an upper probability P� is denoted by PðP�Þ ¼ fQ : QðAÞ 6 P�ðAÞ;8A # Xg. If the
upper probability measure P� is generated by the family P, then PðP�Þ is generally a proper superset of P. Specifically, PðP�Þ
is always the convex hull of P : CHðPÞ ¼ PðP�Þ.

Two sets of probabilities P1 and P2 are said to be equivalent if and only if they have the same convex hull. Two equivalent
sets of probabilities define the same pair of upper and lower probabilities. If P is a set of probabilities, its largest equivalent
set is its convex hull, CHðPÞ, and the smallest equivalent set is the set of its extreme points, ExtðPÞ.

Mathematical evidence theory of Shafer extends classical probability theory. In this framework, a basic mass assignment,
m, is a mass of probability defined over the power set of X. It assigns a positive mass to a family of subsets of X called the set
Fm of focal subsets. Generally, mð;Þ ¼ 0 and

P
E2Fm

mðEÞ ¼ 1. This mass assignment induces set functions called plausibility
and belief measures, respectively denoted by Pl and Bel, and defined by Shafer [13] as follows:
PlðAÞ ¼
X

E\A–;
mðEÞ; BelðAÞ ¼

X
E # A

mðEÞ:
2.2. Independence concepts for imprecise probabilities

Consider two variables or uncertain values which may be regarded as the outcomes of two experiments. Assume that the
two outcomes are known to belong to the universes X1 and X2 which are finite. Assume that the set of possible joint out-
comes is the Cartesian product X1 �X2. Let us respectively represent by P1 #PX1 and P2 #PX2 our knowledge about the
true distribution of probability that models each marginal experiment. Let P#PX1�X2 represent our (imprecise) knowledge
about the joint probability distribution associated to the joint experiment. Given a joint probability measure, P on X1 �X2

we will respectively denote P1 and P2 its marginals on X1 and X2, i.e., P1ðAÞ ¼ PðA�X2Þ, and P2ðBÞ ¼ PðX1 � BÞ;
8A # X1;B # X2.

We say that there is independence in the selection [5] when every extreme joint probability P 2 P factorizes as P ¼ P1 � P2,
i.e., PðA� BÞ ¼ P1ðAÞP2ðBÞ;8A # X1;B # X2. In other words, when
ExtðPÞ# fP1 � P2 : P1 2 P1; P2 2 P2g:
This concept coincides with the notion of type-2 independence studied in [4]. In this paper, another related concept was con-
sidered: if P is a general set of probabilities (non necessarily convex), we say that there is type-1 independence when the fac-
torization property is satisfied for every P 2 P, and not only for the extreme points.
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Suppose that P1 ¼ PðPlm1 Þ and P2 ¼ PðPlm2 Þ. We say that there is random set independence if P ¼ PðPlmÞ, where
m ¼ m1 �m2, i.e.,
mðA� BÞ ¼ m1ðAÞm2ðBÞ; 8A # X1; B # X2:
and mðCÞ ¼ 0 if C – A� B for any A # X1; B # X2.

3. Probability measures dominated by a plausibility function

In this section we will deal with representations of the class of probability measures dominated by a particular plausibil-
ity function. Let X represent the (finite) universe of discourse and let Fm ¼ fA1; . . . ;Aqg be the class of focal sets associated to
a basic mass assignment m. Let Plm denote the associated plausibility measure. Grabisch et al. [9] consider the family of tu-
ples ZðFmÞ ¼ f~a ¼ ða1; . . . ;aqÞ : ai : Ai ! ½0;1�;

P
x2Ai

aiðxÞ ¼ mðAiÞ; i ¼ 1; . . . ; qg. For each particular tuple ~a 2 ZðFmÞ, they
consider the associated probability measure P~a : }ðXÞ ! ½0;1� such that P~aðfxgÞ ¼

P
i:Ai3xaiðxÞ;8x 2 X. Under this con-

struction, they easily check that each P~a is dominated by Plm. Furthermore, for each A # X, there exists ~a� 2 ZðFmÞ such that
P~a� ðAÞ ¼ PlmðAÞ. Let the reader notice that these conditions are sufficient to check that the class Jm ¼ fP~a : ~a 2 ZðFmÞg coin-
cides with PðPlmÞ, since their extreme points do coincide and both of them are convex.

Fetz independently considers in [8] the class of probability measures
Km :¼
Xq

i¼1

mðAiÞPi : Pi 2Ki

( )
; where

Ki ¼ fPi 2 PX; : PiðAiÞ ¼ 1;8 i ¼ 1; . . . ; qg
In other words, each probability measure in Km is a linear convex combination of q probability measures, P1; . . . ; Pq. Each Pi

is a probability measure on the focal set Ai.
The family Km coincides with Jm. In fact, each tuple ~a ¼ ða1; . . . ;aqÞ is associated to the tuple of probability measures

ðP1; . . . ; PqÞ defined as
PiðfxgÞ ¼ aiðxÞ
mðAiÞ

; 8x 2 Ai; 8 i ¼ 1; . . . ; q:
We can give an additional alternative description of the class Km. Given a mass function m with focal elements
ðA1; . . . ;AqÞ, we are going to consider the family of all vectors ðm; ðPiÞqi¼1Þ where Pi is a probability on X satisfying that
PiðAiÞ ¼ 1. Each of these vectors ðm; ðPiÞqi¼1Þ defines a probability measure on }ðSÞ;P : }ðSÞ ! ½0;1�, where
S ¼ fðAi;xÞ : Ai 2 }ðXÞ;x 2 Aig and given on the elementary events by:
PðfðAi;xÞgÞ ¼ mðAiÞ � PiðfxgÞ;
if Ai is a focal element and x 2 Ai, and 0 otherwise.
As vector m; ðPiÞqi¼1

� �
univocally determines probability measure P, from now on, we will write P � m; ðPiÞqi¼1

� �
.

Each probability P defines a probability P 2Km, given by:
PðfxgÞ ¼
X

A2}ðXÞ
PðfðA;xÞgÞ ¼

Xq

i¼1

mðAiÞ:PiðfxgÞ:
This probability P will be called the probability associated to P.
Each probability measure P can be seen as describing the uncertainty associated to a two steps procedure: first, a subset

Ai 	 X is selected (according to probability m), and afterwards, an element x 2 Ai is chosen with probability Pi. This second
step determines a precise probability P among all the possibilities associated to m.

Each probability P 2Km is defined by at least one probability P. In fact, given a tuple ~a ¼ ða1; . . . ;aqÞ, we can define one
probability P given by m; ðPiÞqi¼1

� �
, where Pi is the probability measure given by PiðfxgÞ ¼ aiðxÞ, if x 2 Ai and PiðfxgÞ ¼ 0,

otherwise.

Remark 1. For an arbitrary Q 2 PðPlÞ, there exists at least one tuple ~a such that Q ¼ P~a. But this association is not
necessarily unique. Let us consider, for instance, the universe X ¼ fx1;x2;x3g and the mass assignment m : }ðXÞ ! ½0;1�
such that Fm ¼ fA1;A2g where A1 ¼ fx1;x2g;A2 ¼ fx1;x2;x3g ¼ X, and mðA1Þ ¼ 0:5 ¼ mðA2Þ. Let us now consider the
probability measure P : }ðXÞ ! ½0;1� such that Pðfx1gÞ ¼ Pðfx2gÞ ¼ 5=12 and Pðfx3gÞ ¼ 1=6. Let ~a ¼ ða1;a2Þ and
~b ¼ ðb1; b2Þ the tuples of mappings defined as follows:
a1ðx1Þ ¼ a1ðx2Þ ¼ 0:25;
a2ðx1Þ ¼ a2ðx2Þ ¼ a2ðx3Þ ¼ 1=6:
b1ðx1Þ ¼ 5=12;b1ðx2Þ ¼ 1=12;
b2ðx1Þ ¼ 0;b2ðx2Þ ¼ 1=3;b2ðx3Þ ¼ 1=6:
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We easily check that
mðAÞ ¼
X
x2A

aAðxÞ ¼
X
x2A

bAðxÞ; 8 A and

PðfxgÞ ¼
X
A3x

aAðxÞ ¼
X
A3x

bAðxÞ; 8 x 2 X:
4. Independence concepts in evidence theory

The notion of independence in evidence theory is studied from different points of view in the literature. In [16], for in-
stance, the ideas of decomposability and irrelevance are studied and compared within the theory of evidence. In this paper,
we will distinguish between independence of variables and independence of their observations. The first one is related to the
concept of ‘‘type 1 independence” [4] and the second one is associated to ‘‘random set independence” [5].

In [8], Fetz establishes three different restrictions to the elements in PðPlmÞ. Each one of them is related to some aspect of
independence. Fetz shows some relationships between these restrictions and some other notions of independence consid-
ered in [5]. In this section, we will continue these investigations. First of all, we will recall the notions given by Fetz, but
we will use a different nomenclature. For each definition, we will give an intuitive interpretation and an example of an
urn model to which the definition is applied.

4.1. Three conditions of independence

Let m1 : }ðX1Þ ! ½0;1� and m2 : }ðX2Þ ! ½0;1� be two arbitrary basic mass assignments. Let us respectively denote by
Fm1 ¼ fA1; . . . ;Aqg and Fm2 ¼ fB1; . . . ;Brg their families of focal elements. Let us now consider a basic mass assignment
on X1 �X2;m : }ðX1 �X2Þ ! ½0;1� satisfying the following conditions:


 The family of focal elements associated to m coincides with (or it is included in) Fm ¼ fAi � Bj : i ¼ 1; . . . ;

q; j ¼ 1; . . . ; rg. The Cartesian product Ai � Bj will be called a rectangle, and when this condition is fulfilled, we will
say that m has rectangles as focal sets.


 m1ðAiÞ ¼
Pr

j¼1mðAi � BjÞ; i ¼ 1; . . . ; q.

 m2ðBjÞ ¼

Pq
i¼1mðAi � BjÞ; j ¼ 1; . . . ; r.

In these conditions, as the family of focal elements is Fm ¼ fAi � Bj : i ¼ 1; . . . ; q; j ¼ 1; . . . ; rg, a probability measure P

will be denoted as m; ðPijÞqi¼1
r
j¼1

� �
, where Pij is a probability measure in X1 �X2 verifying PijðAi � BjÞ ¼ 1 (i.e., we use two

superscripts to describe the set of focal elements and their associated probabilities).
In what follows, we are going to consider three definitions of independence for a probability measure P � m; ðPijÞqi¼1

r
j¼1

� �
.

The first of these conditions will be the plain random set independence for the mass m and the other two will be additional
conditions under which the associated probability on X1 �X2 given by
P ¼
Xq

i¼1

Xr

j¼1

mðAi � BjÞPij
factorizes as product of its marginals: P ¼ P1 � P2. The three definitions can be seen as conditions under which independence
in the selection is the right independence concept, instead of random set independence.

The three definitions are closely related to three restrictions established in [8] to the elements in the class Km. Each con-
dition reflects a different aspect associated to the notion of independence, as we will check below.

Definition 1. A probability measure P � m; ðPijÞqi¼1
r
j¼1

� �
satisfies the first independence condition if m ¼ m1 �m2, i.e.,
mðAi � BjÞ ¼ m1ðAiÞ � m2ðBjÞ
8 i ¼ 1; . . . ; q; j ¼ 1; . . . ; r:
This notion is associated to the concept of random set independence recalled in Section 2. As it is expressed in terms of
the mass function, then either it is verified by all the probability distributions P associated to m or by none of them. Let us
illustrate this type of independence.

Example 1. Suppose that we have two urns, each of them with 10 balls. The first urn has five red, two white and three
unpainted balls. The second urn has three red, three white and 4 unpainted balls. We select one ball from each urn in a
stochastically independent way, and if either one between the selected balls are not coloured, then they are painted white or
red by a completely unknown procedure. There can be arbitrary correlation between the colours they are finally assigned.

In this example, we are interested in the final colours of the two balls we draw from the urns. So, the universe of discourse
is X1 �X2 ¼ fr;wg � fr;wg. The focal elements associated to both selections are Fm1 ¼ fA1;A2;A3g and Fm2 ¼
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fB1;B2;B3g; where A1 ¼ B1 ¼ frg;A2 ¼ B2 ¼ fwg and A3 ¼ B3 ¼ fr;wg. The marginal mass assignments for the colours of the
selected balls are:
m1ðA1Þ ¼ 0:5 m1ðA2Þ ¼ 0:2 m1ðA3Þ ¼ 0:3
m2ðB1Þ ¼ 0:3 m1ðB2Þ ¼ 0:3 m2ðB3Þ ¼ 0:4
The mass assignment associated to the joint experiment satisfies the equalities:
mðAi � BjÞ ¼ m1ðAiÞm2ðBjÞ; 8 i; j:
The class of probability measures representing our (imprecise) information about the joint experiment is PðPlmÞ ¼Km. Each
one of them is associated to a probability measure P satisfying the first condition of independence.

Definition 2. A probability measure P � m; ðPijÞqi¼1
r
j¼1

� �
is said to satisfy the second independence condition if

Pij ¼ Pij
1 � Pij

2;8 i ¼ 1; . . . ; q; j ¼ 1; . . . ; r, i.e.,
PijðA� BÞ ¼ Pij
1ðAÞ � Pij

2ðBÞ;
8A # X1;B # X2; 8 i ¼ 1; . . . ; q; 8 j ¼ 1; . . . ; r;
where Pij
1 and Pij

2 are the marginal probability measures of Pij on X1 and X2, respectively.

Example 2. Consider the same urns as in Example 1 and assume again that we select one ball from each urn in a stochas-
tically independently way. Let us also assume that, when both selected balls are not painted, there is no correlation between
the colours they are assigned. If we have no additional information, our knowledge about the joint experiment is described
by the class of probability measures of the form P ¼

P3
i¼1

P3
j¼1mðAi � BjÞPij, where m is the mass assignment from Example 1,

and Pij is a probability measure on X1 �X2 satisfying:


 PijðA� BÞ ¼ Pij
1ðAÞ � Pij

2ðBÞ; 8A 2 }ðX1Þ; B 2 }ðX2Þ,

 PijðAi � BjÞ ¼ 1, for each i ¼ 1;2;3 and each j ¼ 1;2;3.

Every probability measure P � m; ðPijÞqi¼1
r
j¼1

� �
associated to this information satisfies the first and the second

independence conditions. As we pointed out above, both balls are selected in a stochastically independent way.
Furthermore, when both selected balls have no colour, we use separate procedures to paint them. Nevertheless, there can
remain some dependence relation. Let us, for instance assume the following procedure to assign each colour:


 If only one of the selected balls is coloured, we will draw a dice to choose the colour of the other one. If the number in
the dice is ‘‘5”, we will paint it with the same colour. Otherwise, we will choose the opposite.


 If both selected balls have no colour we will draw two coins, each one for each ball.

The probability measure, P : }ðX1 �X2Þ ! ½0;1�, associated to the joint experiment satisfies both conditions given in
Definitions 1 and 2. However, it cannot be expressed as a product. In fact, there exists a stochastic dependence between the
colours of both balls. Let us notice, for instance, that


 Pðfðr; rÞgÞ ¼ 0:15þ 0:2 � 1
4þ 0:09 � 1

6þ 0:12 � 1
4


 P1ðfrgÞ ¼ 0:5þ 0:09 � 1
6þ 0:09 � 5

6þ 0:12 � 1
2, and


 P2ðfrgÞ ¼ 0:3þ 0:2 � 1
6þ 0:06 � 5

6þ 0:12 � 1
2

Thus, Pðfðr; rÞgÞ ¼ 0:245 does not coincide with P1ðfrgÞ � P2ðfrgÞ ¼ 0:65 � 0:46.

Definition 3. A probability measure P � m; ðPijÞqi¼1
r
j¼1

� �
satisfies the third independence condition when
Pi1
1 ¼ � � � ¼ Pir

1 ¼ Pi
1; 8 i ¼ 1; . . . ; q and

P1j
2 ¼ � � � ¼ Pqj

2 ¼ Pj
2; 8 j ¼ 1; . . . ; r:
Example 3. Suppose again we have the urns in Example 1. Let us draw a ball from each urn. If some of the balls is unco-
loured, we decide its colour without checking whether the other one is red, white or uncoloured. Nevertheless, there can
be some dependence relationship between both colours. Let us, for instance, consider the following procedure to assign each
colour:


 We will toss a dice and if any of the balls is uncoloured, then if the number in the dice is ‘‘5”, we will paint it red. Other-
wise, we will paint it white. In this procedure, we assume that if both balls are uncoloured, then the same dice is used to
paint them, so they will have the same colour (we do not need to see the colour of the other ball to paint one of them,
but there is dependence in the way the balls are coloured).
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The probability measure, P � m; ðPijÞqi¼1
r
j¼1

� �
, associated to the joint experiment satisfies the conditions given in

Definitions 1 and 3. In particular, the equalities P21
1 ¼ P22

1 ¼ P23
1 reflect that, when the first ball is uncoloured, the probability

of painting it red is 1=6, independently from the initial colour of the second ball (red, white or uncoloured). A similar
explanation applies to the equalities P12

2 ¼ P22
2 ¼ P32

2 .

Nevertheless, the probability measure that models the joint experiment (the probability measure P ¼P3
i¼1
P3

i¼1mðAi � BjÞPijÞ cannot be written as the product of its marginals. For instance, the probability of the result ðr; rÞ
is, approximately, 0.22. On the other hand P1ðfrgÞ ¼ 0:55 and P2ðfrgÞ � 0:37. Hence, Pðfðr; rÞgÞ does not coincide with the
product P1ðfrgÞ � P2ðfrgÞ.

Summarizing, each condition reflects a different aspect of the notion of independence. The first condition (m verifies ran-
dom set independence) reflects independence between the procedures used to select both balls from the urns. In the last
examples, this condition is satisfied, because each ball is selected from a different urn, in a stochastically independent
way. The second condition reflects independence between the procedures to paint both balls, once they have been selected.
Finally third condition reflects independence between the procedure used to select one ball from an urn and the procedure
used to paint the other ball, once it has been selected.

In Examples 1–3 we show situations where some, but not all of these conditions are satisfied, and the probability P asso-
ciated to P cannot be written as a product. If P ¼ m; ðPijÞqi¼1

r
j¼1

� �
, satisfies conditions Definitions 1–3 then the probability

measure P ¼
Pq

i¼1

Pr
j¼1mðAi � BjÞPij can be factorized as P ¼ P1 � P2, as Fetz checks in [8]. Conversely, we easily check that

every product probability P ¼ P1 � P2, where P1 2 PðPlm1 Þ and P2 2 PðPlm2 Þ, can be written as P ¼
Pq

i¼1

Pr
j¼1mðAi � BjÞPij,

where P satisfies conditions given in Definitions 1–3. So, the second and the third independence conditions can be seen
as additional restrictions for the joint probabilities in order that independence in the selection is verified. If we have two
marginal masses m1 and m2 and we know that the joint probabilities P are obtained by a process which can be described
as a probability P verifying conditions Definitions 1–3, then independence in the selection is the right independence concept.
In the next section we will make a further study about the connection between these conditions and independence in the
selection.

4.2. Independence in the selection

As we pointed out in the last subsection, any probability measure P ¼ P1 � P2 with P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þ is associated
to a probability measure P satisfying independence conditions given in the last section. In other words, it can be written as a
linear convex combination P ¼

Pq
i¼1

Pr
j¼1mðAi � BjÞPij, where m ¼ m1 �m2 and Pij ¼ Pi

1 � Pj
2;8 i ¼ 1 ¼ 1; . . . ; q; j ¼ 1; . . . ; r. On

the other hand, we can use a different linear convex combinations and get the same probability measure, as we have checked
in Remark 1. So we can ask ourselves whether we can find an alternative linear convex combination
P ¼
Xq

i¼1

Xr

j¼1

m0ðAi � BjÞQ ij;
where P � m0; fQijgq
i¼1

r
j¼1

� �
does not satisfy the requirements considered in Definitions 1–3. In fact, it is possible, as we show

below.

Example 4. Suppose we have two urns, each one with 10 balls. The two of them have five red, and five unpainted balls. We
select one ball from the first urn and then we select a ball from the second urn, with this rule: the ball is red, if the ball
selected from the first urn is red, while it is uncoloured, if the ball from the first urn is uncoloured (this rule realizes an
extreme form of dependence between the selections). Once we have selected both balls, we use the following procedure to
paint them in case they are uncoloured: we toss three coins, and check the number of heads:


 If the number is 3, we paint both balls with the colour red.

 If the number of heads is 2, we paint the first ball red, and the second one, white.

 If the number of heads is 1, we paint the first ball white, and the second one, red.

 Finally, if three tails are obtained, we paint white both of them.

The probability measure that models this random experiment can be written as:
P ¼ mðA1 � B1ÞP11 þmðA2 � B2ÞP22;
where A1 ¼ B1 ¼ frg;A2 ¼ B2 ¼ fr;wg,
mðA1 � B1Þ ¼ mðA2 � B2Þ ¼ 0:5 and

P11 � ð1;0;0;0Þ and P22 � ð1=8;3=8;3=8;1=8Þ:
There do not exist m1 and m2 such that m ¼ m1 �m2. On the other hand, each Pij cannot be factorized as Pij ¼ Pi
1 � Pj

2. In
other words, m and fPijg2

i¼1
2
j¼1 do not satisfy the requirements from Definitions 1 and 2. It has no sense to check condition
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Definition 3, since P12
1 ; P

12
2 ; P

21
1 and P22

2 can be arbitrarily defined. Nevertheless, P coincides with the product of its marginals.
In fact, Pðfðr; rÞgÞ ¼ 9=16; Pðfðr;wÞgÞ ¼ Pðfðw; rÞgÞ ¼ 3=16, and Pðfðw;wÞgÞ ¼ 1=16, and hence PðA� BÞ ¼ P1ðAÞP2ðBÞ;
8A;B # fr;wg.

Since the probability measure that models the last experiment can be written as a product, there must exists an
alternative linear convex combination,
P ¼
X2

i¼1

X2

j¼1

m1ðAiÞm2ðBjÞQij; ð2Þ
where Q ij ¼ Q i
1 � Q j

2;8 i; j. In fact, the last experiment is equivalent to the following one: suppose we have two urns, each one
with 10 balls. The two of them have five red, and five unpainted balls. We select one ball from each urn in a stochastically
independent way. If some of the balls is uncoloured, we toss a coin to decide its colour (one coin for each ball). The proba-
bility measure associated to this new random experiment coincides with P and it can be written, in a natural way as in Eq.
(2), where: m1ðA1Þ ¼ m1ðA2Þ ¼ m2ðB1Þ ¼ m2ðB2Þ ¼ 0:5;Q i

kðfrg ¼ Qi
kðfwgÞ ¼ 0:5; i ¼ 1;2; k ¼ 1;2.

In the last example, we have built a product probability measure P ¼ P1 � P2 without having into account any of the
requirements given in Definitions 1–3. We can also get a product probability by using some of these rules, but not all of
them. In next example, we will only take into account the requirement from Definition 1, and we will get a product prob-
ability measure.

Example 5. Consider two urns with 10 balls. Both of them have the same composition: five balls are red, and the other five
are unpainted. Suppose that we independently draw a ball from each one of the urns. If one ball is uncoloured, then it will be
painted red or white with some procedure. This information can be represented by a mass assignment given by:
mðA1 � B1Þ ¼ mðA1 � B2Þ ¼ mðA2 � B1Þ ¼ mðA2 � B2Þ ¼ 0:25;
where A1 ¼ B1 ¼ frg; A2 ¼ B2 ¼ fr;wg.
Now, we consider an specific procedure to paint the balls in case they are uncoloured (in this way we obtain a precise

probability distribution on the ball colours):


 If both balls are red, we do not need to do anything.

 If the first ball is red and the second one is uncoloured, we paint it red with probability 5/8 and white, with probability

3/8.

 If the second ball is red and the first one is uncoloured, then we paint it red with probability 1/2 (and white, with the

same probability).

 Finally, if both balls are unpainted, we assign them the pairs of colors (red, red), (red, white), (white, red), (white, white)

with respective probabilities (1/8, 3/8, 1/4, 1/4).

The probability measure, P, that models the final colour of the balls can be written as
P ¼
X2

i¼1

X2

j¼1

mðAi � BjÞPij; where

A1 ¼ B1 ¼ frg; A2 ¼ B2 ¼ fr;wg;
mðA1 � B1Þ ¼ mðA1 � B2Þ ¼ mðA2 � B1Þ ¼ mðA2 � B2Þ ¼ 0:25 and

P11 � ð1;0;0;0Þ P12 � 5
8
;
3
8
;0; 0

� �

P21 � 1
2
;0;

1
2
;0

� �
P22 � 1

8
;
3
8
;
1
4
;
1
4

� �
:

The probability measure describing the joint experiment (drawing the balls and then painting them) can be represented by:
P � ðm; ðPijÞ2i¼1

2
j¼1Þ. It satisfies first condition of independence (m is the product of its marginal mass assignments), but it does

not satisfy the second and the third ones. On the other hand, the probability measure P ¼
P2

i¼1

P2
i¼1mðAi � BjÞPij can be iden-

tified with the tuple
P � 9
16

;
3

16
;

3
16

;
1

16

� �
;

so it can be factorized as
P ¼ P1 � P2 � ð3=4;1=4Þ � ð3=4;1=4Þ:
We can also build some P satisfying the requirements from Definitions 2 and 3, but not the property from Definition 1,
and such that the probability measure P can be written as the product of its marginals. Let us show it in next example:
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Example 6. Suppose that we have three urns. The first one has 3 balls: one white, one red and one uncoloured. The second
urn has two balls: one red and one white. Third urn has two unpainted balls. We select one ball from the first urn. If it is
coloured, we select a second ball from second urn. If, otherwise, it is uncoloured, we select the second ball from the third urn.
This process defines mass assignment m. Now we determine a probability P 2Km with the following procedure: once the
balls have been selected, we drop two coins to decide their colour (if they are uncoloured), one coin for each ball.

The probability measure that models this experiment can be written as:
P ¼
X3

i¼1

X3

j¼1

mðAi � BjÞPi
1 � Pj

2; where

A1 ¼ B1 ¼ frg; A2 ¼ B2 ¼ fwg; A3 ¼ B3 ¼ fr;wg;

the mass assignment m is determined by:
B1
 B2
 B3
A1
 1/6
 1=6
 0

A2
 1/6
 1/6
 0

A3
 0
 0
 1/3
and the marginal probability measures defined on each focal are:
P1
1 � ð1;0Þ P2

1 � ð0;1Þ P3
1 � ð0:5;0:5Þ

P1
2 � ð1;0Þ P2

2 � ð0;1Þ P3
2 � ð0:5;0:5Þ
The mass assignment m cannot be written as the product of its marginals, i.e., m – m1 �m2. So, P ¼ m; fPijg3
i¼1

3
j¼1

� �
does not

satisfy the condition described in Definition 1. But it satisfies the conditions described in Definitions 2 and 3. (There is inde-
pendence inside the focal elements, but not between focals.) On the other hand, we easily check that Pðfðr; rÞgÞ ¼
Pðfðr;wÞgÞ ¼ Pðfðw; rÞgÞ ¼ Pðfðw;wÞgÞ ¼ 0:25. So P can be factorized as the product of its marginals. In fact:
P � ð0:25; 0:25; 0:25; 0:25Þ ¼ ð0:5;0:5Þ � ð0:5;0:5Þ ¼ P1 � P2:
4.3. Random set independence and independence in the selection

Let m1 : }ðX1Þ ! ½0;1�;m2 : }ðX2Þ ! ½0;1� two arbitrary mass assignments and let m : }ðX1 �X2Þ ! ½0;1� a joint mass
with m1 and m2 as marginal masses. As we have pointed out in Section 4.1, the class of probability measures P ¼Pq

i¼1

Pr
j¼1mðAi � BjÞPij, where P ¼ m; ðPijÞqi¼1

r
j¼1

� �
satisfies the three conditions considered in the last definitions, coincides

with the family of product probability measures:
fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg:
On the other hand, we easily check that the class of probability measures P ¼
Pq

i¼1

Pr
j¼1mðAi � BjÞPij where

P ¼ m; ðPijÞqi¼1
r
j¼1

� �
satisfies the first condition, coincides with PðPlm1�m2 Þ. Thus, the following inclusion holds:
fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg#PðPlm1�m2 Þ ð3Þ
The left hand side is associated to type 1 independence. The right hand side is related to random set independence. We
may ask ourselves whether the inclusion in Eq. (3) is strict or not, for any pair of mass assignments m1;m2, i.e., when random

set independence coincides with type-1 independence. Let us notice that the probability measure P � m; ðPijÞqi¼1
r
j¼1

� �
in

Example 5 satisfies the first condition of independence, but it does not satisfy the second and the third ones. Nevertheless,
the probability measure P ¼

Pq
i¼1

Pr
j¼1mðAi � BjÞPij can be factorized as P ¼ P1 � P2, and hence it belongs to the class

fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg. So, we ask ourselves:
Does there exist some pair m1;m2 such that any
P ¼
Xq

i¼1

Xr

j¼1

m1ðAiÞm2ðBjÞPij
can be written as the product of its marginals, P ¼ P1 � P2?
The answer is ‘‘no”, except for the cases where m1 and m2 represent trivial situations. Let us show the following result:

Theorem 1. Let us consider two finite universes X1 and X2 and two arbitrary mass assignments m1 : }ðX1Þ ! ½0;1� and
m2 : }ðX2Þ ! ½0;1�. Let m be the ‘‘product mass assignment”, i.e., m : }ðX1 �X2Þ ! ½0;1� such that mðA� BÞ ¼ m1ðAÞ �m2ðBÞ;
8A; B. Let us assume that the set PðPlmÞ coincides with
fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg:
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Then, some of the following conditions holds:


 Plm1 and Plm2 are probability measures (they are additive).

 Plm1 or Plm2 is a degenerate probability measure (i.e., at least one of the families Fm1 or Fm2 has only one focal with only

one element.)
Proof. Let us assume that Plm2 is not a degenerate probability measure. Then there exists B # X2 and Q2 2 PðPlm2 Þ such that
Q2ðBÞ 2 ð0;1Þ. Let A be an arbitrary subset of X1 and let P1;Q1 2 PðPlm1 Þ such that P1ðAÞ ¼ Plm1 ðAÞ and Q 1ðAÞ ¼ Belm1 ðAÞ. (The
existence of such P1;Q1 and Q2 is easily checked.) Let ~a;~a0 and ~b be respectively associated to each one of them. Let
~c ¼ ðcijÞ

q
i¼1

r
j¼1 be defined as cijðx; yÞ ¼ aiðxÞbjðyÞ IBðyÞ þ ai0ðxÞbjðyÞ IBc ðyÞ. We can check that~c represents a probability measure,

R, on X1 �X2 such that (a) R 2 PðPlmÞ, (b) R2 ¼ Q2;R2ðA� BÞ ¼ P1ðAÞQ 2ðBÞ and (c) R2ðA� BcÞ ¼ Q1ðAÞQ2ðBÞ. We easily derive
that Plm1 ðAÞ ¼ P1ðAÞ ¼ Q 1ðAÞ ¼ Belm1 ðAÞ. Since A is an arbitrary set, we conclude that Plm1 is additive. h

There is a reason for this: the second member in the inclusion of Eq. (3) is always convex, while the first member is not
(type-1 independence usually implies that the joint credal set is not convex). We could relax the problem, by asking whether
the two sets are equivalent (they have the same set of extreme points). The answer continues being ‘‘no” with the exception
of some particular cases as the following theorem states:

Theorem 2. Let us consider two finite universes X1 and X2 and two arbitrary mass assignments m1 : }ðX1Þ ! ½0;1� and
m2 : }ðX2Þ ! ½0;1�. Let m be the ‘‘product mass assignment”, i.e., m : }ðX1 �X2Þ ! ½0;1� such that mðA� BÞ ¼
m1ðAÞ �m2ðBÞ;8A;B. Let us assume that the set of extreme probabilities in PðPlmÞ coincides with the extreme probabilities in
fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg:
Then, for at least one of the masses mi all its focal elements are pairwise disjoint.

Proof. To simplify the notation in the proof, let us denote Plm as Pl and Plmi
as Pli (i ¼ 1;2).

Assume that m1 has two focal elements such that A1 \ A2 – ;. As they are different, at least one of them is not included
into the other. Without loss of generality, assume that A1 � A2 – ;. Assume also that B1 and B2 are also two focal elements for
m2 such that B1 \ B2 – ; and B1 � B2 – ;.

In these conditions, we are going to prove that there is an extreme point in PðPlÞ which does not belong to
fP1 � P2 : P1 2 PðPl1Þ; P2 2 PðPl2Þg.

As Pl is an order-2 capacity, there is an extreme probability P 2 PðPlÞ such that it maximizes PððA1 � A2Þ � ðB1 � B2ÞÞ and
PððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ, at the same time, i.e.,
PððA1 � A2Þ � ðB1 � B2ÞÞ ¼ PlððA1 � A2Þ � ðB1 � B2ÞÞ ¼ Pl1ðA1 � A2Þ � Pl2ðB1 � B2Þ
and
PððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ ¼ PlððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ
We are going to prove that there is no probability P0 in fP1 � P2 : P1 2 PðPl1Þ; P2 2 PðPl2Þg, fulfilling the two equalities
satisfied by P. Assume that P0 ¼ P01 � P02 also satisfies
P0ððA1 � A2Þ � ðB1 � B2ÞÞ ¼ Pl1ðA1 � A2Þ � Pl2ðB1 � B2Þ
and
P0ððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ ¼ PlððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ:
We are going to obtain a contradiction. Let us consider the following values:
a1 ¼ Pl1ðA1Þ � Pl1ðA1 \ A2Þ; a2 ¼ Pl1ðA1Þ � Pl1ðA1 � A2Þ; a3 ¼ Pl1ðA1Þ � a1 � a2

b1 ¼ Pl2ðB1Þ � Pl2ðB1 \ B2Þ; b2 ¼ Pl2ðB1Þ � Pl2ðB1 � B2Þ; b3 ¼ Pl2ðB1Þ � b1 � b2
The following facts can be easily obtained:


 Pl1ðA1Þ ¼ a1 þ a2 þ a3; Pl2ðB1Þ ¼ b1 þ b2 þ b3.

 Pl1ðA1 � A2Þ ¼ a1 þ a3; Pl2ðB1 � B2Þ ¼ b1 þ b3.

 a2 P m1ðA2Þ > 0; a3 P m1ðA1Þ > 0, b2 P m2ðB2Þ > 0; b3 P m2ðB1Þ > 0.

The contradiction is a consequence of the following sequence of facts:


 PlððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ ¼ a1 � b1 þ a1 � b3 þ a2 � b2 þ a2 � b3 þ a3 � b1 þ a3 � b2 þ a3 � b3. This
equality can be obtained from the fact that this plausibility is equal to the plausibility of PlðA1 � B1Þ ¼ ða1 þ a2þ
a3Þðb1 þ b2 þ b3Þ minus the mass of all the focal elements A� B such that
A \ ðA1 � A2Þ – ;; A \ ðA1 \ A2Þ ¼ ;; B \ ðB1 � B2Þ ¼ ;; B \ ðB1 \ B2Þ– ;
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and those verifying
A \ ðA1 � A2Þ ¼ ;; A \ ðA1 \ A2Þ– ;; B \ ðB1 � B2Þ – ;; B \ ðB1 \ B2Þ ¼ ;;
and taking into account that the masses of these focal elements add a1 � b2 þ b1 � a2.

 P01ðA1 � A2Þ ¼ Pl1ðA1 � A2Þ ¼ a1 þ a3; P02ðB1 � B2Þ ¼ Pl2ðB1 � B2Þ ¼ b1 þ b3.

These equalities are a consequence of the fact that
PlððA1 � A2Þ � ðB1 � B2ÞÞ ¼ P0ððA1 � A2Þ � ðB1 � B2ÞÞ ¼
P01ðA1 � A2Þ � P02ðB1 � B2Þ 6 Pl1ðA1 � A2Þ � Pl2ðB1 � B2Þ ¼
PlððA1 � A2Þ � ðB1 � B2ÞÞ:
As the first and the last member of the sequence are the same, the inequality is in fact an equality: P01ðA1 � A2Þ ¼ Pl1ðA1 � A2Þ
and P02ðB1 � B2Þ ¼ Pl2ðB1 � B2Þ.

 P01ðA1 \ A2Þ 6 a2; P02ðB1 \ B2Þ 6 b2.

These inequalities are obtained taking into account that
P01ðA1 \ A2Þ ¼ P01ðA1Þ � P01ðA1 � A2Þ 6 Pl1ðA1Þ � P01ðA1 � A2Þ ¼ Pl1ðA1Þ � Pl1ðA1 � A2Þ ¼ ða1 þ a2 þ a3Þ � ða1 þ a3Þ ¼ a2;
And analogously for the other inequality P02ðB1 \ B2Þ 6 b2.

 P0ðððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ 6 ða1 þ a3Þðb1 þ b3Þ þ a2 � b2 This inequality is obtained from:

P0ððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ ¼ P0ððA1 � A2Þ � ðB1 � B2ÞÞþ
P0ððA1 \ A2Þ � P0ðB1 \ B2ÞÞ ¼ Pl1ðA1 � A2Þ � Pl2ðB1 � B2ÞÞ þ P01ðA1 � A2Þ � P02ðB1 � B2Þ 6 ða1 þ a3Þðb1 þ b3Þ þ a2 � b2.

Finally, taking into account the first and last elements of this list, we obtain that:
PlððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ � P0ððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞP a2 � b3 þ b2 � a3 > 0,

and P0ððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ cannot be equal to PlððA1 � A2Þ � ðB1 � B2Þ [ ðA1 \ A2Þ � ðB1 \ B2ÞÞ, which
is in contradiction with what it was assumed. h

If m ¼ m1 �m2, then it satisfies the inclusion in Eq. (3) and we have shown, that except in some particular cases, this
inclusion is not an equality. However, we can prove some results showing the m is a reasonable mass function, showing that
it is a maximal element under order m1  m2 (m1 is less informative than m2), where m1  m2 if and only if
PðPlm2 Þ#PðPlm1 Þ. We will also give a characterization in terms of mass assignments with rectangles as focal elements.

Theorem 3. Let us consider two finite universes X1 and X2 and two arbitrary mass assignments m1 : }ðX1Þ ! ½0;1� and
m2 : }ðX2Þ ! ½0;1�. Let m be the ‘‘product mass assignment”, i.e., m : }ðX1 �X2Þ ! ½0;1� such that mðA� BÞ ¼ m1ðAÞ �m2ðBÞ;
8A; B. Assume that m0 is another mass assignment satisfying the inclusion fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg#PðPlm0 Þ and
such that m  m0, then m0 ¼ m.

Proof. The proof is very simple. If m0 satisfies the last inclusion, then for any A� B, we have that
Plm0 ðA� BÞP supP1;P2

P1ðAÞ � P2ðBÞ ¼ Plm1 ðAÞ � Plm2 ðBÞ.
On the other hand, as m0  m
Plm0 ðA� BÞ 6 PlmðA� BÞ ¼ Plm1 ðAÞ � Plm2 ðBÞ
Therefore, Plm0 ðA� BÞ ¼ Plm1 ðAÞ � Plm2 ðBÞ. In an analogous way, it can be proved that Belm0 ðA� BÞ ¼ Belm1 ðAÞ � Belm2 ðBÞ.
These product properties are stated in [16] as characterizing random set independence, and therefore m ¼ m0. h

The following theorem proves that random set independence can be characterized by the product property of belief func-
tions, if we assume that all the focal elements are rectangles (i.e., product sets A� B).

Theorem 4. Let us consider two finite universes X1 and X2 and two arbitrary mass assignments m1 : }ðX1Þ ! ½0;1� and
m2 : }ðX2Þ ! ½0;1�. Let m be the ‘‘product mass assignment”, i.e., m : }ðX1 �X2Þ ! ½0;1� such that mðA� BÞ ¼ m1ðAÞ �m2ðBÞ;
8A; B. If m0 is a mass function on X1 �X2 with rectangles as focal sets and such that Belm0 ðA� BÞ ¼ Belm1 ðAÞ � Belm2 ðBÞ, then m ¼ m0.

Proof. The proof is a consequence of Proposition 3 in [12] in which it is shown that we can express a belief function for any set
in terms of the values of the beliefs in a family of sets including the focal elements. As Belm and Bel0m have the same values in the
rectangles and this family of sets includes the focal elements of them, they must have the same value of belief for any set. h

As a consequence of this theorem, we can say that the product random set m is characterized by having rectangles as focal
elements and with belief in the rectangles defined from the set fP1 � P2 : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg, through equation:
BelmðA1 � A2Þ ¼ inffP1ðA1Þ � P2ðA2Þ : P1 2 PðPlm1 Þ; P2 2 PðPlm2 Þg
5. Conclusion and open problems

We have considered three rules to build probability measures on product spaces in evidence theory framework. Each one
of them reflects a particular aspect of independence, as we illustrate in Examples 1–3. They are simple examples about draw-
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ing pairs of balls from urns. As we show there, first condition reflects that the selections of both balls are independent. The
second condition means that there is independence between the procedures of painting the balls, for a particular selection of
a pair of balls. Finally, third condition reflects independence between the selection of a ball and the procedure used to choose
the colour to paint the other ball.

In a more general and applied context, first condition is related to the idea of independence among mechanisms of obser-
vation of variables. If we add second and third conditions, independence between the actual variables holds. But, as we have
checked in Examples 4–6, none of these conditions is strictly necessary to guarantee this independence. When there is no
imprecision in the observations, second and third conditions do not apply (they are trivially satisfied when the focals are
singletons). In that case, independence between the variables and between their observations are the same (perception
and reality do coincide). But when imprecision appears, there is no an implication relationship between independence of
the observations and independence of the variables.

We hope, that these results can help to understand the hypothesis under which random set independence and indepen-
dence in the selection can be applied. We consider that it is interesting to continue investigating conditions under which
random set independence can be characterized by some simple properties, among those belief functions such that the asso-
ciated credal set contains the set of product marginal probabilities.

In a future, we plan to extend these ideas to non finite universes. In the general setting, upper probabilities induced by
multi-valued mappings [6] would play the role of plausibility measures. Furthermore, random set independence would be
generalized as the stochastic independence between two multi-valued mappings defined on the same probability space. On
the other hand, it is well known that the upper probability induced by a multi-valued mapping dominates all the probability
measures induced by its measurable selections. Thus, the notion of type 1 independence considered in the paper would im-
ply the stochastic independence between the pairs of random variables, each component being a selection of each multi-val-
ued mapping. The way that the notions captured in Definitions 2 and 3 can be translated into this general setting would be a
matter of study.

A new combination rule has appeared recently in the literature, the cautious combination rule [7,11,10], which can be ap-
plied to situations in which the items of evidence to be combined come from non distint or overlapping sources. Every com-
bination rule defines an independence concept through the decomposition of the joint as combination of the marginals. In
the future, we plan to study the independence and conditional independence concepts associated to this combination.
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