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Introduction

In the last years, several authors have studied algebras of quotients of Jordan
systems. The origin can be set in [8], where Martinez gives necessary and sufficient
conditions for a Jordan algebra to have an algebra of fractions. She uses the Tits-
Kantor-Koecher construction to move the problem into the Lie algebra setting, so
that only rings of scalars containing 1/6 can be considered. In a similar fashion,
taking into account Siles” work on quotients of Lie algebras [15], Garcia and Gémez-
Lozano [4] give a notion of Martindale-like quotient for linear Jordan systems over
fields with respect to filters of ideals and prove the existence of maximum quotients
in the nondegenerate case. In [3], the restriction on the rings of scalars is weakened
to having 1/2, though only strongly prime algebras are considered. However, a full
description of the maximum Martindale-like quotients of strongly prime Jordan alge-
bras is obtained, giving a new unified approach to Zelmanovs’s classification theorems
[16]. In [14], Montaner gives a Jordan version of Lambek and Utumi’s algebras of
quotients over arbitrary rings of scalars, but only for nondegenerate algebras. His
notion includes that of Garcia and Gomez-Lozano in the case of algebras.
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2 Partly supported by the Ministerio de Educacién y Ciencia and Fondos FEDER, MTM2004-
06580-C02-01 and MTM2007-62390.
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In this paper we give a (quadratic) notion of Martindale quotient @ for arbitrary
Jordan algebras J with respect to denominator filters of ideals. Unlike more general
theories of localization in the associative case, we demand that a Martindale quotient
algebra () contains a faithful copy of the original algebra J. We impose no conditions
(such as semiprimeness or nondegeneracy), only that the “denominators” are faithful
to J (sturdy). This notion extends that given in the linear setting by Garcia and
Goémez-Lozano [3], and also includes the notion of Martindale-like cover [1, 2] for
nondegenerate algebras. Since we do not assume any regularity condition other than
the existence of a denominator filter of ideals, we cannot make use of the structure
theory of nondegenerate Jordan algebras, unlike [1, 2, 3, 14]. We generalize all basic
properties known in the linear case [3, 4] and even show that each Martindale quotient
of a denominatored algebra is contained in a maximal one, though we leave open the
problem of uniqueness of those maximal quotients.

The paper is divided into six sections, apart from a preliminary one recalling
basic results and terminology. The way elements of Martindale quotients are boosted
into the original algebra by denominator ideals is deeply related to annihilators, so
we start in the first section with some combinatorial results concerning annihilation
by powers of ideals. The second section defines Martindale quotients with respect
to denominator filters of ideals and studies basic properties leading to the notion of
maximum Martindale quotient. In the third section we give several examples, includ-
ing a degenerate example, and prove that our notion is the quadratic generalization
of that given in [4] and includes that of Martindale-like cover [1, 2]. In Section 4, we
exhibit a way to build Martindale quotients out of any extension of Jordan algebras.
This construction is extensively used in the next section where we show that there
is a bound on the cardinality of Martindale quotients of a given denominatored alge-
bra, implying the existence of maximal quotients; existence of a maximum quotient
is equivalent to directedness of the lattice of quotients. Finally, the last section deals
with the interaction between Martindale quotients and unital hulls.

0. Preliminaries

0.1 We will deal with Jordan algebras over a ring of scalars ®. The reader is
referred to [5, 7, 12] for definitions and basic properties not explicitly mentioned or
proved in this section. Given a Jordan algebra J, its products will be denoted z?,
U,y, for x,y € J. They are quadratic in x and linear in y and have linearizations
denoted Vyy = xoy, U, .y = {x,y, 2} = V, 42, respectively. For y € J, the quadratic
operator Ny, : J — J of inner multiplication by y is given by N,(z) = U,y. Each
Jordan algebra is imbedded in its free unital hull J:= ®1 @ .J. Zelmanov’s structure
theory shows that the proper unital hulls are those which are tight; in (6.2) we will

tighten J to get the “true” unital hull J.

0.2 We recall the following identities valid for arbitrary Jordan algebras which
will be needed in the sequel:
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(i) 220z = {z,z,2},
(xoy)oz=A{x,y,z} +{y,z, 2},
(ii) {Uva,a,y} ={b,Uab,y},
{z,Uab,y} = {{z, 0,0}, a,y} —{b,Uaz, y},
{Upa,z,y} = {b,{a,b,z},y} — {Upx,a,y},
(iii) UpUyz4UyUzz —Ugoyz = Vi yVy oz + (Usy?) 0z = {Uyy, 2, y} — Vo U, Ve 2,
Uya® = (xoy)? = Upy® —yo Uy = (x0y)* + Upy® — {z,y,x 0y},
(iv) Uy,y = U, U, Uy, (Upy)? = UnyxQ, Uy =U,U,,
(v) (Uzy)oz=A{z,y,x02} —Us(yoz),
(vi) 2Uyz = (xoz)ox — a2 02,
(viil) UgUap = Ve s Vaa — Vu,b.as
Ula,y,z} + Uty Uy = UzUyU + U UyUp + Uz 2Uy Uy 2.

Indeed, (i), (ili-vi), and the first part of (ii) follow from Macdonald’s Theorem [6],
the second and third identities of (ii) follow from the first one by linearization, and
(vii), (viii), (ix) are respectively JP15, JP13, JP20 in [7].

)

(Vi) [Vays Varwl = Viewshw — Ve fyow}s
)
)

(ix

0.3 A Jordan algebra J is said to be nondegenerate if zero is the only absolute
zero divisor, i.e., the only x € J such that U, = 0.

0.4 We recall that an inner ideal I of a Jordan algebra J is a ®-submodule of
J satisfying UrJ C I [i.e., UrJ + I? C I], while an outer ideal of .J is a ®-submodule
I of J satisfying Ul C I li.e., Uyl + 1o J C I|, which implies {I,J,J} C I by
(0.2)(i). We say that I is an ideal of J if it is both an inner and outer ideal. The
cube I3 = U;I and the product U;L of ideals I, L of J are again ideals of J [10, p.
221].

0.5 Given elements x,y in a Jordan algebra .J, the symmetric sets of three
expressions

ﬁx(y) = {nya ﬁxy7 me} = {ﬂymv ny7 Vy.’L‘} = ﬁy(x)

(the three basic Jordan products of x and y) will appear frequently. For any subsets
S, T, L we will call the set

Bs(T) = |J By

zeS,yeT
the basic S-boost of T', and

Z1;s(T) :=Ps(T)U{{z,y,2} z € S,y €T,z € L}U
{UUy2| v € S,yeT,z€ L} U{U,y?| v € S,y T}
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the Zelmanov S-boost of T in L. When any of the subsets S, T', L above consists of
a single element z, we will write = instead of {z}. In the same fashion, “# 0”7, “=0”
will be abbreviations of “# {0}”, “= {0}”, respectively.

0.6 We say that a Jordan algebra J is semiprime if I? # 0, for any nonzero
ideal I of J, and say that J is prime if U;L # 0, for any nonzero ideals I, L of
J. Every nondegenerate Jordan algebra is semiprime. An ideal I of J is said to be
essential if I N L # 0 for any nonzero ideal L of J. It is obvious that the intersection
of two essential ideals of J is again an essential ideal. Moreover, if I, K are essential
ideals of a semiprime J, the product U; K is essential: for any nonzero ideal L of J,
LNINK #0,hence 0 # (LNINK)3>C LNU;K.

0.7 In a Jordan algebra J, the Zelmanov annihilator Zann;(7T') of a subset T
of J is the set of all z € J such that Z;,,(T) = Z;r(2) = 0, ie., for all x € T,
(Z1) U,z = 0, (22) Upz = 0, (Z3) Vapd = 0, (Z3) Vu.d = 0, (24) U.U,J = 0,
(z4) U,U.J = 0. Here (Z3) < (Z3) by (0.2)(i), and in its presence (Z4) < (Z4)'
by (0.2)(iii), so Zj..(z) = 0 <= Zj,(2) = 0. Avoiding the unital hull, Zann ;(z)
is the set of z which satisfy (Z1), (Z2), (Z3a) zox = 0, (Z3b) {z,z,J} = 0, (Z4a)
U.U,J =0, (Z4b) U,x? = 0. Thus

Zann,(T) ={z € J| U.T = Urz = {2,T,J} = U.UpJ = 0}
—{zeJ| Zs(T) =0t ={z € J| Z.r(z) =0}

(if 1/2 € ® then {2, T, J} = 0 suffices [9, 1.4]). This is always an inner ideal, and is an
ideal if T" is an ideal of J [9, 1.4 p. 235]. We say T is sturdy if Zann;(T) = 0. When
T = I is an ideal, the condition UZUIj: 0 follows from U,I = 0. If INZann;(I) =0
then Zann (/) is the maximum ideal of J missing I: if I N K = 0 for an ideal K of
J,then Z;;(K) CINK =0== K C Zann;(I). This implies that sturdy ideals are
always essential. Since for any ideal I of J the ideal L := I N Zann;(I) has L3 = 0,
we have

(1) essential ideals coincide with sturdy ideals in semiprime Jordan algebras.
When I is an ideal of a nondegenerate J,

(2) Zann;(I)={z€ J| U, I =0} ={z€ J| Urz=0} (J nondegenerate)
(see [10, 1.2a, 1.7; 13, 1.3]).

1. Technical Lemmas Concerning the Annihilator

1.1 LEMMA. Let Q be a Jordan algebra, I and S submodules of Q, and set
S'=Sol+S.
(i) If g€ Q hasUrq+qol C S then

(a) {¢. 1,1} € 5,
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(b) Vors +Vis g C Ve 1+ Vig,
and, if in addition Uyl + U,I® C S, then
(¢) UUps CUgUp +UrUs + Ug 13U + Uy tUs 13 + (Ver 1 + Vig)? + Vi ps.

(ii) Annihilation of ideals and boosting them to 0 are closely related. Indeed, if I is
a submodule of Q with I C I, then

q € Zanng(I) = B,(I) = 0 (equivalently 3;(q) = 0) = q € Zanng(I?).

(iii) If I € J C @ where I is an ideal in the subalgebra J and q € Q satisfies
Be(I) € J (equivalently B1(q) € J), then Vg (133 + Virsys o € VI 1.

ProoF: (i) By (0.2)(i) {q¢,I,I} C (qol) ol +U;;qg C Sol+S =25 asin
(a), so by (0.2)(ii) for a,b € I and x = q, Vyu,b = Vigabt,a — Vo,u.q € Vsr1 + Vis
and dually VUba,q = Vb,{a,b,q} - Vqu@ S V]’S/ + Vs,[ as in (b) For (C), Ups is
spanned by all U, U, . for ¢ = U,b, ¢ = Uyb' € I® for a,a’,b,b’ € I, and we have
UyU. = UyUuUUs [by (0.2)(iv)] = (Uggany + Ut,atna — UsUaUy — Uy bUaUy ) Us
[by (0.2)(ix)] € Us'Ur +Ug 13U + U;Us + Uy 1Ug 13 [by respectively (a); Uga € S;
(0.2)(iv) for y = q and U,q € S; y — ¢,b in linearized (0.2)(iv) and U,q € S|, while
UgUcr = Voo Ve = Vs, ere by (0.2)(viii) for z = ¢, a = ¢, b= ¢/| € (Vo 1+ Vis) " +
Vs.rs [by (b) and hypothesis U, I C S].

(ii) The first implication is obvious. For the second, 3,(I) = 0 = 3,(I3) = 0
and {q,I?’,@} =V, 13 (@) =0 and Uqu@ = 0 by applying (i)(b), (i)(c) to Q with
S =0.

(111) ‘/(1’([3)3 + ‘/(]3)3,11 - VJ713 + V]S’J [by (l)(b) for 13 in place of [ and S = J]
C Vi1 [by (i)(b), for S = I and all ¢ € J, because §,(I) C I since [ is an ideal in
J]. m

1.2 LEMMA. Let Q) be a Jordan algebra, J a subalgebra of QQ, q € Q, and I an
ideal of J with Br(q) = 0. Then B13(Bs(q)) =0 so Bs(q) C Zanng((I13)3).

PrOOF: Let L := I3, z € J. Note V;, ,Q = V, ,Q = 0 by (1.1)(i)(b) with S = 0,
and {¢,J,L} =qo(JoL)—{q,L,J} [by (0.2)(i)] C V, 1—V, J [since JoL C L by

~

idealness of L in J] = 0. Now we check V, Q) = 0 successively for z = xoq, Uyq, Uyx

in 8;(q):

Vioq.r = [Va, Vg.r.] + Vg wor [by (0.2)(vii) with y = 1] =0sincezo L C L,
VUIq,L = _VUZL,q + Vw,{q,m,L} [by (02)(11)] - VL#I + Vx,{q,J,L} = 0’
Voo, = —Vu,L.e + Vo (aqry by (0.2)(31)] € Vg, ()0 + Vovi .0 =0.

Now we have 3;(q) o L = VﬁJ(q),LT = 0 and it remains to show UpfB;(q) =
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Us, (9L = 0. For all k € L we have by (0.2)(iii), (iii), (v) respectively that

Up(Upq) = —UpUrq + Ugorg — {{z, k,q}, 2, k} + q o (Upz?)
CUUrq+ Urq+{Ver(J),J,J} + qo I =0,

Ur(Ugz) = —~UgUrx + Ugoqw — {{k, q, v}, k, ¢} + x o (U k?)
C Uyl +Urogd +V,0Q+ Jo (Uyl) =0,

Ug(xoq) = —x0(Ukq) +{k,q,kozx} C JoUsq+Urq =0,

and similarly we have by (0.2)(iv), (iv), (iii) respectively that

Uy, ok = UUUpk CUULT =0,

Uy,ok = UUUgk C UU ;UL = 0,

Usogk = UpUgk + UUpk 4+ {{z,q,k},x,q} — ko (U,2?)
C U U+ U + {Vp o J,J,Q} + LoU,J =0.

We have proved (13(85(q)) = 0, so 35(¢q) C Zanng((13)3) follows from (1.1)(ii). m

2. Denominatored Algebras and Martindale Quotients

2.1 Given a Jordan algebra J, a nonempty set F of ideals of J will be called a
filter if, for any K, L € F, there exists I € F such that I C UgL (so that I C KNL).
Notice that, in particular, for any K € F, there exists K’ € F such that K’ C K3.
We say that a filter F’ is finer than F (F’ > F) if for all I € F there exists I’ € F’
with I’ C I (for example, if 7' D F), and F,F’ are cofinal if F' = F = F'. For a
filter F, its closure F, consisting of all ideals of J which contain some ideal of F, is
a filter which contains F and, moreover, F and F are cofinal. Notice that

F'-F < F DF. (1)

A filtered algebra will be a pair (J, F) where J is a Jordan algebra and F is a
filter of ideals of J. If a filter F consists of sturdy ideals of J, then it will be called a
denominator filter, and the pair (J, F) will be called a denominatored algebra. Notice
that the closure of a denominator filter is also a denominator filter.

For example, the set of essential ideals of a semiprime Jordan algebra is a de-
nominator filter by (0.6) and (0.7)(1).

We also remark that, for linear Jordan algebras (1/2 € ®), a nonempty set of
ideals of J is a denominator filter if and only if it is a power filter of sturdy ideals in
the sense of [3, 1.2]

2.2 A Martindale quotient of a denominatored algebra (J,F) is a pair (Q,T)
where @ is a Jordan algebra, and 7 : J — @ is an algebra monomorphism such that
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for any 0 # q € @ there exists I € F which boosts ¢ nontrivially into J, in the sense
that

07 Brny(q) € 7(J),
which implies {7(1),7(I),q} C 7(J) by (0.2)(i).

2.3 REMARK: Notice that (1) any Martindale quotient (Q, T) of a denominatored
algebra (J,F) is tight over T(J) (or, by abuse of language, tight over J) in the sense
that every nonzero ideal of @ hits 7(J): if 0 # L is an ideal of @), we can take any
0 # q € L, and there exists I € F such that 0 # 8,5 (q) € 7(J) N L.

Also, (2) The denominator filter F in J induces a denominator filter F =
{I'| I is an ideal of Q,I D 7(I) for some I € F} on @, since all such I are sturdy in
Q: if I 2 7(I) then 0 = 7(Zann;(I)) [by sturdiness of I] = Zann, 5 (7(I)) [since 7 is

an algebra isomorphism of J with 7(J)] D 7(J) N Zanng(I) forces Zanng(I) (which
is an ideal of Q) to vanish by (1).

2.4 REMARK: Any covering map of Martindale quotients must be injective: if
(Q,7) is a Martindale quotient of a denominatored algebra (J,F) and 7" : J — Q'
a Jordan algebra monomorphism, then any algebra homomorphism f : Q — Q'
which satisfies fr = 7' must be injective; in particular, this holds when (Q',7") is
another Martindale quotient of (J,F) and fr = 7’. Indeed, Ker7' = 0 implies
Ker f N7(J) = 0, hence Ker f = 0 by tightness (2.3)(1).

2.5 PROPOSITION. Let (J,F) be a filtered algebra. Then, (J,F) is a denomina-
tored algebra if and only if Br(x) # 0 for all0 # x € J and I € F. As a consequence,
if (J,F) is a denominatored algebra, then (J,1dy) is a Martindale quotient of (J, F).

PROOF: Assume that F is a denominator filter. If = € J satisfies 8;(z) = 0, for
some I € F, then x € Zann;(I3) by (1.1)(ii). On the other hand, there is I’ € F
such that I’ C I3. But this means z € Zann;(I’), which forces x = 0 since I’ is
sturdy. The converse is clear and the consequence is straightforward. m

2.6 PROPOSITION. Let (Q,7) be a Martindale quotient of a demominatored
algebra (J, F).

(i) All F-boosts are nontrivial: B:1y(q) # 0 for all0 #q€ Q and I € F.

(ii) In particular, Zanng(7(I)) = 0 and 7(I) remains sturdy in Q, for all I in
F.

(iii) Cofinal denominator filters have precisely the same Martindale quotients.

Moreover, (Q,T) remains a Martindale quotient of (J,F') for any denomi-
nator filter F' = F.

PROOF: (i) Suppose on the contrary that 0 # ¢ € Q satisfies 3;(;)(q) = 0 for
some I € F, hence by (1.2) applied to 7(J) € Q we have (5 (q) € Zanng(((1)*)?).
There exists K € F satisfying 0 # B,(x)(¢) € 7(J). The filter F contains I’ C
Ul =1 and I" C UpI’ C (I?)3, s0 7(I") C (7(1)?)* and 0 # B-(x)(q) € 7(J) N
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Grin(q) C 7(J) N Zanng(7(I")) C Zann,. 5 (7(I")). But since 7 is an injective
(J) Q (/) J
algebra homomorphism, Zann, ) (7(I"”)) = 7(Zann;(I")) = 0 by sturdiness of I",
which is a contradiction.

(ii) is a direct consequence of (i).

(iii) The fact that cofinal denominator filters have the same Martindale quotients
readily follows from (i). It is clear that if F; C F» are denominator filters in J, all
Martindale quotients of (.J, Fy) are also Martindale quotients of (.J, 7). Since F C F,
(Q, 7) is a Martindale quotient of (.J, F), hence of (J, F’) because F' O F by (2.1)(1).
Thus (Q, 7) is a Martindale quotient of (J, F') since F’ and F' are cofinal. m

Notice that (iii) shows (J,F) and its closure (J,F) have precisely the same
Martindale quotients. Since always U;K,I N K € F for I, K € F, this shows that
without loss of generality we could have required a denominator filter to be a filter
in the set-theoretic sense (closed under enlargements I' O I and intersections INK),
which is also closed under products Ur K.

2.7 PROPOSITION. Let (Q',7") be a Martindale quotient of a denominatored
algebra (J,F), and let 7 : J — Q, f,g: Q — Q' be algebra homomorphisms with
fr=gr=71". Then f and g agree on any q € Q boostable into 7(J):

Bray(q) € 7(J) for some I € F = f(q) = 9(q)-

In particular, if Q,Q" are both Martindale quotients then any f : Q — Q' with
fr = 1" s unique and injective, so that if (Q,7) = (Q',7’) then f = Idg.

PROOF: Our goal is to prove that ¢’ = f(q) — g(q) € Q" vanishes. By (2.6)(i) it
will suffice to prove
ﬁT,(L)(q’) =0for Le F,LCI°

As usual, we show ¢’ is killed by all three pieces of 3./(z). Using fr = g7 =7"on J,
for any k € I we have

Uri(yd = Uri (o) F(@) = Urr(0)9(0) = Upr iy f(@) = Ugr(ey9(q)
= f(Uryq) — 9(Uryq) € (f —9)(7(J)) =0
T'(k)oq =1'(k)o f(q) — 7'(k) o g(q) = fr(k)o f(q) — gT(k) © g(q)
= f(r(k)oq) —g(r(k)oq) € (f — g)(7(J)) =0,

and for any k£ € L we have

Uy T (k) = Ugs(g)—g(a)7' (k) = (=Urq) + Ugq) + Us(a). f(@)—9(a))T (k)
= ~Usg) fT(k) + Uyg(qyg7(k) — {f(a), 7' (k), 4}
= —f(Uyr (k) + g(Uyr(k)) —{d', 7'(K), f(a)}
c(g—Hr)—{d,7(L),Q"} =0
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[using the above to replace S,1,Q,q in (1.1)(i)(b) by 0, 7/(I), Q’, ¢, respectively,
noticing 7/(L) C 7/(I3) = (7/(I))3].

When @, Q" are Martindale quotients, then all ¢ are boostable, so f = ¢ is
unique, and it is injective by (2.4). =

2.8 A Martindale quotient (Q,7) of a denominatored algebra (J,F) will be
called a mazximum if for any other Martindale quotient (Q’, 7") of (J, F), there exists
an algebra homomorphism f : Q" — @ such that f7' = 7.

The following result is a consequence of (2.7).

2.9 THEOREM (UNIVERSAL PROPERTY FOR MAXIMUM MARTINDALE QUO-
TIENTS). Let (Q,7) be a mazimum Martindale quotient of a denominatored algebra
(J,F). If (Q',7") is a Martindale quotient of (J,F), then there erists a unique algebra
homomorphism [ : Q" — Q such that fT' = 7. Moreover, f is necessarily injective.
Thus mazimum Martindale quotients of a given denominatored algebra (J,F) are
unique up to isomorphism.

Proor: If (Q,7), (Q',7) are both maximum Martindale quotients of (J, F),
then the unique algebra homomorphisms f : Q' — Q, f' : Q — @', such that
fr' =7, f'r =1’ are mutually inverse isomorphisms since by (2.7) fo f' = Idg and
flof=1Idg. m

3. Examples

3.1 SUBEXAMPLE. If (Q,T) is a Martindale quotient of a denominatored algebra
(J,F) then so is (Q',7") for every subalgebra Q" of Q with 7(J) C Q', where 7/ denotes
the restriction of T.

This shows that in general there will be lots of “smaller” quotients (think of rational
numbers with denominators restricted to a multiplicatively closed subset of the subset
of the integers). The more interesting question is whether there are larger Martindale
quotients (see Section 5).

3.2 STURDY IDEAL ExXAMPLE. If (J,F) is a denominatored Jordan algebra
where J is an ideal of Q and all I € F remain sturdy in QQ (Zanng(l) = 0 for all
I € F), then (Q,T), for T the inclusion map, is a Martindale quotient of (J, F).

Indeed, always 3;(¢q) C J, and by (1.1)(ii) B;(q) = 0 = ¢ € Zanng(I®) = 0 because
I3 contains an ideal L of F which remains sturdy in Q.

3.3 LEMMA. If (J,F) is a unital denominatored Jordan algebra, then any Mar-
tindale quotient (Q,T) of (J,F) is unital with the same unit as J: 1o = 7(1;).

PrROOF: We shall use Peirce decompositions (see [7, Section 1.5]). Indeed e =
7(1;) is an idempotent of @ such that 7(J) C @Q2(e), and for any ¢ € Q1(e) U Qo(e),
Brn(@) CUT(J) +Urnng+qot(J) C UgQ2(e) + Ug,e)q + qo Qa(e) € Qole) +
0+ Q1(e). Thus, for any I € F such that (.)(¢q) € 7(J), we have that 8. (¢q) C
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Q2(e) N (Qo(e) + Q1(e)) = 0, which implies ¢ = 0 by (2.6)(i). This shows that
Q = Q2(e), i.e., e is the unit element of Q). m

3.4 SIMPLE ExXAMPLES. If J is a unital Jordan algebra and F = {J} (when J
is simple this is the only possible filter), then the only Martindale quotient is, up to
isomorphism, (Q,7) = (J,Id). If J is simple but not necessarily unital, F = {J} is
the unique denominator filter of J, but now there can be many quotients: if J = A+
for A C End(Va) the ideal of finite-rank endomorphisms of an infinite-dimensional
right vector space over a division ring A, then any Jordan subalgebra Q with A C
Q C End(VaA)™) is a Martindale quotient of (J,F).

For a unital J, F = {J}, and (Q, 7) a Martindale quotient of (J, F), we have by (3.3)
q=U,yq € Ur5yqg € 7(J), s0 Q = 7(J).

When J = AT, as above, since J is an ideal of @), we can use (3.2) as soon as we
check that the lone ideal I = J in F is sturdy in Q: if ¢ € @) is nonzero, then there
exists v € V such that ¢(v) = w # 0 and Uja(v) = qaq(v) = w for any finite rank
transformation a with a(w) = v, so Uja # 0 and g ¢ Zanng(J).

3.5 NONDEGENERATE EXAMPLES. Let J be a nondegenerate Jordan algebra
and F be the set of all essential ideals of J (which is a denominator filter of J
(2.1)), and let 7 : J — @ be a Jordan algebra monomorphism. Then (Q,T) is a
Martindale quotient of (J,F) iff Q is a Martindale-like cover of T(J) in the sense of
2,2.1,2.4] (i.e. for any0 # q € Q there exists an essential I such that B, 1y(q) € 7(J)

and Uy (ryq # 0).

Sufficiency is obvious and necessity follows from the following general observation
(improving on (2.6)(i)).

3.6 LEMMA. If (Q,T) is a Martindale quotient for a nondegenerate denomina-
tored Jordan algebra (J, F) then U.ryq # 0 for all0 #q€ Q and I € F.

PRrROOF: Replacing J by 7(J), we may assume J C @ and 7 is the inclusion map.
Since @ is tight over J (2.3), @ is also nondegenerate [11, 2.9(iii)]. Given 0 # ¢ € @
and I € F there is L € F satisfying 81(¢) C J, and by the definition of filter we
may choose such an L with L C I. We claim that Upq # 0 (hence Urq # 0 too).
Otherwise, Urq = 0, so ULU,L = 0 by nondegeneracy and [1, 3.4], which implies
UyL C Zann;(L) by (0.7)(2), but Zann;(L) = 0 by sturdiness of L, hence U,L = 0.
Also Up(Loq) C LoUpq+{LoL,q,L} C LoUrq+ Urq = 0 by (0.2)(v) implies
Loq C Zann;(L) = 0 by (0.7)(2) again. Thus 5r,(q) = 0, which contradicts (2.6)(i). m

3.7 LINEAR EXAMPLES. For a denominatored linear Jordan algebra (J,F)
(1/2 € @) and a Jordan algebra monomorphism 7 : J — @, (Q,7) is a Mar-
tindale quotient of (J,F) iff it is an algebra of Martindale-like quotients of J with
respect to F in the sense of [3,1.3].

PROOF: As above, we may assume J C (). We must show that the Martindale
quotient condition 0 # [(7(¢) C J and the Martindale-like quotient condition 0 #
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Ioqg C Jfor agiven 0 # q € @ are equivalent. If @) is a Martindale quotient
and 0 # Br(q) € J we claim g o I C J is nonzero, since otherwise Urq = 2Urq C
(Io(Iog)—1I*0q) [by (0.2)(vi)] =0, and any I’ € F such that I’ C I*® would have
Br:(q) CUq+2U 2 +qol CO+V, 3qg+0=0 [by (1.1)(i)(b) with S = 0], which
contradicts (2.6)(i).

Conversely, if ) is a Jordan algebra of Martindale-like quotients of J with respect
to F, for a given 0 # g € Q, there are K, L € F satisfying 0 2 Koq C J, Log® C J,
and we claim 0 # B7(q) € J forany I C LN K3 in F: 0 # [ ogq [by [3, 1.5]]
C Kogq C J and by (0.2)(vi) again both Uyq C Ko (Kogq)— K?o0q C J and
U C(qol)oq—q?>ol C(qoUgK)oq—q*oL C Kog—g*oL C J [since by
(0.2)(v) qoUx K C{K,K,qo K} —Ukg(qo K) C{K,K,J} —UgxJ CK|]. m

3.8 ADMONITORY EXAMPLE. We give an example to show that in character-
istic 2 there can be unexpectedly large “quotients” involving weird quadratic forms.
Consider a Jordan algebra J = ®e @ M for Pe = ¢ whose Peirce 1-space J; = M rel-
ative to the idempotent e is a trivial bimodule, M2 = Uy;M = 0. Then F = {J} is a
denominator filter, and J imbeds naturally as an ideal in a unital special Martindale
quotient algebra

d 0)(+) ((I) M*
(H

(+)
~ (+)
M & M 50> = Endg(J)

5::J6950:<D669M@50:(

for & := Endg (M) under

Uneamat, (Be @n® Sy) := a*Be @ (aBm + aTy(n) + ToSo(m)) & ToSoTh,
(ae®@m & Tp)? :=a’e® (am +To(m)) & Ty

But in the presence of 2-torsion there can be larger unnatural quotients. Denote by
RSs(M) := {\ € ®| A\M = 0, A?> = 2\ = 0}, the ideal in ® of scalars in the
radical of the squaring quadratic form A — A\? which kill M, and let WQg(M) :=
{weird quadratic maps w : M — RSs(M) | w(M, M) = 0}. For convenience we will
assume our quotients contain J and the imbedding 7 is inclusion.

3.9 PROPOSITION. (1) The Martindale quotients Q for (J,F) as above (J =
Pe® M, M = Jy(e), M? = Uy M = 0,F = {J}) are precisely all Q = J® Qq, where

Qo 1s a Jordan algebra, with multiplication given by the Product Formula

Uzoqo (y ®po) = (U:fc]y + Wp, (m)e) + (O‘qu (n) + Vo Vpo (m)) D Uﬁo (Po),
(z® q0)* = 2% + v, (M) @ 5
forx = ae®m,y = Bedn € J, q, po € Qo, where the Peirce 0-component Qg

relative to e is a Jordan algebra with a linear specialization v : Qo — End(M) and a
linear map w : Qo — WQas (M) satisfying
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(Axiom 1) YUgopo = VaoVpoVaor  Vq2 = VaoVqo»
(Axiom 2) WU 4010 (m) = Wpo (VQO (m)), Wq2 = 0

(hence w{(Io,po,So}(m) = wpo (qu (m)7 VSo (m)) = 07 “‘JQOOPO = 0)7
(Axiom 3) wg, =0 and vy, =0 = ¢qp = 0.

The algebra Q is unital iff Qo is unital, 11, = Idy, and wi, (M) = 0. In this case
1lg = ea2 +eg with ex :== e and eg := 1¢g,.

(2) There is a mazimum algebra of quotients QM = J & Q'** for Qir*® =
End(M)™) @ WQqg(M) under

URer (So @ o) = ToSoTo ® 0Ty, (Tp ®7) 2™ =T3¢ @0

with v W™ defined by

vivar = To, wpa, =T
and having unit eq = Idp & 0. Any quotient Q imbeds in this Q™" wvia ¢ =
Ild;jordw:

P(x D qo) = (Vgy ® wep)-

(3) In particular, if ® = Z[e] for a 2-dual number ¢ [2e = €2 = 0], and M =
Zm (em = 0) then Ende (M) = Zey, e = Idy, RS(P) = Ze = Zoe, WQo(M) =
Zewy = Zocwy for wo(am) = a? the natural quadratic form on M, and J = ®ey ® M
has mazimum quotient Q™ = J ® Qy*® for Q' = (Zeo)™) & Zewy = (Zeg) ™ @
Zoewy. In terms of direct sums of Z-modules J = Zea®(Ze)ea®Zm = Leo®(Zoc)ea®

Zm, QT = <% %) @ Zoces @ Zacwoey and Q" = ZLlewpleg = Zeg ® (Zewy)ep.

PRrOOF: (1) (Necessity) Assume @ is a Martindale quotient of (J, F). It can be
readily seen that ) results only from addition of a Peirce O-component relative to
e=ey if g =qo+ 1 + g2 € Q (using subscripts to indicate the Peirce components)
then g0 = Ueq € Ujq C J, q1 = Ve(q) —2q2 € Vyg+ J C J. Set vy, = Vo |m
and Ng, (M) = Upqo = wy,(m)ez and let E; (i = 0,1, 2) denote the Peirce projections
with respect to e3. Then Peirce orthogonality and triviality of M shows that the
product in @ is given by the above Product Formula (use (0.2)(i) and notice that
UM,MQO = EQ(UMJMQO) = EQ((M @) QO) e} M) g EQ(M o M) = 0) To see that
wq, maps to RS¢ (M), observe that the scalar A := wgy, (m) satisfies Aea = Uy,qo by
definition, hence 2Xes = 2U,q0 = Upm.mqo = 0; AN2e2 = (Unqo)? = UpnUgzm? = 0
[by (0.2)(iv) and M? = 0], and An = no Uyqo = —Up(noqy) =0, for alln € M
by (0.2)(v) and M o M = Uy M = 0]. To see that wy,, € WQgs(M), note that
Uni,mqo = 0 implies wy, (M, M) = 0.

Then v is the usual linear Peirce specialization of the Peirce 0-space on the Peirce
l-space, so Axiom 1 holds. For Axiom 2, wg:(m)ez = Upn(gg) = 0 by (0.2)(iii), and
then wyy, p, (M)e2 = Unogypo = wp, (Vyom)ez. Axiom 3 is the necessary and sufficient



MARTINDALE QUOTIENTS OF JORDAN ALGEBRAS 13

condition for @) to be a Martindale quotient: always (;(q) C J, and 8;(q) =0 <~
q =40, Vglsr = 0,Ngy|lmr =0 <= ¢ = qo,vg, = 0,wy, = 0. Thus the Axioms are
necessary.

If Q has a unit 1 (which means U; = Idg and U,1 = ¢? for all ¢ € Q), it is
readily seen that 1 = es + e for some ey € QQg. A direct computation shows that
U, = Idg is equivalent to U,, = Eo, Uec, ., = E1, while ¢ = U,1 is equivalent
to g2 = Ugeo, we, = 0, and Vi, eo|lnr = Vo |ar. From this, the above criterion of
unitality of @) readily follows, taking into account that always U, = Ve, 1.

(Sufficiency) It is more tedious to prove that Axioms 1,2 and the Product
Formula are sufficient to produce a quadratic Jordan algebra. For convenience
we pass to the free unital hull Qo = Pey ® Qo (where Axiom 3 might not hold
any longer) with linear specialization v of Qo via Vaegtqo ‘= aldpr + vy, satis-
fying obviously Axiom 1, and quadratic Dpe,aq, = wq, Satisfying Axiom 2 since
aU0t60+qo/3€0-|—po = 042pr + WU,ap0 = Wpo (aIdM + V(Jo) = &)\5€0+p0/y\a€0+% (uSing that
wq, maps to RSe(M)) and Wiacotgp)? = Waagy+qz = 0. We will assume from the

0:€2

0
start that Qo is unital (with unit ey satisfying ve, = Ids, we, (M) = 0), and verify
the quadratic axioms (QJA1-3).

By definition of WQg (M), the Product Formula, and Axioms 1,2 we have

(*) VMUMEO = ZUMEO = UM7ME0 = UMVQ07QOE0 = on (M)El = 0,
(**) VQO7m1E2 = ‘/lloom1E2 = ‘/llovm1E2ﬂ le,QOEO = quom1E0-

Unitality (QJA1) U; = Idg for 1 = es + eg follows from the Product Formula.
To establish (QJA2-3) we must look carefully at the operators involving general
elements ¢ := aey ® my © qo, p := PBea ® ny & po: by the Product Formula U, =
QPUey+ Uy AU +0Ucy my +0Ucy 40 +Umy g0 = > Xij =t X for Peirce components
X,; = E;UyE;, and similarly U, = Z” Yij = Y, V,, = Z” Sij = 8, Ve =
Zi’ Ly =T where the Peirce components are given by

Xo1 = Xo2=Xo1 =0, Xop=a?Ey, Xoo=U, =UyEo, X1 =aV,FE,
Xog = Unm, By, Xio=aVy, B, Xio= V4V, Eo,

Yor = Yoo = Yo1 =0, Yoo = 32°Es, Yoo =U,, = Uy Eo, Y11 = BV, B,
Yoo = Un, Eo, Yi2 = BVy, Ea,  Yig = Vi, Vi, Eo,

So1 = S21 = So2 = 520 =0, Saz =20fEs, Si1 = (af+ VyVp,)E,

So0 = Vagpo Eos  S10 = (aVa, + Vigoms ) Eo,  S12 = (BVin, + Vo Vi, ) Eo,

Tor =To1 =Toe =T =0, Thy =20aEy, Ty = (Ba+ V,Vy)En,

Too = Vpo,qoFos  Tho = (BVm: + Viggony ) Eo,  Thia = (Vi + Vo Vin, ) Eo

[using (x) (xx) for S;;,T;;]. To establish (QJA2), SX — XT = 0, we check that
E;(SX — XT)E; = 0 directly, using (%) (xx), for all (4, j) except (¢,7) = (0,0), where
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we use (QJA2) for Qo, and (1,0), where we use Vi, Vin, Vio.0050 = Vao Vipo 0,501 M1 =
Vao (Vo Vao Vo + Vi Vo Vipy ). [linearizing Axiom 1] = (Vo Vo Vo Viny + Vipgoma Ugo ) S0
and Vg, Vigon, 80 = Vo Vso Vagem1 = Vi, som1 [by Axiom 1] = V;,, Uy, so. This completes
the proof of (QJA2).

Finally, for the Fundamental Formula (QJA3), Uy, = U,U,U, = XY X, we
have by the Product Formula

s:=Up=vex+1r1+59 for v:= 042ﬂ —i—wpo(ml), 72 = 04452,
50 := UgyDo, 71 :=afmy + agooni + VyVpomu

so Ug = Z” Z;j =: Z has Peirce components

Zor = Zoo = Zo1 =0, Zay = o' B°Es,
Zoo = Usy = UyyUpoUgo,  Z11 = VVey B1 = @BV Vi Vi E1, [by (QJA3), Ax 1,%]

Zig = 7%1 Ey = a3ﬁ2Vm1 E2+a3ﬁ‘/(10 an E2+a26‘/(10 ‘/po Vm1E27 [by *, **]
Zao = Uy, By = &? 32Uy, Eo+0? Uy, Uy Eg+Us, Uy, Uy, Eo, [by %, Ax 2]
Z10 = Vo Vi Eo = Vo Vo Voo (Ozﬁvml + aVggon, + Vqu Vpom1>E0' [by Ax 1]

By direct calculation the Z;; are the same as the components F; XY X F; of U,U,U,:
EsXYXFE, = Eg XYXEy; = EgXYXE, =0, ExXYXFEy; = Zoy, EgXYXE) =
Zoo, FAXYXE, = Z11, EAXYXEy = Z15, Ebo XY XEy = Zyy, EAXYXEy = Zy
[using Ax 1, x]. Thus (QJA3) holds.

Axioms 1-2 hold strictly (on all scalar extensions), so the identities (QJA1-3)
hold strictly. Once we have proved that @ is a Jordan algebra we return to the
general case where )y might not be unital, but Axiom 3 holds. From this axiom
and the Product Formula it is readily checked that (@, 7) is a Martindale quotient of
(J,F), which finishes the verification (1).

(2) It is easy to verify that Q{'** is a Jordan algebra which satisfies the 3 ax-
ioms: (QJA1-3) are straightforward; since any product {z,y, 2z} in Q{'*® equals the
corresponding product of the first components of z,y, z in End(M )(+) the lineariza-
tions of (QJA1-3) also hold. For gy = Ty ® 7, po = Sy & o we have Axiom 1 since
VUgepo = VT SoTo@ooTy = ToSoTo = VgyVpoVqes Vg2 = VT2g0 = To Ty = Vgyvy,, While
Axiom 2 holds because wy, p, = Wr,SeTo@oTy = O'T() WpoVge a0d We2 = Wr2gn = 0,
and Axiom 3 follows from wy, =0 =7 =0and vy, =0 = Ty = 0. Qm“”” has unit
eo = Idy @0 and v, = Idp; and w,, = 0 as in the unitality criterion, hence Q™ is
unital and a Martindale quotient of (J, F) with multiplication given by the Product
Formula by (1).

For the universal imbedding property of @) in Q™" the linear map ¢ is injective
since Ker(¢) = {q0 € Qo] vg, = 0, wy, = 0} vanishes by Axiom 3, and it is a
homomorphism of Jordan algebras since both have Product Formulas, maps v,w,
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and algebras (o, Q7'** which correspond under ¢:

max max max max

Yao = Vvgy®wey — Y(qo) Wao = Yugy®wey — Yeo(qo)
©(Uqgopo) = VU p0 D WUgypo = VaoVpoVao D WpoVgo [by Ax 1,2]
S U (v @ ) = U5 (9(p0),
() = Vg2 D we2 = VggVgy © O[by Ax 1,2] = (vg, @ qu)@’max) = @(QO)@’mM)-

This establishes that Q™" is a maximum quotient.

(3) This follows immediately from (2) since A\ = a + fe € Zle| has AM = 0 and
A2 =2\ = 0 if and only if a = 0, and w(m) = e = w(am) = a?Be = Bewo(am) =
w = Pewy. M

When imbedded in Q™**, the quotient ) need not split into a direct sum of
three components, but it does contain an ideal Wy := {qo € Qo | v, = 0} = Ker(v)
of Qo (by Axiom 1) and an ample outer ideal & := {qo € Qo | wq, = 0} of Qp with
Eo ® Wy C Qo which is a direct sum of subspaces (though not of algebras) by Axiom
3. [For outerness, & is invariant under all Uy, and all V},, since wy, 4, = WgoVp, = 0

and wp,oq, = 0 by Axiom 2, and for ampleness, we use again Axiom 2 together with
wau(M) € RS®(M)).

4. Building Martindale Quotients out of Extensions

It is important that once we can boost an element ¢ into J, we can boost it into
any ideal K of J we wish.

4.1 LEMMA. Let J be a subalgebra of a Jordan algebra Q), and q € QQ an element
boosted into J by an ideal I of J. Then for any other ideal K of J, the cube of the
ideal I' := (I N K)? boosts q into K : if 81(q) C J then

(i) Brs(q) < UI/q+UqI/3 +qgol' CK,
(11) VIIS,q + ‘/;1’1/3 g VK,K-

PRrROOF: To establish (i), Upg+go I’ C K since for k =U,b € I’ (a,b € INK),
k' € I' we have Upq = U, UpyU,q [by (0.2)(iv)] € UxUk(Urq) € UxUgJ C K and
Uk rq, kogqeVpJ C K since

(iii) Virg+Vor SViak,g +Vimk CVis+ Vik

by (1.1)(i) for I N K in place of I, and S = J. Finally, UqI’3 C K since for
a,b e I' C I N K (0.2)(iii) implies UyUsb = (Ugoa — UaUq — Vg,aVa,g + Vi,a2)b €
qu]K + UK(UqI) + V(L]/V[/ﬂK + VUq]K CU;K+UgJ+ (VK’J + VJ’K)2K +V; K
[by (iii)] C K.
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(ii) follows from (i) since Uprq+qol’ C K implies Vs ,+V, s C Vi g+ Vi 1 C
Vik.x by (1.1)(i) [I' in place of [, S=K|. =

Note that if I, K € F for a filter F, then we can choose L € F such that
LCI?:=(INK)3?)3, sothat L boosts g into K.

4.2 THEOREM. Let f:J — @ be a homomorphism of Jordan algebras and F
be a filter of ideals of J.

(i) The boostable elements

Q(f, F) :={q € Q| 3l € F with B1)(q)  f(J)}

of Q form a Jordan subalgebra of Q containing f(J) ( and the unit of Q if
Q is unital).

(ii) The filter annihilator

Ann(f, F):={q € Q(f,F)| I € F with B (q) = 0}
={qe Q(f,F)| 31 € F with ¢ € Zanng(f(1))}

(the elements boosted to 0 by some ideal in the filter) is an ideal of Q(f,F).
(iii) If all the ideals f(I), for I € F, are sturdy in f(J) (for example, if F is a
denominator filter of J and f is injective) then
(a) Ann(f,7)Nf(J) =0,
(b) if ¢ € Q(f,F) then Brr)(q) S Ann(f,F), for some I € F, implies
q € Ann(f, F).

If, in addition, f is injective, then it induces the algebra monomorphism

(c) f:J — Q. F):=Q(f,.F)/ Ann(f,F)
given by f(x) = f(x) + Ann(f, F). Moreover, (J,F) is a denominatored
algebra and (Q(f, F), f) is a Martindale quotient of (J, F).

PROOF: Notice that F' = {f(I)| I € F} is a filter of ideals of the subalgebra
f(J) of Q, s0 Q(f,F) =Q(r,F"), Ann(f, F) = Ann(r, F’), where 7 : f(J) — Q is
the inclusion map. We will henceforth assume that J is a subalgebra of () and f is
the inclusion (we are not assuming our new .J is the same as the old since f need not
be a monomorphism).

(i) Imbedding @ in a unital hull @, it suffices to prove the unital version (this
guarantees Q(f,F) is closed under squares ¢*> = U,1 as soon as it is closed under

U-products U,q’ - note that always 1 € Q(f,F) since B;(1) C I C J for all I € F).
Throughout we fix q1, g2 € Q(f, F) boosted by the ideals I, Is € F. Since F is

a filter, we can find I € F with I C I; NI a common booster for ¢; and ¢go. We also
fix L, M € F with L C (I3)3 and M C (L3)3.
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Let ¢ = ¢1 or g2. From (1.1)(i) for S = J, we obtain
{I,1,q}CJ. (1)

If, in addition, we use (4.1) for K =1 (soI'’=I*)or K =L (so I' = (INL)3 = L?),
we obtain respectively,

Upq+qol> +ULCI, Vi, +Ver CVir (2)

or
UL3q+q0L3+UqM§L, VM7q+Vq’M QVL’L. (3)

First, ag € Q(f, F) for any a € ® since 3;(aq) C aUrq+ a? Ny g+ aViq C J. Next,
q1+q2 € Q(f, F) since Br(qi+q2) € J: (Ur+Ve)(a1+q2) € (Ur+Vi)ai+(Ur+Vr)ge C
Jand Np(¢1 +q2) €Ny +Nege +{q1, L, 2} C T+ J+ Vg 092 € J + Vi 1ge (by
(2)) € J by (1). Finally U, q2 € Q(f,F) since By (Ugyq2) € J: Va(Ugq2) C
{10 M, @2, 1} + Uy, (M) (by (02)(¥)) € Va1 + U L (by (3)) € Vigar +1 (by
(2)) C J by (1)§ UUq1q2M = Uy Uy Uy M (by (O.Z)(iv)) CU,Ug,L (by (3)) CU,!L
(by (2)) € J; and UL(Uq1Q2) C ULog: G2 + Uq1<ULQ2) + Vo, .V, @2 + VUqlLZ(J2 (by
(0.2) iii)) CUrqs + Uq1[—|— V]JVL]C_]Q + Viqo (by (2)) C J by (1)

1.1

(
(ii) Note that the two conditions for ¢ € A := Ann(f, F) are equivalent using
(1.1)(ii): if Br(¢) = 0 then g € Zanng(I?), and ¢ € Zanng(I’) for any I’ € F with
I' C I?. Asin (i), we may assume that @ is unital. To see that A is an ideal, we
again consider q1,q2 € A, p € Q(f, F) which we may assume have a common booster
I € F such that §7(q;) =0 (i = 1,2), Br(p) € J, where again by (1.1)(i) with S =0
or J,

{I,I,¢;}=0, fori=1,2, or {I,I,p} CJ, (4)

and the relations (1-3) still hold for ¢ = ¢1,q2,p for L, M € F as above. Also, by
(1.1)(i) with S =0,
V137qi = tiJS =0 for ¢ = 1,2 (5)

Clearly A is closed under scaling, and it is closed under sums since as in (i)
above Or:(q1 + ¢2) = 0: (Ur+ Vi)(e1 +¢2) € (Ur + Vi)gr + (Ur + Vi)g2 = 0, and

Nra(q1 + g2) € Nrsqr + Nysga + Vg, 13g2 = 0 by (5).

By unitality, A will be an ideal as soon as all U,q; and Ug,p lie in A. Put
q = q1. For U,q, we have By (Upq) = 0: Vg (Upq) = {po M,q,p} + U,(M o q) (by
(0.2)(v) € Vi.gp+Upl(I o) (by (3)) =0 by (5); N(Uyg) = UpUyUyL (by (0.2)(iv))
C U,U,I (by (2)) = 0; and UL(Uya) € Usopg + UpUna + V.1 Vipa + Vi 12 (by
(0.2)(iii)) € Urq + Up(Urq) + V1.1Vi1qg+ Vigq (by (2)) = 0 by (4). For U,p we have
Bra(Ugp) = 0: Via(Uyp) € {I° 0q,p.q} + Uy(I® 0 p) (by (0.2)(v)) € {Iog,p,q} + Uyl
(by (2)) = 0; Ny(Ugp) = UUULL (by (0.2)(iv)) = 0; and Us(Ugp) = Ursoep +
E]q)l)]p,p + VorsVis gp + VUq(13)2p (by (0.2)(iii)) C Urogp + Ugl + 0+ Vy, 1p (by (2),
5)) =0.
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(iii) Now assume that all I € F are sturdy in J.

(a) If x € JN Ann(f, F), then there exists L € F such that z € Zanng(L)NJ C
Zann j(L) = 0 by sturdiness.

(b) Let ¢ € Q(f,F), so that there exists L € F such that (1,(q) C J and suppose
that there is I € F, such that §;(q) C Ann(f,F). Let K € F satisfy K C I N L.
Hence, (a) yields Ok (q) C Ann(f,F) N J = 0, which implies ¢ € Ann(f, F).

The rest of (iii) is straightforward. m

5. Existence of Maximal Martindale Quotients

5.1 We let Mq(J, F) denote the class of Martindale quotients of a denomina-
tored algebra (J, F). If (Q1,71), (Q2,72) € Mq(J,F) we will say that (Q1,71) is less
than or equal to (Q2,72), and write (Q1,71) < (Q2,72), if there exists an algebra
homomorphism f : Q1 — Q2 such that 75 = fr;. By (2.4), any such covering f is
actually a monomorphism. We say that (Q1,71) is isomorphic to (Q2,T2), and write
(Q1,71) = (Q2,72) if there exists an algebra isomorphism f : @1 — Q2 such that
fr = 7. [Q, 7] will denote the class of all Martindale quotients of (.J, F) isomorphic
to (@, 7). A Martindale quotient (Q, ) € Mq(J,F) will be said to be mazimal if any
other (Q',7") € Mq(J,F) bigger than or equal to (Q, ) is necessarily isomorphic to
it: (Q,7) <(Q',7) = (Q,7) = (Q, 7).

A priori, the collection of isomorphism classes of quotients of (.J, F) form a class;
we wish to show they can be fully represented by a set, indeed a partially ordered
set.

5.2 PROPOSITION. Given a denominatored algebra (J,F), there is a bound on
the cardinalities of all Martindale quotients of (J,F). Moreover, every Martindale
quotient is isomorphic to an algebra based on a subset of the fixed set

X(J,f) =Wrer Xy, Xr:= Quadq)(I, J) X HOqu;(I, J) X HOIIlcp(I, J),

where W denotes the disjoint union, Quadg (I, J) denotes the set of quadratic maps
from I to J, and Home (I, J) denotes the set of ®-linear maps from I to J.

PROOF: Given a Martindale quotient (Q,7) of (J, F) we can, as usual, assume
that J C @ and 7 is inclusion. We define a set-theoretic map ¢ : Q — X := X (J, F),
by choosing for each ¢ € @ an ideal I, € F such that 87,(q) € J, and then define
olq) = (Ng, Uy, Vy) € X1, € X(J,F). We claim that ¢ is injective. Indeed, if
v(q) = p(¢'), then I, = I, =: I € F has

Ng=Ng,Vg=Vyonl = Ui(q—¢q)=Vi(g—¢') =0,

hence V,_, 15 = 0 by (1.1)(i) for S = 0. Thus, for any z € I*, N, (¢—¢') = Uy—gz =
Uge+Uyx—{q,z,q¢'} =2Ujx—{q,x,q'} [since Uy = Uy on I| = {q,z,q¢} —{q,z,¢'} =
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{g,2,9—4¢'} € Vy_y 13sQ =0, 50 Ns(q — ¢') = 0. Therefore fx(q —¢') = 0 for any
K € F such that K C I3, hence by (2.6)(i) ¢ — ¢’ = 0 and ¢ = ¢’. By set-theoretic
transfer, the bijection @ — ¢(Q) C X becomes an isomorphism of ) with an
algebra Q' based on a subset of X. m

5.3 Let Mq(J,F)x denote the set of all Martindale quotients (Q,7) based
on subsets of X = X(J,F), and Isox(J,F) be the quotient of Mq(J,F)x by the
restriction of the isomorphism relation, i.e., the set of isomorphism classes [@, T]|x
of the quotients (Q,7) € Mq(J,F)x. (The X-class [Q,7]x is not all of [@Q, 7], it
contains only those isomorphic algebras based on subsets of X.) By (5.2) every
Martindale quotient (@', 7’) is isomorphic to some (Q,7) € Mq(J, F)x, and we can
define the X-representative [Q',7']x = [Q,T|x € Isox(J,F) which is independent
of our particular choice of the isomorphic ). By abuse of language we say the set
Isox (J, F) represents all isomorphism classes of Martindale quotients. Notice that,

for (Q,7),(Q",7") € Mq(J,F),

@) =@, 1) = [Q]=[Q, 7= [Q7]x =[Q 7]x.

5.4 PROPOSITION. For any denominatored algebra (J, F), we can define a binary
relation < on Isox(J,F) given by [Q1,71]x < [Q2,72]x if (Q1,71) < (Q2,72) so
that (Isox (J, F), <) is a nonempty inductive partially ordered set and hence contains

mazimal elements. Therefore Mq(J, F) contains mazimal elements, and any element
(Q,7) of Mq(J, F) is less than or equal to a mazimal element of Mq(J, F).

PRrROOF: Isox(J,F) is nonempty because (J,Id;) € Mq(J,F) by (2.5). The
relation < is well-defined on isomorphism classes since it doesn’t depend on class
representatives: f : Q1 — Q2 covering 71,72 induces [’ : Q) — Q) covering 71, 75

/ /

for any quotients (Q}, 7/) = (Q;, 7). Moreover we have

(1) (Q1,71) < (Q2,72) in Mq(J,F) <= [Q1,11]x < [Q2,72]x in Isox(J,F).

To see < is a partial ordering, it is clearly reflexive and transitive, and it is antisym-
metric on classes (not on individual algebras) since if [Q,7]x < [Q',7]x < [@,T]x
then there exist algebra homomorphisms f': Q — Q" and f : Q' — (@ such that
7" = f'r and 7 = fr’. Hence, as in the proof of (2.9), f'fr' = 7/ = Idg/7" and
ff'm=71=1dgr imply f'f = Idg and ff' = Idg by uniqueness (2.7). This shows
that (Q,7) 2 (Q',7'), i.e., [Q,7]x = [Q, 7] x by (5.3).

To check inductiveness, let {[Q,,7,]x | ¢ € S} be a chain in (Isox(J, F)x, <):
for any ¢,k € S, either [Q,,7]x < [Qx,Tu]lx or [Qu,Tx]x < [@,,7.)x. When
Q., 7 ]x < [Qr,Txlx, let fix: Q, — Q, denote the unique (2.7) algebra monomor-
phism satisfying 7, = f,.7,, so by uniqueness f,» = fxx © f.x. The direct limit of
(Q., f.x) will play the role of the “union” of the sets Q,’s to get a suitable up-
per bound. Indeed, @ = h_m)QL is a Jordan algebra, we have monomorphisms
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f. 1 Q, — Q synthesizing the f,, : Q, — @, and they induce an algebra monomor-
phism 7 : J — @ given by 7 = f,7,, for all © € S (recall that @) can be built as
Q = W,e5Q,/R, where R denotes the binary relation in the disjoint union W,cs@,
given by 2R f,.;(x) when z € @, and (Q,,7,) < (Qx,7x), which can be readily seen
to be an equivalence relation). It is easy to see that (Q,7) is a Martindale quotient
of (J,F), and the very definition of 7 shows that [@,7]x is an upper bound for the
chain {[Q,,7.]x }.es in (Isox(J,F),<). This guarantees the existence of maximal
elements in (Isox (J, F), <) by Zorn’s Lemma, and, indeed, the fact that any element
of Isox(J, F) is less than or equal to a maximal element. The assertions on max-
imal elements of Mq(J, F) follow from (1) and its elementary consequence for any

(Q,7) € Mq(J, F):

(2) (@, 7) is a maximal quotient <= [Q, 7]x is maximal in (Isox(J,F),<). m

5.5 REMARK: Notice that for a Martindale quotient (Q,7) of (J,F), being
maximum in the sense of (2.8) is just [Q, 7] x being the maximum of (Isox (J, F), <).
Note that the above direct limit ) need not be based on X even though the @), are,
but, by (5.3), [Q,7]x = [Q’,7']x for an isomorphic quotient Q' € Mgq(J,F)x.

The construction of the previous section can be used to characterize the existence
of maximum Martindale quotients.

5.6 THEOREM. Let (J,F) be a denominatored algebra. The following assertions
are equivalent:

(i) (Isox(J,F),<) has a mazimum.

(ii) There exist a Jordan algebra Q and an algebra monomorphism f : J — Q
such that for any (Q1,71) € Mq(J,F), there exists an algebra homomorphism

f1:0Q1 — Q, such that fim = f.

(iii) For any (Q1,71), (Q2,72) € Mq(J,F), there exist a Jordan algebra Q, an algebra
monomorphism f : J — Q, and algebra homomorphisms f; : Q; — Q, such
that fim; = f fori=1,2.

(iv) (Isox(J,F),<) is directed: for any (Q1,71),(Q2,72) € Mq(J,F), there exists
(Q,7) € Mq(J,F), such that (Q;, ) < (Q,T), fori = 1,2, equivalently, there
exists [Q, 7] x € Isox (J,F) such that [Q;, 7]|x < [Q,T]x-

PRrROOF: (i)=(ii): If (Isox (J, F), <) has a maximum [Q, 7] x, one just needs to

take f = 7 and the existence of f; in (ii) will follow from equivalence (5.4)(1).
(ii)==(iii) is obvious.

(ili)=>(iv): We can consider Q(f,F) of (4.2)(iii), so that f induces 7 := f :

J — Q(f,F) and (Q(f,F),7) € Mq(J,F). Moreover, it can be readily seen that,

for i = 1,2, fi(Q;) C Q(f,F), so that f; induces an algebra homomorphism g; :

Q; — Q(f,F) such that g;7; = 7, which shows (Q;, ;) < (Q(f,F), 7).
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(iv)==(i): Being directed implies that there is at most one maximal element.
This, together with (5.4), yields the existence of a maximum. m

It is known [14] that each nondegenerate Jordan algebra has a maximum Mar-
tindale quotient algebra, but it is not known if this holds in general. However, it
always has a minimum quotient (itself), and any two quotients have an infimum.

5.7 To define the infimum of two Martindale quotients (Q1,71), (Q2,72) of a
denominatored algebra (J, F), we begin with their direct sum @ HQo with f :
J — Q1 Q2 defined by f(x) = (11(x), 2(z)) for any x € J. The map f is clearly
an algebra monomorphism, so that we can take the Martindale quotient (@ (f,F), f )
as in (4.2)(iii) (for @ = Q1EHQ2). Moreover, (2.6)(i) implies that Ann(f, F) = 0, so

that by (4.2) (Q(f,F), f) = (Q(f,F), f) and we obtain a Martindale quotient

(1) (QLA Qa1 AT2) == (Q(f,F),f) (f the co-restriction of f),
where @1 A Q2 consists of all (¢1,¢2) € Q1 HQ, satisfying

(2) there exists I € F such that for any a € I there are x = z(a),y = y(a),z =
z(a) € J with

Ugri(a) =75(x), Urn@@ =7(y), qom(a)=mi(z) fori=1,2.

5.8 THEOREM. Martindale quotients Mq(J,F) are directed downwards:
(Q1 A Q2,71 A T2) is the infimum of (Q1,71), (Q2,72) in Mq(J,F), equivalently,
[Q1 AN Q2,71 AT x is the infimum of [Q1,T1]x, [Q2, T2]x in the poset (Isox (J, F), <).

PROOF: Clearly, the restriction of the natural projection m; : Q(f,F) — Q;
(mi((q1,92)) = ¢;) is an algebra homomorphism such that m; f=m, fori=1,2,
hence (Q(f,F), f) < (Qq,7;) for i = 1,2. If another (Q,7) € Mq(J,F) satisfies
(Q,7) < (Qi,7;) for i = 1,2, then there exist algebra homomorphisms g; : Q@ —
Q; such that g;7 = 7;,, 7 = 1,2. Again we can define the algebra homomorphism
g:Q — Q1EHQ2 given by g(q) = (91(q),92(q)), and it can be readily seen from
the construction that g(Q) C Q(f,F): g(q) satisfies (5.7)(2) for any I € F with
I C I N1y, where I; € F (i = 1,2) satisfies 3;,(7,)9:(¢) € 7:(J); this is due to the
fact that g;7 = 7;, and injectivity of g; (2.4) and 7. Thus we can restrict g in the
image to the algebra homomorphism g : Q — Q(f,F) clearly satisfying gr = f ,
which proves (Q,7) < (Q(f,F), f). m

The infimum of (Q1,71) A (Q2,72) = (Q1 A Q2,71 A T2) € Mg(J,F) found in
(5.8), together with its explicit construction (5.7), and (2.7), gives us another way to
describe the order relation <.

5.9 COROLLARY. Given (Q1,71),(Q2,72) € Mq(J,F), the following are equiv-
alent:

(1) (Q1,71) < (Q2,72),
(ii) (Q1,71) = (Q1,71) A (Q2,T2),
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(iii) for any q1 € Q1, there exists qa € Qo such that (q1,q2) satisfies (5.7)(2).
PROOF: (i) <= (ii): Apply (5.3), (5.4)(1) and (5.8).

(i) = (iii): If (Q1,71) < (Q2,72), (Q1, 1) can play the role of (@, 7) in the proof
of (5.8). Hence g1 = Idg, by (2.7), and, for any ¢1 € @1, we can take g2 := g2(q1).

(iii)) = (ii): As shown in the proof of (5.8), the restriction of the projection
m Q1 AN Qe — (1 is an algebra homomorphism satisfying m (13 A 72) = 71,
hence it is injective by (2.4). Given any q; € @1, the element ¢ € Q2 as in (iii)
satisfies (¢q1,q2) € Q1 A Q2, and, obviously, 71((q1,¢2)) = ¢1, which shows that
m s Q1 A Qo — Q1 is surjective. m

6. Unital Hulls and Martindale Quotients

6.1 Given a Jordan algebra J, a unital hull J; of J is usually understood to
be any unital Jordan algebra such that J is a subalgebra of J; and J; = &1 4 J is
generated (as an algebra, equivalently, as a ®-module) by J and the unit element 1.

More generally, we define a unital hull of a Jordan algebra J to be a pair (Jy, 1),
where J; is a unital algebra, and py : J — Jp is an algebra monomorphism such
that Jy is generated by pq(J) and 1;,. A unital hull (Jy, 1) of J will be said tight
over J if every nonzero ideal of Jy hits uq(J), i.e., I N uy(J) # 0 for any nonzero
ideal I of Jj.

6.2 PROPOSITION. Given a Jordan algebra J with Zann j(J) = 0, all tight unital
hulls are isomorphic to (j, 1) = (x(J), wb), for J the free unital hull of J, v+ J — J
the natural inclusion, and 7 : J — J/ Zann~(u(J)) the natural projection. If (Ju, pi1)
s a tight unital hull of J, then there is a unique isomorphism f : J— J1 such that
fi= .

PROOF: Given a tight unital hull (Jq, p1) of J, the free unital hull J=01¢J
has a canonical unital algebra epimorphism g : J — Jy such that gt = 1. By (0.7)
the hypothesis Zann,;(J) = 0 guarantees that Zann~(¢(J)) is the maximum ideal of
J not hitting ¢(J). But Ker g is also an ideal of J not hitting ¢(.J) [since gv = 1 is a
monomorphism|, and is maximal with respect to this property. Indeed, if I D Kerg
were a bigger ideal then ¢(I) would be a nonzero ideal of J;, so by tightness of
Jy over J we would have pi(J) N g(l) # 0: there are nonzero z € I, a € J with
0+# g(z) = p1(a) = g(t(a)). Then z — 1(a) € Kerg C I and t(a) =z — (z —1(a)) € I,
so 0 # v(a) € INu(J), and the bigger ideal I would hit ¢(J). Thus we must have

Kerg = Zann(c(J))

and the isomorphism f : :f/ Kerg = J — Ji induced by g satisfies fp = fm =
gt = p11. The uniqueness of f comes from the fact that f is determined on gi(J) and
i m
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)

6.3 REMARK: In the above proof, assume, to simplify notation, that J C J.
Since JNZann(J) = Zann ;(J), Zann(.J) avoids hitting J if and only if Zann ;(J)
0. At the opposite extreme, if J? = UyJ = 0 then Zann(J) = ®o1 + J 2 J for
Py = {a € ®| 2aJ = &?J = 0} which is an ideal of ®. Any 2-dual number &
(2e = &2 = 0) belongs to ®y.

Notice that the above elementary approach to tight unital hulls resembles for-
mally that to Martindale quotients of the previous sections. This interaction goes
further than mere formal similarity, as shown in the next result.

6.4 PROPOSITION. Let (J,F) be a denominatored algebra, and (J1,p1) be a
tight unital hull of J. Then:

(i) (J1,p1) is a Martindale quotient of (J, F).

(ii) i (F) :={w(I)| I € F} is a denominator filter for Ji, and, for any Martindale
quotient (Q,7) of (J1, 11 (F)), (Q,Tu1) is a Martindale quotient of (J,F).

(iii) Given any Martindale quotient (Q,7) of (J,F), and tight unital hull (Q1,v1)
of Q, then (Q1,71) for 71 := 117 is also a Martindale quotient of (J,F) which
can be built from a quotient of a tight unital hull of J as in (ii). In particular,
mazimal Martindale quotients of (J,F) are always unital and can be viewed as
Martindale quotients of tight unital hulls of J.

ProoOF: We may assume, without loss of generality, that J is contained in J;
and g7 is the inclusion map. It is clear that any I € F is an ideal of J;. Moreover,
I is sturdy in J; since Zanny, (1) N J = Zann;(I) = 0, which implies Zanny, (I) = 0
by tightness of J; over J. This shows that (J;,F) is a denominatored algebra.

(i) This follows from the Sturdy Ideal Example (3.2).

(ii) The fact that any Martindale quotient (Q,7) of (Jy,F) is a Martindale
quotient of (J, F) is straightforward [by (4.1)(i) B-(r)(q) € 7(J1) = Br1)3)3(q) €
T(I) C 7(J)].

(iii) Notice that Q1 = Q(7m1,F) as in (4.2), since the latter clearly contains v (Q)
and 1¢g,. On the other hand Ann(7, F) Nv1(Q) = v1(Ann(r, F)) = 11(0) = 0, hence
Ann(ry, F) = 0 by tightness, so that (Q1,7) is also a Martindale quotient of (J, F)
by (4.2)(iii). Let J; be the subalgebra of ()1 generated by 71(J) and 1g,, and let
o : Ji — @1 be the inclusion map. Considering the correstriction 7y : J — Jq,
we claim that Jp is tight over J. Indeed, an ideal L of J; not hitting 71(J) consists
necessarily of elements ¢ € J; C @ such that 3., (5)(¢) € LN 7 (J) = 0, which are
zero by (2.6)(i) since (Q1,71) is a Martindale quotient of (J, F). Finally, it is obvious
that (Q1,0) is a Martindale quotient of (J1,F1), where Fy = {mi(I)| I € F} is a
denominator filter of J; by tightness of J; over J. m

6.5 REMARK: We can obtain an alternative proof of (3.3) by using (6.4): Let
(Q1,v1) be a tight unital hull of Q. By (6.4)(iii), (Q1,71) for 71 = 17 is another
Martindale quotient of (J, F). But it is easy to show that ¢ = 71(1;) — 1g, satisfies
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Brin(@) € Ugni(J) + Uz (yg + qomi(J) = 0, hence ¢ = 0 by (2.6)(i), i.e., 1o, =
71(1y) € 11(Q). Thus Q1 = v1(Q), v is an isomorphism, and @ is unital with unit
vt (lg,) = (1))
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