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A multi-group classifier based on the support vector machine (SVM) has

been developed for use with a library of 48 456 spectra measured by near-

infrared reflection microscopy (NIRM) on 227 samples representing 26

animal feed ingredients and 4 possible contaminants of animal origin. The

performance of the classifier was assessed by a five-fold cross-validation,

dividing at the sample level. Although the overall proportion of

misclassifications was 27%, almost all of these involved the confusion of

pairs of similar ingredients of vegetable origin. Such confusions are

unimportant in the context of the intended use of the library, which is the

detection of banned ingredients in animal feed. The error rate in

discrimination between permitted and banned ingredients was just 0.17%.

The performance of the SVM classifier was substantially better than that

of the K-nearest-neighbors method employed in previous work with the

same library, for which the comparable error rates are 36% overall and

0.39% for permitted versus banned ingredients.

Index Headings: Near-infrared microscopy; NIR reflection microscopy;

Spectral libraries; Support vector machine; Classification; Ingredients;

Animal feeds.

INTRODUCTION

Analytical methods that allow the identification and/or
quantification of ingredients in animal feedstuffs are an
essential part of an integrated food safety policy.1 The
detection of banned ingredients such as meat and bone meal
(MBM) is of particular importance, both for the industry and
for the regulatory authorities. The official analytical method to
obtain information about the composition of feedstuffs is
classical microscopy. In particular, optical microscopy is at the
moment the only official method in the European Union for the
detection of constituents of animal origin in feeds.2

There exist numerous works that research the use of the
near-infrared (NIR) region for the analysis of ingredients in
feed samples. The role of macro near-infrared spectroscopy for
the detection and quantification of ingredients and possible
contaminants in animal feed has been investigated by several
authors.3,4

In recent years however, near-infrared reflection microscopy
(NIRM) has been proposed as an alternative technology for the
analysis of ingredients in feed samples, including the detection
of banned processed animal proteins.5–7 NIRM is an objective,
sensitive, and highly selective technique. It combines the
analytical advantages of microscopy and spectroscopy tech-
niques.6,8–11 NIRM is based on the collection of spectra from

particles or very small areas (�50 lm) of a sample using a
Fourier transform near-infrared reflection (FT-NIR) instrument
attached to a microscope. The great advantages of this
technique are that identification is not dependent on the
expertise of the analyst and that it is possible to automate the
procedure, increasing the number of samples analyzed per unit
of time compared with classical microscopy while retaining the
sensitivity advantage of microscopy.11

There are two major steps in the implementation of NIRM
for an application such as this one. The first is the construction
of a library of reference spectra, and the second is the
development of an automated algorithm for comparing spectra
from the sample of interest with those in the library in order to
identify or possibly even quantify the ingredients in the sample.

Building the library is tedious and time consuming. Multiple
spectra must be measured on multiple samples of each of many
ingredients in order to represent the natural variability in the
population of interest. Piraux and Dardenne12 and Baeten et
al.13 describe the construction of spectral libraries including
thousands of spectra of single particles from animal, vegetal,
and mineral feed ingredients and the use of these to identify the
origin of unknown particles. The work described here uses a
library, also including thousands of spectra, in which the
spectra were taken from very small areas of thin films of
sample spread on a plate, rather than from individual particles.
The optimization of measuring conditions and the construction
of the library have been described in detail elsewhere.11

The main issue for the development of an automatic
identification algorithm is that there is considerable natural
variation in the spectra from any one ingredient, arising from
the heterogeneity of the ingredients themselves. Given a
spectrum from an unknown sample that happens to be soya
meal, there will typically not be a single spectrum of soya meal
in the library that provides a perfect match. It should, however,
be true that the unknown spectrum is very close to at least some
of the soya spectra in the library, and within the cluster defined
by these spectra. The task for the identification algorithm is to
find the similar spectra, or identify the appropriate cluster.

Classifying the spectrum of an unknown sample by
comparing it with a library or database of known spectra is a
problem that has many names, among them qualitative
analysis, classification, discriminant analysis, product identifi-
cation, and pattern recognition, and even more possible
solutions.14 In earlier work with the library used here, the K-
nearest-neighbors (KNN) approach was employed.10 This
approach, which has the advantage of being very simple both
to describe and implement, searches the library to find the K (5
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here) spectra most similar to the unknown and classifies the

unknown according to which ingredient(s) these correspond to.

In an assessment by cross-validation on the library, KNN gave

excellent results for the identification of banned ingredients but

was much less successful in the less important task of

discriminating between ingredients such as barley and oats.

The work reported here is an attempt to improve on the

discriminatory performance of KNN by using an alternative

approach taken from machine learning: a support vector

machine (SVM).

The SVM method is one of the most popular machine

learning approaches,15 and versions of this method have been

used successfully by other researchers working with near-

infrared spectroscopy.9,16,17A major advantage in the context

of a large library is that they are good at handling a large

amount of data while consuming few resources, compared to,

for instance, methods that generate a decision tree18 or those

based on artificial neural networks.

The objective of the present work was to develop a

classification algorithm for NIRM spectra of feedstuff

ingredients using the binary SVM classifier together with a

voting strategy to cope with the multiplicity of groups and to

assess its performance by cross-validation on the library.

EXPERIMENTAL

Samples. The spectral library was built using the most
common ingredients included in feedstuffs together with
banned ingredients such as processed animal proteins. The
samples were provided by the largest feed industries and
rendering plants in the north of Spain in the framework of
project RTA2005-00212-C02-00 from the INIA (National
Institute of Agro-food Research) from 2005 to 2008, thus
representing the variability encountered in the real production
process. The samples were ground to a particle size of 1 mm
prior to NIRM analysis.11 The library comprised 48456
spectra measured on 227 samples representing 26 permitted
and 4 banned ingredients. The ingredients included and the
numbers of samples and spectra are listed in Table I and show a
relative proportion akin to that encountered in the feed
industry.

Near-Infrared Reflection Microscopy Analysis. An auto-
image microscope connected to a Perkin-Elmer Spectrum One
Fourier transform near-infrared (FT-NIR) spectrometer in
reflection mode (1112–2500 nm) was used to measure the
spectra. The sample was spread on a sample holder as a
continuous film, an area in the center of the sample was
selected and focused on, and spectra were measured using

TABLE I. Ingredients, samples, and total number of NIRM spectra included in the spectral library.

Ingredient ns nsp Ingredient ns nsp Ingredient ns nsp

Lucerne dehydrated 24 5109 Sunflower seed 7 1578 Wheat middlings 1 210
Maize silage 23 4836 Oats 4 847 Citrus pulp 3 663
Fababean silage 2 450 Wheat 15 3210 Mineral correctors 6 1222
Grass silage 13 2713 Barley 20 4216 By-pass fat 3 630
Grass hay 2 421 Rye 5 1146 Milk powder 1 234
Cereal straw 27 5644 Maize 21 4826 Whey powder 1 210
Beet pulp 14 3039 Bran 2 419 Blood meal 1 235
Cotton seed 7 1016 Corn flakes 1 210 Meat and bone meal 4 937
DDGS Barley 1 202 Peas 2 427 Hemoglobin 1 234
Soybean meal 14 3120 Palm seed 1 218 Animal plasma 1 234

a ns: number of samples; nsp: number of spectra.

FIG. 1. Error rate of precision (P), recall (R), and combined measure F1 as the
parameter c of the SVM varies over the range from 0 to 100.

FIG. 2. Overall percentage classification error versus SVM’s parameter c over
the range from 0 to 100.
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fields of view of size 50 lm 3 50 lm arranged in a 13 3 18 grid
over this area, thus collecting approximately 200 spectra per
sample. This method avoids any subjective selection of
individual particles while still representing the inherent
variability in the sample. As in previous works in NIRM,6,8

spectra were obtained from the ratio between raw spectra and a
Spectralon reference, and the spectral information was stored
as log(1/R), recorded at 4 nm intervals over the range 1112–
2500 nm after conversion from cm�1 using the Perkin Elmer
software Spectrum v. 5.01.19 Each recorded spectrum was the
average of 70 scans to reduce the noise in the spectral data.11

Data Treatment. Before input to the data analysis, the
spectral range was cut to 1288 to 2448 nm, in order to remove
noisy regions at both ends of the range. The only other
pretreatment applied for the results reported here was the
subtraction of a linear trend line fitted by least squares to each
individual spectrum. As an alternative, a first-derivative
pretreatment was investigated, as was smoothing of the spectra.

Classification by Support Vector Machine. The SVM
method is a universal binary classifier able to find linear or
nonlinear threshold functions that optimize appropriate perfor-
mance measures15 in separating examples of one class (positive
examples) from another class (negative examples). SVM builds
the following function which classifies an unknown example

with feature vector x, here the spectrum, as belonging to either
the positive (y ¼þ1) or negative (y ¼�1) class:

s ¼
Xm

i¼1

aiyiKðx; xiÞ þ b

y ¼ þ1 if s . 0

�1 else

�

ð1Þ

Here m is the number of training examples, f(xi, yi)jxi2 Rn �
yi2 fþ1,�1g, i¼ 1, . . ., mg is the training set of examples, in
this case the spectral library, K(.,.) is a kernel function that
measures the similarity of two feature vectors and can be used
to introduce nonlinearity into the classifier, ai are a set of
coefficients that together define the linear function w, and b is a
constant offset. Two kernels were investigated, the linear
kernel, for which K(.,.) is the simple dot product of the two
vectors, and the radial basis function (RBF) kernel,20 which is
one of the most commonly used nonlinear alternatives.

The construction of the above classifier function involves
maximizing the margin of error, which is based on the
Structural Minimization Risk principle from computational
learning theory.21 This margin is defined as the distance from
the function to the nearest positive and negative examples,
which in fact form the support vectors. Maximizing this margin
of error involves solving the following minimization problem.

minimize
1

2
w;wh i þ c

Xm

i¼1

ni

s:t: 8 i yi½ w; hðxiÞh i þ b� � 1� ni ni . 0 ð2Þ

TABLE II. (a) Cross-validated confusion matrix for SVM applied to the library.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lucerne dehydrated 1 3677 170 15 396 10 634 54 29 21 19 14 2 1 14
Maize silage 2 351 3575 5 230 0 550 5 3 0 2 1 16 6 54
Fababean silage 3 103 11 137 42 6 76 2 6 0 8 17 2 1 2
Grass silage 4 454 410 3 1546 7 232 23 15 3 1 2 1 0 1
Grass hay 5 120 11 1 27 139 105 0 2 0 1 2 2 0 3
Cereal straw 6 555 105 11 117 9 4614 86 14 5 0 14 28 1 29
Beet pulp 7 162 10 2 6 0 211 2587 4 1 0 6 3 3 15
Cottonseed 8 94 37 0 38 0 64 20 722 1 17 0 7 1 6
DDGS Barley 9 19 10 0 13 0 1 0 0 156 0 2 0 0 0
Soybean meal 10 45 1 0 0 0 0 2 42 0 2997 3 1 3 4
Sunflower seed 11 73 1 0 2 0 38 2 0 1 13 1437 0 0 0
Oats 12 5 76 0 2 0 56 3 5 0 3 0 529 2 122
Wheat 13 3 2 0 1 0 0 2 0 0 2 0 2 2191 805
Barley 14 16 31 0 0 1 84 5 2 0 4 1 61 345 2940
Rye 15 2 6 0 0 0 0 1 0 0 1 0 1 59 817
Maize 16 4 9 0 0 0 3 2 0 0 3 0 20 267 846
Bran 17 32 15 0 0 0 3 6 6 0 9 1 11 9 45
Corn flakes 18 0 0 0 0 0 0 0 0 0 1 0 0 27 36
Peas 19 0 3 0 0 0 0 1 0 0 4 0 0 14 29
Palm seed 20 7 0 0 0 0 0 7 0 0 0 1 2 0 3
Wheat middlings 21 20 6 0 1 0 12 5 0 0 4 0 5 0 23
Citrus pulp 22 17 16 0 6 0 1 18 0 0 1 0 0 0 1
Mineral correctors 23 28 8 6 1 0 397 4 0 43 20 38 0 4 144
By-pass fat 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Milk powder 25 0 0 0 0 0 0 0 2 0 0 0 0 0 0
Whey powder 26 1 0 0 1 0 0 0 0 0 12 0 0 0 0

Blood meal 27 0 0 0 0 0 0 0 0 0 0 2 0 0 0
Meat and bone meal 28 1 0 0 0 0 0 0 1 0 3 0 0 0 0
Hemoglobin 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Animal plasma 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II. (b)

Summary (1–26) (27–30)

Permitted (1–26) 46743 73
Banned (27–30) 7 1633
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where h.,.i is the dot product, h(.) is a function implicitly
defined by the kernel K(.,.), each ni is the distance allowed as a
tolerance between the separating hyperplane defined by the
linear function w and the ith example, and c is a crucial
parameter that penalizes over-fitting and helps to ensure the
generalizability of the classifier. A wide range of values for this
parameter was examined in the tuning process.

Although the SVM has been shown to perform fast and well
with many features,15 their main disadvantage is that they just
solve binary problems, i.e., discrimination between two classes.
One way of overcoming this limitation when there are n . 2
ingredients is to convert the original problem into a set of n
binary problems, each one consisting of deciding whether a
spectrum comes from a certain ingredient or not. This process
is known as one-against-the-rest approach.22 Another alterna-
tive is the one-against-one23 approach, which entails bringing
face to face every pair of ingredients. This approach results in
as many binary problems as the number of combinations of n
elements taken in twos, that is, (n2 � n)/2. In the former, the
number of binary problems to solve is lower than in the latter,
but it is easier for the SVM classifier to separate one ingredient
from another than one ingredient from a mixture of the rest.24

Since the library contains just n¼30 ingredients, the number of
problems to solve is not unreasonably high if the one-against-
one approach is adopted, and this was the approach used. Once
a set of functions separating each pair of ingredients is built, it
is necessary to combine them to obtain a global function able to
predict the ingredient from a spectrum. A common approach to
build a global model is called voting.25 This involves applying
each of the pair-wise functions in turn to the spectrum. Each
time, the winner is assigned a point, and in the end the

algorithm predicts the ingredient that has accumulated the most
points.26

The algorithm used in this study was libsvm.27 It is
embedded in the Spider28 Matlab toolbox.

Cross-Validation. A cross-validation with five folds and
one repetition was carried out on the library in order to choose
the parameter c and to assess the performance of the
classifier.29 It consists of splitting the training set in five folds
or segments and obtaining five models, each one using four
from the five folds as the training set and the remaining fold as
a test set. The five performance measures thus calculated were
then averaged. The cross-validation was performed as far as
possible at the sample level. This means that in splitting the
spectra into the five folds, all the spectra from one sample were
put in the same fold. In the cases for which this was not
possible, because the ingredient had fewer than five samples,
the splitting was carried out in a way that separated the samples
as much as possible.

Performance Measures and Tuning. Several measures of
performance were considered when tuning c. As well as the
overall error rate, three measures of performance that focus on
the discrimination between permitted and banned ingredients
were considered.30 The precision, P, is the proportion of all the
spectra classified as coming from a banned (i.e., animal)
ingredient that actually do come from such an ingredient. The
recall, R, is the proportion of all the spectra truly coming from a
banned animal ingredient that are correctly classified as such.
The third measure, F1, is a balanced combination of P and R
that is commonly adopted as an appropriate trade-off between
the two. These measures are most commonly used when there
is one target class having priority over others, as is the case

TABLE II. (a) Extended.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lucerne dehydrated 1 2 2 0 0 0 1 15 31 0 1 0 0 0 0 0
Maize silage 3 13 7 0 6 0 2 5 1 0 0 1 0 0 0 0
Fababean silage 4 2 1 0 6 1 3 2 8 0 2 6 2 0 0 0
Grass silage 1 0 0 0 1 0 0 8 4 0 0 1 0 0 0 0
Grass hay 1 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0
Cereal straw 1 3 1 0 1 0 0 0 45 1 0 1 1 2 0 0
Beet pulp 4 2 6 0 1 0 1 4 11 0 0 0 0 0 0 0
Cottonseed 1 2 1 1 0 1 0 1 0 0 0 0 0 2 0 0
DDGS Barley 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Soybean meal 0 0 3 0 3 0 0 4 0 0 0 0 0 12 0 0
Sunflower seed 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0
Oats 0 34 10 0 0 0 0 0 0 0 0 0 0 0 0 0
Wheat 21 142 14 14 8 0 0 0 3 0 0 0 0 0 0 0
Barley 113 583 12 6 3 0 0 1 8 0 0 0 0 0 0 0
Rye 43 213 1 0 1 0 0 0 1 0 0 0 0 0 0 0
Maize 87 3559 14 8 3 0 0 1 0 0 0 0 0 0 0 0
Bran 0 3 277 0 1 0 0 0 1 0 0 0 0 0 0 0
Corn flakes 4 57 0 85 0 0 0 0 0 0 0 0 0 0 0 0
Peas 0 0 0 0 375 0 0 0 1 0 0 0 0 0 0 0
Palm seed 0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0
Wheat middlings 0 2 5 0 0 0 124 3 0 0 0 0 0 0 0 0
Citrus pulp 0 0 0 0 6 0 0 380 0 0 215 1 0 0 0 1
Mineral correctors 0 4 1 0 10 0 1 0 452 9 0 0 0 52 0 0
By-pass fat 0 0 0 0 0 0 0 0 0 630 0 0 0 0 0 0
Milk powder 0 0 0 0 0 0 0 160 0 0 71 0 0 0 0 1
Whey powder 0 0 0 0 0 0 0 1 0 0 0 195 0 0 0 0

Blood meal 0 0 0 0 0 0 0 0 0 0 0 0 233 0 0 0
Meat and bone meal 0 0 0 0 0 0 0 0 0 0 0 0 0 928 0 4
Hemoglobin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234 0
Animal plasma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234
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here with the detection of animal ingredients. The following
expressions define them in terms of true and false positives and
negatives.

P ¼ TP

TPþ FP
ð3aÞ

R ¼ TP

TPþ FN
ð3bÞ

1

F1

¼ 1

2

1

P
þ 1

2

1

R
ð3cÞ

where TP is the number of spectra correctly classified as
coming from a banned animal ingredient, FP is the number of
spectra incorrectly classified as coming from a banned animal
ingredient, and FN is the number of spectra classified as
coming from a permitted ingredient, when in fact they come
from a banned animal ingredient.

RESULTS AND DISCUSSION

Comparing the various data pretreatments investigated, the
alternatives of subtracting a linear baseline or transforming to

first derivative gave similar results, and the baseline subtraction
was chosen for its simplicity. Smoothing the spectra improved
their appearance, but not the classification performance. Thus
all the results reported below use a linear baseline subtraction
only as data pretreatment.

Comparing the two kernels used, the best results were
obtained with the linear kernel, and it is these results that are
described below. The success of this simple kernel suggests
that this particular problem is in fact linearly separable.

Figures 1 and 2 show the overall error rate, the precision P,
recall R, and combined measure F1 when the c parameter of the
SVM ranges from 0 to 100. Although the error rates in Fig. 2
are high, it will be seen later, when the errors are analyzed in

FIG. 3. Mean raw spectra of four forages: Lucerne dehydrated, maize silage,
grass silage, and grass hay.

TABLE III. (a) Cross-validated confusion matrix for KNN applied to the library.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lucerne dehydrated 1 3058 538 44 188 34 846 167 61 24 20 41 5 4 12
Maize silage 2 196 4132 5 73 8 229 13 9 2 4 3 15 10 79
Fababean silage 3 236 26 0 38 6 95 12 13 0 7 4 1 3 0
Grass silage 4 633 1084 24 469 35 360 23 46 2 9 6 3 2 1
Grass hay 5 193 40 5 35 2 113 2 1 0 6 9 3 0 3
Cereal straw 6 765 297 14 126 34 4099 163 23 1 10 5 25 4 22
Beet pulp 7 142 38 0 26 3 275 2444 4 3 1 4 19 13 38
Cottonseed 8 109 39 0 18 5 70 35 657 0 26 0 23 1 4
DDGS barley 9 22 9 0 0 0 2 1 1 144 6 16 1 0 0
Soybean meal 10 43 3 1 0 4 4 5 85 1 2690 69 4 4 7
Sunflower seed 11 106 15 5 3 7 21 10 3 6 168 1228 0 0 1
Oats 12 5 170 0 2 1 32 50 11 1 0 1 150 7 242
Wheat 13 2 8 0 2 0 2 3 2 0 2 0 11 1783 1027
Barley 14 3 98 0 3 2 69 18 1 1 8 1 111 251 2698
Rye 15 1 7 0 0 0 3 2 0 0 1 0 13 58 775
Maize 16 2 21 0 0 0 5 7 0 0 5 0 26 477 865
Bran 17 20 21 0 2 0 5 16 7 4 8 0 65 9 100
Corn flakes 18 0 0 0 0 0 0 0 0 0 0 0 1 25 61
Peas 19 0 0 0 0 1 0 0 0 0 1 0 0 23 125
Palm seed 20 6 0 0 0 0 2 9 0 1 1 1 1 0 1
Wheat middlings 21 4 9 0 0 0 14 3 0 0 0 0 23 2 32
Citrus pulp 22 27 25 1 10 0 4 101 1 0 0 0 5 1 8
Mineral correctors 23 33 3 0 1 0 15 2 0 1 6 10 6 9 122
By-pass fat 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Milk powder 25 0 0 1 0 0 0 0 0 0 0 0 0 0 1
Whey powder 26 1 1 0 0 0 0 0 0 0 8 3 0 0 0

Blood meal 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meat and bone meal 28 0 0 0 0 0 0 0 2 0 10 0 0 0 0
Hemoglobin 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Animal plasma 30 0 0 0 0 0 0 0 0 0 2 0 0 0 0

TABLE III. (b)

Summary (1–26) (27–30)

Permitted (1–26) 46644 172
Banned (27–30) 15 1625
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detail, that many of these errors are confusions between similar
cereals, for instance between wheat and barley. For simplicity
though, these overall measures were used for tuning. The
SVM’s c parameter controls the trade off between generaliza-
tion and over-fitting. In order to avoid both extreme situations,
an exhaustive search for an adequate value of such a parameter
was performed using cross-validation, taking F1 as the target
measure. In light of these figures, the parameter c was fixed at
45, since this value maximizes R and F1 while the overall error
rate decreases only slightly for higher values of c.

The cross-validated confusion matrix for the parameter
choice c¼ 45 is given in Table II (a). So that the results may be
compared, the confusion matrix obtained in the earlier work10

using KNN is given in Table III (a). The results are broadly
similar, in that in both cases there are many confusions
between pairs such as maize silage and grass silage, or barley
and rye, but relatively few between ingredients of cereal origin
and ingredients of animal origin. The confusions between
similar ingredients are neither surprising nor particularly
important. For example, it is clear from the mean spectra of
the four forages in Fig. 3 that these ingredients have spectrally
very similar shapes. They are also functionally similar in the
context of animal feed. The critical discrimination is that
between the first 26 ingredients in the tables, which are all
permitted in animal feed, and the last four, which are banned.
Thus, the important areas of the tables are the last four rows
and columns, where the number of confusions is low for both
approaches.

The summary tables in Tables II (b) and III (b) are the result
of collapsing the full tables to the two categories ‘‘permitted’’
and ‘‘not permitted’’. It can be seen that the SVM approach

improves significantly on the earlier KNN results, with the
number of important errors being approximately halved. In
both cases the most common false negative (animal classified
as vegetable) is meat and bone meal wrongly identified as soya.
Interestingly, the most common false positive (vegetable
classified as animal) is different for the two approaches.
KNN classifies 155 soya spectra as meat and bone meal. SVM
only makes 12 errors of this type, but classifies 52 spectra of
mineral correctors as meat and bone meal. These confusions
are related to the mineral composition of bones present in meat
and bone meals.

CONCLUSION

The aim of the work reported here was to improve on the
performance of the KNN classifier previously developed for
use with the spectral library of feed ingredients. The SVM
approach was successful in reducing the overall proportion of
classification errors from the 36% of the KNN approach to 27%
on vegetal origin ingredients, but more importantly it
substantially reduced the number of confusions between
permitted and banned ingredients. Of the 48 456 classifications
made, the number of errors of banned ingredients was only 80,
an error rate of 0.17%, compared with 187 (0.39%) for the
KNN approach. In the context of the proposed use of NIRM for
the detection of banned ingredients, this is a significant
improvement.

With this study it was proved that the combination of NIRM
with SVM as a chemometric classification technique should
allow a regulatory laboratory to certify the presence of meat
and bone meal in animal feed with an error rate lower than
0.2%.

TABLE III. (a) Extended.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Lucerne dehydrated 0 6 6 0 0 0 0 39 13 0 0 3 0 0 0 0
Maize silage 13 35 1 1 1 1 0 5 1 0 0 0 0 0 0 0
Fababean silage 0 7 0 0 0 0 0 0 1 0 0 1 0 0 0 0
Grass silage 0 2 0 0 0 0 0 6 7 0 0 1 0 0 0 0
Grass hay 0 0 0 0 0 0 0 0 5 0 0 4 0 0 0 0
Cereal straw 0 0 3 0 1 0 1 6 40 0 0 0 0 0 0 5
Beet pulp 2 8 6 0 0 0 2 9 1 0 0 1 0 0 0 0
Cottonseed 0 4 2 0 0 0 0 11 0 0 0 0 0 12 0 0
DDGS barley 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Soybean meal 1 13 3 0 8 0 1 0 3 0 0 16 0 155 0 0
Sunflower seed 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 0
Oats 19 129 8 0 0 0 9 2 5 0 0 3 0 0 0 0
Wheat 108 225 7 3 20 0 0 0 5 0 0 0 0 0 0 0
Barley 404 463 19 0 34 0 2 0 27 0 0 3 0 0 0 0
Rye 169 111 0 0 3 0 0 0 2 0 0 1 0 0 0 0
Maize 222 3165 7 1 14 0 0 0 8 1 0 0 0 0 0 0
Bran 2 69 53 2 0 5 29 1 1 0 0 0 0 0 0 0
Corn flakes 7 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Peas 2 15 0 0 229 0 0 0 24 0 0 7 0 0 0 0
Palm seed 0 2 0 0 0 194 0 0 0 0 0 0 0 0 0 0
Wheat middlings 3 16 18 1 0 0 77 0 6 0 0 2 0 0 0 0
Citrus pulp 6 1 0 0 1 0 0 239 2 0 231 0 0 0 0 0
Mineral correctors 4 9 4 0 31 0 4 0 942 16 0 4 0 0 0 0
By-pass fat 0 0 0 0 0 0 0 0 0 630 0 0 0 0 0 0
Milk powder 0 1 0 0 0 0 0 231 0 0 0 0 0 0 0 0
Whey powder 0 0 0 0 1 0 0 1 0 0 0 195 0 0 0 0

Blood meal 0 0 0 0 0 0 0 0 0 0 0 0 235 0 0 0
Meat and bone meal 0 0 0 0 0 0 0 0 0 1 0 0 0 924 0 0
Hemoglobin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 234 0
Animal plasma 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 232
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