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We do not impose conformal symmetry on the theory since it is not a symmetry of the

abelian supermembrane. In distinction, AdS/CFT works with a conformal extension of

multiple M2-branes in the low energy approximation. Our theory with the star-product

is a full-fledged description of multiple M2-branes minimally immersed. The worldvolume

action has (LCG) N = 8 supersymmetry and it corresponds to M parallel supermembranes

minimally immersed on the target M9xT 2 (MIM2). In order to ensure the invariance under

the symmetries and to close the corresponding algebra, a star-product determined by the

central charge condition is introduced. It is constructed with a nonconstant symplectic

two-form where curvature terms are also present. The theory is in the strongly coupled

gauge-gravity regime. At low energies, the theory enters in a decoupling limit and it is

described by an ordinary N = 8 SYM in the IR phase for any number of M2-branes. We

analyze also other limits of the theory.
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1 Introduction

Recently there has been a impressive amount of work trying to extend an effective action for

the multiple M2-branes. The original motivation was to prove Maldacena’s Conjecture for

M-theory [1] according to which M-theory/AdS4 ×S7 should be dual to a CFT3 generated

by the action of multiple M2-branes in the decoupling limit, that is , for a large number M

of M2’s. This action was postulated as a low energy description of a SU(M) formulation of

the multiple action of multiple M2-branes. The low energy effective action of the multiple

M2-branes was expected to correspond to the conformal fixed point of the IR limit of a

SYM theory defined in 3D since M-theory is strongly coupled.

In distinction with this line of research, we have a completely different goal. We are

going to describe a full-fledged nonabelian extension of the supermembrane action. This

action will not be conformal since we are Not interested in characterizing a conformal field

theory through AdS4/CFT3 correspondance and we will not impose conformality on the

theory. In addition we will work in the opposite regime where gauge and gravity sectors

are strongly correlated. Due to thes differences our theory should not be expected to be

similar to those a la BLG theory or ABJ/M nor in the field content, nor in the symmetries

– 1 –



J
H
E
P
0
6
(
2
0
1
0
)
0
2
0

or the gauge interactions. To achieve our aim we will restrict ourselves to a particular

sector of the supermembrane.

The supermembrane with a topological restriction associated to an irreducible wind-

ing has been shown to have very interesting properties: discreteness of the supersymmetric

spectrum [2–4], spontaneous breaking of supersymmetry, stabilization of most of the mod-

uli [5], a spectrum containing dyonic strings plus pure supermembrane excitations [6],

formulation on a G2 manifold [7]. This restriction can be seen at algebraic level as a cen-

tral charge condition on the 11D supersymmetric algebra and geometrically as a condition

of being minimally immersed into the target space [8], so from now on, we will denote it

as MIM2. The goal of this paper is to consistently extend this action of a single MIM2 to

a theory of interacting parallel M2-branes minimally immersed (MIM2’s) preserving all of

the symmetries of the theory: supersymmetry and invariance under area preserving diffeo-

morphisms. The theory is not conformal invariant. In the extension, the gauge and gravity

sectors are strongly correlated. It corresponds to have a M-theory dual of the Non-Abelian

Born-Infeld action describing a bundle of multiple D2-D0 branes,in the same way that a

unique supermembrane is the M-theory dual of a D2-brane, so we work in the high energy

approximation. When the energy scale is low, the theory decouples and it is effectively

described by a N = 8 SYM in the IR phase. As the energy scale raises the YM coupling

constant becomes weaker and at some point, oscillations modes of the pure supermembrane

appear and the theory enters in the strong correlated gauge-gravity sector.

This is completely different to the AdS4/CFT3 analysis. In that approach, for the 11D

supermembrane it proved to be necessary to introduce non-dynamical gauge fields via a

Chern Simons term to avoid breaking the matching of the bosonic and fermionic degrees

of freedom. The first attempt was due to Schwarz who developed N = 1 and N = 2

cases but could not find a N=8 susy action for supermembranes [9]. The symmetries

imposed on the action were the N = 8 worldvolume superconformal action and SU(N)

symmetry. [10, 11] and independently [12] were the first to obtain a realization of this

algebra by imposing fields to be evaluated on a three algebra with positive inner metric,

(a particular case of Fillipov algebras).1 This three-algebra can only be realized in terms

of a unique finite dimensional gauge group SO(4) for an inner positive metric, [18] with

a twisted Chern-Simons terms, see also [19]. This 3-algebra can also be re-expressed as

the tensor product of two SU(2) × SU(2) gauge groups associated each one to a different

Chern-Simons term [20]. Consistency checks of BLG in the funnel were indicated in [21] as

well as other properties of Lorentzian 3-algebras. To realize this duality in the decoupling

limit it is necessary to obtain a large number of supermembranes for an arbitrary number

of M2-branes.In order to improve this situation and generalize it for general SU(M) gauge

groups, different avenues have been followed: The most sucesfull has been to formulate a

Chern-Simons-matter theory N = 6 by [22] in which they are able to generalize the theory

to an arbitrary SU(N) and recover also BLG theory for the case of N = 2. The ABJM,

1Interesting works on these algebras in relation with the supermembrane theory were obtained long time

ago in [13], and it was applied to the M5 in [14]. In those case instead of Fillipov algebras Nambu-Poisson

algebras are needed and there are important subtleties concerning its quantization in odd dimensions. See

for example [15, 16] and [17] for a cubic matrix description.
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or at least a sector of it, can be also recover from the 3-algebra formulation by relaxing

the condition of total antisymmetry of the structure constants [23] In a serie of papers it

has also been explored the possibility of obtaining N = 8 models with arbitrary gauge

groups by relaxing the positivity condition of the internal metric [24–26]. These models

have successfully obtained generic SU(N) gauge groups but to the price of lack of unitarity

because of the presence of ghosts. Ghost-free actions have been formulated [27] and has

been shown to exactly correspond to a reformulation of a N = 8 Super Yang Mills in (2+1)D

and not to its IR limit [28]. The relation between multiple M2-branes and D2-branes has

been also analyzed in, [29–32]. A non-linear realization of Lorentzian algebras has been

proposed in [33]. Massive deformations as for example, [34–36] or [37] for topological

twisting have also been considered. These superconformal models can also be obtained by

taking the conformal limit of gauge supergravities in 3D [38]. This seems to indicate that

the information of all of these theories could be contained on supergravity.2 This is in some

sense surprising for a description that is intended to describe the quantum formulation of

multiple M2-branes or even the infrared physics of a Yang-Mills theory. There has been

recent advances focused in models with less number of supersymmetries, for example, [39].

We would like again to emphasize that in what follows, we consider, a non abelian

extension of the full-fledged theory describing multiple M2-branes in the L.C.G. without

imnposing the conformal symmetry not present in the original theory of the M2-brane.

The paper is organized in the following way: In section 2 we make a short summary

of the formulation and main properties of the supermembrane minimally immersed. On

section 3 we introduce a non abelian extension of the MIM2 that allows to consider dif-

ferent limits, a matrix model regularization with a finite and arbitrary number of colors

as well as a condensate of M2’s in the large N matricial limit. In order to have a non-

abelian formulation in 2+1D respecting all of the symmetries (in particular invariance

under diffeomorphisms preserving the area) of the former theory for an arbitrary number

of colors a noncommutative star-product has to be included to close the algebra. This is

explained in section 5. This noncommutative star product differs from the Seiberg-Witten

map since the noncommutative parameter is non constant on the spatial variables. In

section 6 we analize its supersymmetry and we show that it has N = 8 supersymmetries.

To conclude we finally present our results and main properties, emphasizing its potential

phenomenological interest.

2 D = 11 supermembrane with central charges on a M9 × T
2 target

manifold

In this section we will make a self-contained summary of the construction of the minimally

immersed M2-brane (MIM2). The hamiltonian of the D = 11 Supermembrane [40] may be

defined in terms of maps XM , M = 0, . . . , 10, from a base manifold R×Σ, where Σ is a Rie-

mann surface of genus g onto a target manifold which we will assume to be 11D Minkowski.

2We thank H. Nicolai for comments to this respect.
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The canonical reduced hamiltonian to the light-cone gauge has the expression [41]

H =

∫

Σ
dσ2

√
W

(
1

2

(
PM√
W

)2

+
1

4
{XM ,XN}2 + ΨΓ−ΓM{XM ,Ψ}

)
(2.1)

subject to the constraints

φ1 := d

(
PM√
W

dXM + ΨΓ−dΨ

)
= 0 (2.2)

and

φ2 :=

∮

Cs

(
PM√
W

dXM + ΨΓ−dΨ

)
= 0, (2.3)

where the range of M is now M = 1, . . . , 9 corresponding to the transverse coordinates in

the light-cone gauge, Cs, s = 1, . . . , 2g is a basis of 1-dimensional homology on Σ,

{XM ,XN} =
ǫab

√
W (σ)

∂aX
M∂bX

N . (2.4)

a, b = 1, 2 and σa are local coordinates over Σ. W (σ) is a scalar density introduced

in the light-cone gauge fixing procedure. φ1 and φ2 are generators of area preserving

diffeomorphisms, see [42]. That is

σ → σ
′ → W

′

(σ) = W (σ).

When the target manifold is simply connected dXM are exact one-forms.

The spectral properties of (2.1) were obtained in the context of a SU(N) regularized

model [41] and it was shown to have continuous spectrum from [0,∞).

This property of the theory relies on two basic facts: supersymmetry and the presence

of classical singular configurations, string-like spikes, which may appear or disappear with-

out changing the energy of the model but may change the topology of the world-volume.

Under compactification of the target manifold generically the same basic properties are

also present and consequently the spectrum should be also continuous [43]. In what fol-

lows we will impose a topological restriction on the configuration space. It characterizes a

D = 11 supermembrane with non-trivial central charges generated by the wrapping on the

compact sector of the target space [2, 4, 44, 45]. We will consider in this paper the case

g = 1 Riemann surface as a base manifold Σ on a M9xT 2 target space. The configuration

maps satisfy:

∮

cs

dXr = 2πLr
sR

r r, s = 1, 2. (2.5)

∮

cs

dXm = 0 m = 3, . . . , 9 (2.6)

where Lr
s are integers and Rr, r = 1, 2 are the radius of T 2. This conditions ensure that we

are mapping Σ onto a T 2 sector of the target manifold.
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We now impose the central charge condition

Irs ≡
∫

Σ
dXr ∧ dXs = (2πR1R2)nǫrs (2.7)

where ωrs is a symplectic matrix on the T 2 sector of the target and n = detLr
i represents

the irreducible winding.

The topological condition (2.7) does not change the field equations of the hamilto-

nian (2.1). In fact, any variation of Irs under a change δXr, single valued over Σ, is

identically zero. In addition to the field equations obtained from (2.1), the classical config-

urations must satisfy the condition (2.7). It is only a topological restriction on the original

set of classical solutions of the field equations. In the quantum theory the space of physical

configurations is also restricted by the condition (2.7). The geometrical interpretation of

this condition has been discussed in previous work [46, 47]. We noticed that (2.7) only

restricts the values of Lr
s, which are already integral numbers from (2.5).

We consider now the most general map satisfying condition (2.7). A closed one-forms

dXr may be decomposed into the harmonic plus exact parts:

dXr = M r
s dX̂s + dAr (2.8)

where dX̂s, s = 1, 2 is a basis of harmonic one-forms over Σ and dAr are exact one-forms.

We may normalize it by choosing a canonical basis of homology and imposing
∮

cs

dX̂r = δr
s . (2.9)

We have now considered a Riemann surface with a class of equivalent canonical basis.

Condition (2.5) determines

M r
s = 2πRrLr

s, (2.10)

we rewrite Lr
s = lrS

r
s and l1.l2 = n. We now impose the condition (2.7) and obtain

Sr
t ω

tuSs
u = ωrs, (2.11)

that is, S ∈ Sp(2, Z). This is the most general map satisfying (2.7). See [6] for details, in

particular for n > 1.

The natural choice for
√

W (σ) in this geometrical setting is to consider it as the density

obtained from the pull-back of the Khäler two-form on T 2. We then define

√
W (σ) =

1

2
∂aX̂

r∂bX̂
sωrs. (2.12)

√
W (σ) is then invariant under the change

dX̂r → Sr
sdX̂s, S ∈ Sp(2, Z) (2.13)

But this is just the change on the canonical basis of harmonics one-forms when a

biholomorphic map in Σ is performed changing the canonical basis of homology. That is, the

biholomorphic (and hence diffeomorphic) map associated to the modular transformation
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on a Teichmüller space. We thus conclude that the theory is invariant not only under

the diffeomorphisms generated by φ1 and φ2, homotopic to the identity, but also under

the diffeomorphisms, biholomorphic maps, changing the canonical basis of homology by a

modular transformation.

Having identified the modular invariance of the theory we may go back to the general

expression of dXr, we may always consider a canonical basis such that

dXr = 2πlrRrdX̂r + dAr. (2.14)

the corresponding degrees of freedom are described exactly by the single-valued fields Ar.

After replacing this expression in the hamiltonian (2.1) we obtain,

H =

∫

Σ

√
Wdσ1 ∧ dσ2

[
1

2

(
Pm√
W

)2

+
1

2

(
Πr

√
W

)2

+
1

4
{Xm,Xn}2 +

1

2
(DrX

m)2 +
1

4
(Frs)

2

+(n2Area2
T 2) +

∫

Σ

√
WΛ

(
Dr

(
Πr√
W

)
+

{
Xm,

Pm√
W

})]

+

∫

Σ

√
W [−ΨΓ−ΓrDrΨ − ΨΓ−Γm{Xm,Ψ} − Λ{ΨΓ−,Ψ}] (2.15)

where DrX
m = DrX

m+{Ar,X
m}, Frs = DrAs−DsAr+{Ar, As}, Dr = 2πlrRr

ǫab√
W

∂aX̂
r∂b

and Pm and Πr are the conjugate momenta to Xm and Ar respectively. Dr and Frs are

the covariant derivative and curvature of a symplectic noncommutative theory [45, 46],

constructed from the symplectic structure ǫab

√
W

introduced by the central charge. The last

term represents its supersymmetric extension in terms of Majorana spinors. The physical

degrees of the theory are the Xm, Ar,Ψα they are single valued fields on Σ.

2.1 Quantum supersymmetric analysis of a single MIM2

We are going to summarize the spectral properties of the above hamiltonian. The bosonic

potential of the (2.15) satisfies the following inequality [4] ( in a particular gauge condition)

∫

Σ

√
Wdσ1 ∧ dσ2

[
1

4
{Xm,Xn}2 +

1

2
(DrX

m)2 +
1

4
(Frs)

2

]

≥
∫

Σ

√
Wdσ1 ∧ dσ2

[
1

2
(DrX

m)2 + (DrAs)
2

]

The right hand member under regularization describes a harmonic oscillator potential. In

particular, any finite dimensional truncation of the original infinite dimensional theory sat-

isfies the above inequality. We consider regularizations satisfying the above inequality. We

denote the regularized hamiltonian of the supermembrane with the topological restriction

by H, its bosonic part Hb and its fermionic potential Vf , then

H = Hb + Vf . (2.16)

We can define rigorously the domain of Hb by means of Friederichs extension techniques. In

this domain Hb is self adjoint and it has a complete set of eigenfunctions with eigenvalues
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accumulating at infinity. The operator multiplication by Vf is relatively bounded with

respect to Hb. Consequently using Kato perturbation theory it can be shown that H is

self-adjoint if we choose

DomH = DomHb. (2.17)

In [2] it was shown that H possesses a complete set of eigenfunctions and its spectrum

is discrete, with finite multiplicity and with only an accumulation point at infinity. An

independent proof was obtained in [3] using the spectral theorem and theorem 2 of that

paper. In section 5 of [3] a rigorous proof of the Feynman formula for the Hamiltonian of

the supermembrane was obtained. In distinction, the hamiltonian of the supermembrane,

without the topological restriction, although it is positive, its fermionic potential is not

bounded from below and it is not a relative perturbation of the bosonic hamiltonian. The

use of the Lie product theorem in order to obtain the Feynman path integral is then not

justified. It is not known and completely unclear whether a Feynman path integral formula

exists for this case. In [4] it was proved that the theory of the supermembrane with central

charges, corresponds to a nonperturbative quantization of a symplectic Super Yang-Mills

in a confined phase and the theory possesses a mass gap.

In [7] we constructed of the supermembrane with the topological restriction on an

orbifold with G2 structure that can be ultimately deformed to lead to a true G2 manifold.

All the discussion of the symmetries on the Hamiltonian was performed directly in the

Feynman path integral, at the quantum level, then valid by virtue of our previous proofs.

3 Lessons from naive non-abelian extensions of the MIM2: some intere-

sting limits

In this section we show a first attempt to obtain a non abelian extension of the MIM2-

brane. It requires to obtain a U(M) or SU(M) formulation of the MIM2 theory, for an

arbitrary number of colors M . We will see that naive extensions are unable to achieve it.

Along this section we will characterize the compatibility problem between the non abelian

gauge group and the infinite group of diffeomorphisms preserving the area. This will give us

a better understanding on how this problem can be overcome, as it is shown in section 5.

where a truly non abelian extension can be found. The cases contained in this section

correspond to particular limits of the general construction of section 5. Let us introduce

first some preliminary definitions that will become of utility along the discussion.

We will denote TA, A = (a1, a2), a1, a2 = −(N − 1), . . . , (N − 1), (m,n) 6= (0, 0), the

generators of the Weyl-Heisenberg group. They satisfy

T †
A = T−A (3.1)

trTA = 0 (3.2)

TATB = Ne
iπ(B∧A)

N
TA+B (3.3)

T(a1+N,a2) = eiπa2T(a1,a2) (3.4)

T(a1,a2+N) = eiπa1T(a1,a2) (3.5)
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The algebra su(N) may be realized in terms of TA. The generators of su(N) may be

expressed as i(TA + T †
A), (TA − T †

A). A real scalar field X with values on su(N) may be

expanded as

X = XATA =
−i

2
(XA + X

A
)i(TA + T †

A) +
1

2
(XA − X

A
)(TA − T †

A), (3.6)

where X
A

is the complex conjugate of XA.

The generators of su(NM) may be realized in terms of TA⊗Hb, TA⊗IM , IN⊗Hb, where

T and H are the Weyl-Heisenberg generators associated to su(N) and su(M) respectively.

We associate to each member of the above basis the kronecker product of the corresponding

matrices. That is, to Ha ⊗ Hb the krocnecker product of the matrices TA and Hb. The

bracket of the elements of the basis is the corresponding anticommutator of the matrices.

With these definitions TA ⊗Hb, TA ⊗ IM , IN ⊗Hb are the generators of su(NM). TA ⊗ IM

and IN ⊗Hb are the generators of the algebra of the direct product group SU(N)×SU(M),

a subalgebra of su(NM).

We have,

[TA, TB ] = fC
ABTC , fC

AB = 2iNsen

(
(B ∧ A)π

N

)
δC
A+B

{TA, TB} = dC
ABTC , dC

AB = 2Ncos

(
(B ∧ A)π

N

)
δC
A+B

and

[TA ⊗ Ha, TB ⊗ Hb] = (fC
ABdc

ab + dC
ABf c

ab)TC ⊗ Hc (3.7)

We can extend the range of the index A or a, but not both together, to include (0, 0). The

corresponding matrix is then defined as usual

T(0,0) = NIN or H(0,0) = MIM . (3.8)

The commutation relation (3.7) is then valid for all generators TA ⊗ Hb, TA ⊗ H(0,0),

T(0,0) ⊗ Ha.

We will denote

FC
AB ≡ fC

ABdc
ab + dC

ABf c
ab (3.9)

where A = (A, a), B = (B, b), C = (C, c). FC
AB

is totally antisymmetric. It satisfies the

Jacobi Identity and has the expression

FC

AB = 4iMNsin

(
(B ∧ A)π

N
+

(b ∧ a)π

M

)
δC

AB. (3.10)

In the following, we intend to extend the hamiltonian of the supermembrane to include

su(M) valued fields, preserving the number of physical degrees of freedom (times the dimen-

sion of the internal algebra). The main point is to extend the area preserving constraint

– 8 –
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leaving invariant its first class property. The algebraic structure of the supermembrane

hamiltonian is provided by the symplectic bracket,

{Xm, Pm} =
ǫab

√
W

∂aX
m∂bPm. (3.11)

We consider an extension of it of the form

{Xam, P b
M}dc

ab + f c
abX

maP b
m (3.12)

where f c
ab and dc

ab are respectively the structure constant tensor and the totally symmetric

tensor of su(M).

We will perform the analysis on a matrix regularized model. If we now expand the

scalars on the base manifold Σ in terms of an orthonormal basis YA,

Xma(σ1, σ2, τ) =

+∞∑

A=−∞
XmaA(τ)YA(σ1, σ2) (3.13)

and define as usual

{YA, YB} = gC
ABYC YAYB = d̃C

ABYC (3.14)

where gC
AB is the structure constant of the algebra of APD and d̃ABC is the totally symmet-

ric tensor of the APD algebra. We have just re-written the theory in its matrix form, inte-

grating out the spatial dependence captured on the APD structure constants as usual [41],

but without regularizing it at this stage. We obtain for (3.12)

F̃C
AB = gC

ABdc
ab + d̃C

ABf c
ab. (3.15)

The basis YA, for a compact torus Σ, may be expressed in terms of the harmonic functions

X̂r, r = 1, 2 of section 2, normalized by
∫
Cs

dX̂r = 2πδr
s , as

Y(a1,a2) = ei(a1
bX1+a2

bX2) (3.16)

we then have

1

V ol(Σ)

∫

Σ

√
WY(a1,a2)Y (b1,b2) = δ(a1,b1)(a2,b2), (3.17)

and the APD tensors of the torus are,

gC
AB = (B ∧ A)

(
1

2
ǫrsǫ

ab∂aX̂
r∂bX̂

s

)
δC
A+B = (B ∧ A)δC

A+B .

d̃C
AB = δC

A+B .

We can regularize the model by truncating the infinite expansion and allowing the fields

to be valued in the adjoint representation of a SU(N) group, [41]. In the supermembrane

theory with a compactified sector of the target space it is not possible to extend directly the

regularization to the harmonic sector fields [43]. However in the minimally immersed sector

– 9 –



J
H
E
P
0
6
(
2
0
1
0
)
0
2
0

of the compactified supermembrane, a well defined theory by itself, the harmonic sector is

completely determined and there exists a consistent regularization of the theory [44]. The

harmonic sector is related to a global symmetry SL(2, Z), realized as a diffeomorphisms

not connected to the identity in the infinite dimensional theory and to the center of SU(N)

in the regularized case.

The regularized structure constants for the SU(N) matrix model are the standard

ones [41, 42] in terms of TA generators with A = 1, . . . , N2 − 1. In order to guarantee the

appropriate convergence to the original APD structure constants we re-scale dABC by a

factor of 1
N , and although we will do it, it is not necessary to impose this requirement to the

color group since the color index is not the regularized version of a theory in the continuum.

If B ∧ A remains bounded and N → ∞ we have

limN→∞
1

2i
fC

AB = gC
AB , limN→∞

1

2N
dC

AB = d̃C
AB . (3.18)

This limit was considered in [41–43]. The semiclassical supermembrane subject to

an irreducible wrapping was first analyzed in [48]. The large N limit of the spectrum of

the regularized SU(N) model of the semiclassical minimally immersed supermembrane was

studied in [4], and it was proven that its eigenvalues λN < E for a fixed energy E converge

to the eigenvalues λ < E of the semiclassical supermembrane theory, when N → ∞. The

boundness condition of B ∧ A is ensured by the condition that only modes with energy

less than E are considered. The large N limit is taken with E fixed. We consider now a

regularized model with gauge group SU(NM) ⊃ SU(N)×SU(M), with algebraic structure

represented as in (3.9), that is

[X,P ] = XAP BFC
AB. (3.19)

The first remark is that the first class constraint of the supermembrane theory be-

comes a first class constraint of the gauge theory. The algebra of the first class constraint

is exactly the algebra of the Gauss constraint of a (0+1)Yang-Mills theory with gauge

group SU(NM).

The constraint becomes

φB = λB
rAΠrA + AA

r ΠrCFB
AC + XmAP C

mFB
AC + Ψ

A
Γ−ΨCFB

AC = 0 (3.20)

λB
rA

is the truncated version of the corresponding APD tensor defined from DrYA, since it

is a scalar on Σ. It may be decomposed in terms of the basis YA,

DrYA = λB
rAYB. (3.21)

The algebra of the first class constraint is, in terms of parameters ǫ, λ,

[< ǫ, φ >,< λ, φ >]P.B =< [ǫ, λ]φ > (3.22)

where <> denotes integration on Σ. The constraint contains a linear term on the (0+1)D

fields in a similar way as in Yang-Mills theories. This property ensures the elimination from

the constraint the gauge degrees of freedom on Πr and the corresponding one from Ar by
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an admissible gauge fixing condition. We notice that from a supermembrane on a compact

base manifold there is no way to fix an angle variable, that is to identify coordinates on

the base manifold with coordinates on the target-space since, angle variables are harmonic

on the base manifold and there is no gauge freedom on that sector in the supermembrane.

In fact, there area preserving constraints generate solely diffeomorphisms homotopic to the

identity. In distinction in the minimally immersed M2-brane sector that we are considering

there is an additional symmetry which may allow such identification if desired.

The algebra of the first class constraint however does not close for arbitrary values of N

and M . It closes for N,M finite or both N,M infinite, and those cases are considered below.

The most interesting case corresponding to N infinite (i.e recovering the continuum) with

an arbitrary number of colors M does not have a closed algebra in this first construction.

The modification needed to hold is done in detail in the next section.

3.1 Some interesting limits

We then have a SU(N)×SU(M) gauge model in (0+1) dimensions, describing the correct

number of degrees of freedom. We may now consider different large N ,M limits to describe

the continuum.

• The first case we consider is when N = M , N → ∞, we have

limN→∞
1

4iN
FC

AB = F̃C
AB (3.23)

by redefining the interacting terms to eliminate the factor 2iN we obtain the algebraic

structure of APD × APD. The hamiltonian becomes

H ≡
∫

dσ2
√

WH, (3.24)

H =
1

2

(
Pma

√
W

)2

+
1

2

(
Πra

√
W

)2

+
1

4
({Xmb,Xnc}d̃c

ab + XmbXncgc
ab)

2 +
1

2
(DrX

na)2

+
1

4
(Fa

rs)
2 − ΨΓ−ΓrDrΨ − Ψ

a
Γ−Γm[{Xmb,Ψc}d̃a

bc − XmbΨcga
bc]

and the constraint

Dr

(
Πra

√
W

)
+

{
Xmb,

P c
m√
W

}
d̃a

bc +Xmb

(
P c

m√
W

)
ga
bc −{Ψb

Γ−,Ψc}d̃a
bc −ΨbΓ−Ψcga

bc = 0

it is also a first class constraint. In the above expression

Dr•a = Dr •a +{Ab
r, •c}d̃a

bc + Ab
r •c ga

bc. (3.25)

It is a well-known fact the connection between large SU(N) groups and the group of

diffeomorphims preserving the area [42] so this case emerge naturally when APD is

imposed in the action.3 In order to recover the continuum limit it is implicitly imposed

periodicity on the new two arising dimensions, this is always the case when one takes

3We thank T. Ortin for suggestive questions about this fact.
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the large M limit. The result we obtain can be interpreted as the description of

condensate of M2-branes minimally immersed along those compact surface. Since the

two APD can be thought as orthogonal directions, one can naturally think that they

span a 4D surface related to a M5-brane compactified on a S1 with some appropriate

fluxes and forms that characterize the precise sector that we are considering. The

M5-brane hamiltonian on a S1 expressed in terms Nambu algebras was obtained

in [14]. The exhaustive analysis required to determine precisely this statement lies

outside the scope of the present paper. In terms of a BLG formulation it was already

found a low energy description of a condensate of multiple M2-branes by extending

the number of colors to infinite [49]. In their analysis the remaining symmetry is a

Diff3-volume diffeomorphisms in distinction with ours that correspond to the product

of two APD. Previously, in [18, 19, 50, 51] using the BLG approximation it was also

be pointed out its natural connection with M5-brane worldvolume action.

• The SU(2) color case with N infinite is a particular case since dc
ab = 0 so we loose the

symplectic structure that characterizes the M2-brane. The hamiltonian becomes,

HSU(2) =
1

2

(
Pma

√
W

)2

+
1

2

(
Πra

√
W

)2

+
1

4
(XmbXncǫc

ab) +
1

2
(DrX

na)2

+
1

4
(FSU(2)a

rs )2 − ΨΓ−ΓrDrΨ − Ψ
a
Γ−ΓmXmbΨcǫa

bc]

and the constraint

Dr

(
Πra

√
W

)
+ Xmb

(
P c

m√
W

)
ǫa
bc − ΨbΓ−Ψcǫa

bc = 0 (3.26)

is the SU(2) first class constraint and

DSU(2)
r Πra = DrΠ

ra + Ab
rΠ

rcǫa
bc. (3.27)

So the nonabelian product exactly corresponds to a SU(2) SYM without corrections.

Note that the covariant derivative Dr in distinction with the ordinary case is not

just a partial derivative but inherits the information of the global symplectic bundle

through Dr = 2∂Rrlrǫ
ab∂aX̂r∂b.

• The third case we consider is when N and M are finite but N ≫ M with N large to

be a good approximation to the continuum limit although the case N → ∞ does not

satisfy the algebra. The structure constant

FC
AB = NM sin

(
(b∧a)π

M + (A∧B)π
N

)
(3.28)

corresponds roughly speaking to the first two terms contributions of the complete

expansion in section 5, however at this regularized level one cannot see the proper

decoupling limit, so we leave this analysis to the next section. One can characterize

the qualitative properties of the quantum spectrum in this approximation. Since

the spectrum of the regularized hamiltonian of a single supermembrane minimally
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immersed MIM2 is purely discrete at bosonic and supersymmetric level, then it also

holds for the SU(N) × SU(M) case as far as N,M are both finite.

In the next section we would like to go further and analyze rigourously the case for

N infinite with an arbitrary number of colors M corresponding strictly to a stack of

M parallel MIM2-branes.

4 The multiple MIM2’s action with arbitrary number of colors: a gene-

ralized star-product

In this section we obtain the U(M) non-abelian extension of the MIM2 for an arbitrary

number of colors M . We extend the algebraic symplectic structure of the supermembrane

with central charges in the L.C.G in terms of a noncommutative product and a U(M)

gauge group. The main point is to show that in such extension the original area preserv-

ing constraint preserves the property of being first class.When an abelian gauge group is

considered the closure of the area preserving constraints occurs with the complete non-

commutative expansion as well as with the first two terms in the product expansion, the

exact symplectic structure [52]. In distinction when a U(M) gauge group is considered

there is only one possibility, the complete noncommutative expansion. It is not enough to

have the symplectic structure tensor U(M) in order to close the algebra of the first class

constraint. The complete expansion related to a noncommutative associative product is

needed. It is interesting that this argument does not exclude an algebraic extension in

terms of a non-associative noncommutative product, which we will discuss elsewhere. The

noncommutative product we may introduce is constructed with the symplectic two form

already defined on the base manifold Σ:

ωab =
√

Wǫab, (4.1)

where
√

W = 1
2AreaT 2(ǫrsǫ

ab∂aX̂
r∂bX̂

s). In this section, in order to get a better insight

on the star product, we use coordinates on the base manifold with length dimension +1

and define the dimensionless
√

W with the area factor. All results of section 2 are of course

valid. The two-form ω define the area element which is preserved by the diffeomorphisms

generated by the first class constraint of the supermembrane theory in the Light Cone

Gauge, which are homotopic to the identity, and by the SL(2, Z) group of large diffeo-

morphisms discussed in section 2. The two-form is closed and nondegenerate over Σ. By

Darboux theorem one can choose coordinates on an open set N in Σ in a way that
√

W

becomes constant on N. However this property cannot be extended to the whole compact

manifold Σ. The noncommutative theory must be globally constructed from a non-constant

symplectic ω. The construction of such noncommutative theories, for symplectic manifolds

was performed in [53, 54]. The general construction for Poisson manifolds was obtained

in [55]. The Fedosov approach was used to construct noncommutative Yang Mills Theories

and also noncommutative abelian membrane theories in [52]. A lot of work on noncommu-

tative Yang-Mills theories was developed for constant ω, some of them are [56, 57]. See for

example, [58] for an introductory review. We emphasize that our construction is not related
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to a Seiberg-Witten limit of String Theory [59] in which one obtains a noncommutative

theory with constant B-field.

The starting point on the Fedosov construction is a symplectic manifold (Σ, ω) were ω

is a symplectic two-form, defining a symplectic structure on each tangent space TσΣ. The

elements of the Weyl algebra are formal series

g(ξ, h) =
∑

hkgk,αξα (4.2)

where h is a parameter, ξ ∈ TσM an α is a multi-index. The associated product is defined by

g ◦ f =
∞∑

k=0

(−ih

2

)k 1

k!
ωa1b1 . . . ωakbk

∂kg

∂ξa1 . . . ∂ξak

∂kf

∂ξb1 . . . ∂ξbk

(4.3)

where the terms are ordered according to the weights deg(ξ) = 1, deg(h) = 2. In our

construction the h parameter will be identified with the area wrapped by the membrane on

the torus. The i factors are exactly the correct ones to reproduce the symplectic bracket

with the same coefficients as in the abelian MIM2. The symplectic bracket will appear as

the second term in the noncommutative bracket. The Weyl algebra bundle W is the union

of the algebras Wσ, σ ∈ Σ. Its sections are denoted g = g(σ, ξ, h) where the coefficients

gk,α(σ) in the above expansions are now covariant symmetric tensor fields on Σ. Differential

q-forms are naturally defined as a section of the bundle W ⊗Λq. They constitute an algebra

denoted C∞(W ⊗ Λ). The commutator of two forms g ∈ W ⊗ Λq1 and f ∈ W ⊗ Λq2 is

defined as

[g, f ]◦ = g ◦ f − (−1)q1q2f ◦ g. (4.4)

On any symplectic manifold Σ there always exist a torsion free connection preserving the

tensor ω. The corresponding covariant derivative will be denoted Da, it satisfies Daωbc = 0.

Two symplectic connections differ by a completely symmetric tensor. Given a symplectic

connection on Σ, a connection on W ⊗ Λ may be defined as

Dg = dσb ∧ Dbg (4.5)

More general connections D are defined as

Dg = Dg +
i

h
[A, g]◦ (4.6)

where A is a section of W ⊗Λ1. The next step in the Fedosov construction is to introduce

an Abelian connection: D is Abelian if its curvature is a central form of the algebra, that is

[Ω, a]◦ = 0 (4.7)

for any a ∈ C∞(W ⊗ Λ), Ω is the curvature of D. There always exist an Abelian connec-

tion [54] in the Weyl algebra bundle. The Abelian connection depends explicitly on the

Riemann tensor of the symplectic connection. The subalgebra Wabelian ⊂ C∞(W ) of flat

sections, that is the set of g ∈ C∞(W ) such that Dg = 0, where D is abelian is called the

quantum algebra.
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The center Z of W are the elements which do not depend on ξ. For each section

g(σ, ξ, h) ∈ C∞(W ), σ(g) denotes the projection onto the center:

σ(g(σ, ξ, h)) = g(σ, 0, h). (4.8)

It follows that the map σ : Wabelian → Z is bijective. Consequently a star product ∗ on

C∞(Σ) may be defined as

ĝ ∗ f̂ = σ(σ−1(ĝ) ◦ σ−1(f̂)) (4.9)

for any ĝ, f̂ ∈ Z. The noncommutative star product is as a result of the construction

associative. The star product, for the particular case in which ω has constant coefficients

and the symplectic connection is trivial, reduces to the Moyal product. In general the star

product includes terms depending on the Riemann tensor for the symplectic connection.

In particular for the symplectic structure on the base manifold of the supermembrane

with central charges, the symplectic connection is necessarily non-trivial. For an explicit

construction see [52]. We now extend the above construction and consider the tensor

product of the Weyl algebra bundle times the enveloping algebra of u(M). It may be

constructed in terms of the Weyl-algebra generators TA introduced in the previous section,

with the inclusion of the identity associated to A = (0, 0). This complete set of generators

determine an associative algebra under matrix multiplication. The inclusion of the identity

allows to realize the generators of the u(M) in terms of TA matrices, with A = (a1, a2) and

a1, a2 = −(M − 1), . . . , 0 . . . M − 1. All the properties of the Fedosov construction remain

valid, in particular the associativity of the star product. It is also valid the following Trace

property, if g = gATA, f = fATA, gA, fA ∈ C∞(W )

Tr

∫

Σ

√
Wσ(g ◦ f) =

∫

Σ

√
Wσ(gA ◦ fB)Tr(TATB) = Tr

∫

Σ

√
Wσ(f ◦ g)

Tr

∫

Σ

√
Wσ(g ◦ f ◦ h) = Tr

∫

Σ

√
Wσ(h ◦ g ◦ f).

We may introduce canonical variables on the Weyl algebra bundle

[Xm(σ, ξ, h), Pnσ
′

, ξ
′

, h)]P.B = δm
n δ(σ

′ − σ)δ(ξ
′ − ξ)

[Ar(σ, ξ, h),Πs(σ
′

, ξ
′

, h)]P.B = δs
rδ(σ

′ − σ)δ(ξ
′ − ξ)

It then follows

Tr

∫

Σ

√
Wσ(G◦H ◦[Xn), T r

∫

Σ
σ(Pm]P.B ◦L◦M) = Tr

∫

Σ

√
Wσ(G◦H ◦L◦M)δn

m, (4.10)

where we have used Tr(TCTATB)Tr(TDTETF )ηCD = Tr(TATBTETF ) and the associativity

of the Weyl product. In order to construct the hamiltonian of the theory we consider the

following connection on the Weyl bundle [52]

D⋄ =
i

h
[Gre

r, ⋄]◦ +
i

h
[Are

r, ⋄]◦ (4.11)
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where Gr,Ar ∈ C∞(WAbelian), σGr = δrsX
s
h and Xs

h = 2πRslsX̂
s. It corresponds to the

harmonic sector of the map to the compact sector of the target space. σAr = Ar using the

notation of section 2, er = ∂aX̂
rdσa. Its curvature is given by

Ω =
i

2h
[G,G]◦ +

i

h
[G, γ]◦ +

i

2h
[γ, γ]◦, γ = AB

r erTB (4.12)

We now consider (Xm, Pm), (Ar,Π
r) the canonical conjugate pairs as well as the spinor

fields Ψ lifted to the quantum algebra Wabelian ∈ C∞(W ). In order to simplify the notation

we use the same symbols for the lifted quantities. In the presence of a ◦ product we refer

to the lifted quantities. The constraint is then defined as

φ(σ, ξ, h) ≡ Dr
Πr

√
W

+
i

h

[
Xm,

Pm√
W

]

◦
+

i

h
[ΨΓ−,Ψ]◦

= Dr
ΠrA

√
W

TA +
i

h

(
XmB ◦ PC

m√
W

− PB
m√
W

◦ XC
m

)
TBTC +

i

h
[ΨΓ−,Ψ]◦.

with

Dr
Πr

√
W

=
i

h

[
Gr,

Πr

√
W

]

◦
+

i

h

[
Ar,

Πr

√
W

]

◦

=
i

h

[
Gr,

ΠrA

√
W

]

◦
TA +

i

h

(
AB

r ◦ ΠrC

√
W

− ΠrB

√
W

◦ AC
r

)
TBTC .

We notice that the first two terms of the commutator
[
Xm,

Pm√
W

]

◦
= XmB PC

m√
W

fE
BCTE +

(
−i

h

2

){
XmB ,

PC
m√
W

}
dE

BCTE + O((hω)2) (4.13)

are the terms which we considered in the previous section as extensions of the algebraic

structure of the supermembrane in the Light Cone Gauge. The additional terms arising

from the noncommutative product, ensuring an associative product, are relevant in order

to close the constraint algebra. In fact using the trace properties discussed above it follows

[
Tr

∫ √
Wσ(λ(σ, ξ, h) ◦ φ(σ, ξ, h)), T r

∫ √
Wσ(ǫ(σ, ξ, h) ◦ φ(σ, ξ, h))

]

P.B

= Tr

∫ √
Wσ([λ, ǫ]◦ ◦ φ(σ, ξ.h)), (4.14)

φ ∈ Wabelian is a first class constraint generating a gauge transformation which is a defor-

mation of the original are preserving diffeomorphisms. In particular,

σ

[
−i

∫ √
W (λ ◦ φ),Xm

]

P.B

=
i

h
σ[λ,Xm]◦ =

1

2
{λ,Xm} + O((hω)2), (4.15)

where λ is the infinitesimal parameter of the area preserving diffeomorphisms, valued on

the generator T(0,0).

The projection of Ω in (4.12) has the expression [52]

σΩ = −ω + F + O(h2) (4.16)
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where

F =
1

2
er ∧ es

(
DrAs − DsAr +

i

h
{Ar, As}∗

)
, (4.17)

and ω = 1
2h

√
wǫabdσa ∧ dσb. O(h2) depend explicitly on the Riemann tensor of the sym-

plectic connection. Dr,Ds are the ones defined in section 2. The hamiltonian of the theory

for M multiple parallel M2-branes with U(N) gauge group is then

Tr

∫

Σ
H = Tr

∫

Σ

√
W

[
1

2

(
Pm

√
W

)2

+
1

2

(
Πr

√
W

)2

+
1

2h2
({Xr

h,Xm}∗ + {Ar,Xm}∗)2

+
1

4h2
{Xm,Xn}2

∗ +
1

2
ΩrsΩ

rs

− i

h
ΨΓ−Γr({Xr

h,Ψ}∗ + {Ar,Ψ}∗) −
i

h
ΨΓ−Γm{Xm,Ψ}∗

]
,

where the term {Xr
h,Xm}∗ + {Ar,Xm}∗ = δrsDsX

m + O(h) in the notation of section 2.

The hamiltonian is subject to the first class constraint

φ ≡
{

Xr
h,

Πr

√
W

}

∗
+

{
Ar,

Πr

√
W

}

∗
+

{
Xm,

Pm√
W

}

∗
− {ΨΓ−,Ψ}∗ = 0 (4.18)

The first terms in the star product expansion are

φ ≡ Dr
Πr

√
W

+

{
Xm,

Pm√
W

}
− {ΨΓ−,Ψ} + O(h) (4.19)

where {, }∗ has been normalized in a way to be a deformation of {, } the symplectic bracket

of the supermembrane in the L.C.G. The fields are now u(M) valued. The constraint is

a deformation of the u(M) Yang-Mills constraint. The terms O(h) involve the Riemann

tensor of the symplectic connection which itself depends on the symplectic two-form intro-

duced by the central charge. The O(h) terms are necessary in order to close the constraint

algebra. An explicit expression for the curvature in the abelian case was found in [52],

σΩ = − ω + F − h2

96

(
Rbcda

(
Dbb

DbcDbd

)
Am − 1

4
Rbbbc bdp

ǫpqDqAm

)
ǫbbbǫcbcǫdbdea ∧ em

− h2

96.8
RbcdaRbbbc bdm

ǫbbbǫcbcǫdbdea ∧ em + O(h3) . . . .

The terms involving the Riemann tensor of the symplectic connection are absent in

the Moyal product.

If we make manifest the dimensional dependence of the star-product we can realize that

the parameter [h] = n.AreaT 2 , n is the wrapping number. In fact, as it was introduced in

the definition of the noncommutative product, h has degree 2 while ξ has degree 1. Since ξ

has legth dimension 1 then h must have length dimension 2 in order to have a dimensionless

noncommutative product.
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The star-product is explicitly given by

i

h
{f, g}a

∗ =
i

h
f bgcfa

bc + {f b, gc}da
bc + O(h)

=
i

nAreaT 2

f bgcfa
bc + {f b, gc}da

bc + O(nAreaT 2)

where {f b, gc} = ǫrsDrf
bDsg

c. Dr was defined in section 2. The factor 1
h ensures that

this formalism is a nonabelian extension of the abelian MIM2-brane, since for the abelian

case fa
bc vanishes, da

bc = 1, and the algebra closes exactly with the ordinary symplectic

bracket corresponding to a single M2 action without further contributions.

The mass square operator may be written as:

− mass2 =

∫ (
1

2
dx̂r ∧ dx̂sǫrs

)
Tr

[
1

2

(
P√
W

)2

+
1

2

(
Π√
W

)2

+ (TArea2
T 2)(VB + VF ))

]

(4.20)

where VB and VF are the bosonic and fermionic potentials of the Hamiltonian. The scale

of the theory is then T.n.Area2
T . The measure of integration reduces to the dimensionless

1
2dx̂r ∧ dx̂sǫrs. The conjugate momenta have mass dimension +1, and the corresponding

configuration variable mass dimension −1. T has mass dimension +3. On the other hand,

by considering the contribution to Yang-Mills arising from the first term in the above

expansion of the star product and by taking canonical dimensions for the conjugate pairs

we get for the coupling constant

gY M =
1

T
1/2
M2 .n.AreaT 2

. (4.21)

It has dimension of mass1/2.

It represents the coupling constant of the first term in the star-product expansion.

We assume that the compactification radii is Ri ≫ lp but with the theory still defined at

high energies. For a fixed tension and winding number n, the only relevant contribution

in the star product at low energies is the U(M) commutator since the natural length is

much larger larger that the effective radii Reff = n1/2
√

R1R2. This is the decoupling limit

of the theory since the Yang Mills field strength becomes the coupling constant of the

theory and gravitational modes become decoupled. The gY M is very large in this phase

and the theory is in the IR phase. It corresponds to have a description of M multiple

MIM2-branes as point-like particles, representing M the number of supermembranes. As

we raise the energy the gY M coupling constant gets weaker and for energies high enough,

comparable with the natural scale of a MIM2-brane with an effective area of (n.AreaT 2),

the oscillation and vibrational modes containing the gauge but also gravity interactions

between the supermembranes are no longer negligible so the full star- expansion has to be

considered. All terms associated to the supermembrane symplectic structure of the star-

bracket contribute while the ordinary SYM contribution vanishes. The point-like particle

picture is no longer valid, and it is substituted for that of an extended (2 + 1)D object

and the gauge and gravity contributions are strongly coupled. One can define formally
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and effective physical coupling constant for the ordinary Fµν field strength which it would

correspond to Λ = M.gY M with M representing the number of supermembranes and then

one can try to obtain the ’t Hooft coupling expansion in the large M. In this picture however

one should take care on the limit. By keeping Λ fixed with M going to infinity, for a fixed

tension and a fixed compactification radii, one has to consider the wrapping number n also

going to infinity. But n.Area is the order parameter that would also go multiplied by M

in the expansion so one enters ”faster” in the strong correlated limit where the rest of the

terms of the star-product expansion cannot be neglected, moreover, from a physical point

of view n.areaT 2 is related to the size of the MIM2 as an extended object and it cannot be

larger than the present energy bounds we have, otherwise it would be in contradiction with

our point-particle description at low scales. In order to perform a more accurate analysis

one should be working with the nonabelian extension of the MIM2 for 4D noncompact,-it

will be considered elsewhere- however we believe that the qualitative arguments presented

here should remain valid also in that case.

5 N = 8 LCG supersymmetry

In order to analyze the invariance of the MIM2 action under supersymmetry it is convenient

to introduce,

Dr· = [X̃r, ·]∗ + [Ar, ·]∗
Dm· = [Xm, ·]∗
D0· = ∂τ · +[A0, ·]∗

where A0 is the lagrange multiplier associated to the first class constraint and X̃r = Xs
hδrs

with r = 1, 2. We will denote Am = Xm. We then introduce the index µ = 0, r,m. The

Dµ satisfy the Leibniz rules

DµF ◦ G = DµF ◦ G + F ◦ DµG

Dµ[F,G]◦ = [DµF,G]◦ + [F,DµG]◦

We also consider the curvatures

Ωrs = [X̃r, As]∗ − [X̃s, Ar]∗ + [Ar, As]∗ + [X̃r, X̃s]∗

Ωrm = DrXm

Ωmn = [Xm,Xn]∗

Ω0r = Ȧr − [X̃r, A0]∗ + [A0, Ar]∗

Ω0m = D0Xm.

Ωµν satisfy the Bianchi identities

DµΩνλ + DλΩµν + DνΩλµ = 0 (5.1)

These relations are valid provided for any associative product. We are considering Ar,Xm

valued in the enveloping algebra of U(N) in terms of the Weyl-Heisenberg generators TA
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of section 3, ◦ is the noncommutative associative Weyl product. The tensor product is still

an associative product and the property (5.1) is satisfied identically in our construction.

The lagrangian of the theory after integration of the momenta Pm,Πr maybe expressed as

L = −1

4
Ωµν ∗ Ωµν − Ψ ∗ Γ−ΓMDMΨ − Ψ ∗ Γ−D0Ψ (5.2)

where M = r,m. The light cone fermionic gauge condition we use is

Γ+Ψ = 0. (5.3)

The associated action is invariant under the following supersymmetric transformations with

parameter ǫ = Γ−Γ+ǫ

δAM = δAB
MTB = ǫΓMΨBTB M = r,m

δA0 = δAB
0 TB = −ǫΨBTB

δΨ = δΨBTB =
1

4
Γ+ΩB

MNΓMNǫTB +
1

2
Γ+ΩB

0MΓM ǫTB

These transformations are a U(N) extension of the SUSY transformations for the su-

permembrane in the LCG found in [41, 60] and they realize N = 8 supersymmetries

on the worldvolume. The invariance of the action arises in a similar way as it does for

Super Yang-Mills:

Tr〈δ
(
−1

4
Ωµ ∗ Ωµν

)
〉 = Tr〈δAν ∗ DµΩµν〉

= Tr〈2Ψ ∗ Γ−ΓMDMδΨ + 2Ψ ∗ Γ−D0δΨ〉

and

Tr〈Ψ ∗ Γ−ΓM (δDM )Ψ〉 = 0, (5.4)

where 〈·〉 denotes integration and Bianchi identities as well as eleven dimensional identities

for the Γ matrix have been used.

6 Discussion and conclusions

6.1 Main results

We have obtained a N = 8 nonabelian U(M) formulation of the minimally immersed super-

membrane for arbitrary number of colors M with all the symmetries of the supermembrane,

in the LCG. This corresponds to the M-theory dual of the nonabelian Dirac-Born-Infeld

theory, representing a bundle of D2-D0 branes. It is the first time that a nonabelian

gauge theory can be directly obtained from a full-fledged sector of M-theory element, so

far restricted to String theory: Heterotics and Dp-branes in type II theories. This opens

a new interesting window for models in phenomenology. At energies of the order of the

compactification scale, the theory has the gauge and gravity sector strongly coupled. It
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describes all of the oscillations modes of the multiple parallel M2-branes minimally im-

mersed. At low energies the theory enters in a decoupling regime and the physics is then

described by a N = 8 SYM theory of point-like particles in the IR phase. We then ex-

pect to describe correctly many aspects of phenomenology when realistic gauge groups are

considered. From the point of view of the target space the theory has N=1 susy in 9D

flat-dimensions. In [5] a N=1 target space, D=4 formulation of a single supermembrane

minimally immersed together with a number of interesting phenomenological properties

were found. Moreover in [7] a formulation of the supermembrane minimally immersed on

a G2 manifold was also obtained. Its quantum supersymmetric spectrum is also purely

discrete. The analysis in 4D can be also extended to the nonabelian case following the

lines shown in this paper, allowing to obtain models with reduced number of target and

worldvolume supersymmetries.

6.2 The case of M2 without central charge condition

We could expect to apply the mechanism we have implemented to the supermembrane

without central charges on flat space M11. However this is not possible. In fact the

nonabelian formulation of multiple parallel MIM2 has a constraint (6.1) of the Gauss type

allowing the elimination of the gauge degrees of freedom a la Yang-Mills. This constraint

also generates, when the parameter is valued on the T(0,0) generator, a deformation of an

area preserving diffeomorphims. For a single MIM2 the U(1) Gauss constraint and area

preserving diffeomorphism constraint are the same,

φ ≡
{

X̂r,
Πr

√
W

}

∗
+

{
Ar,

Πr

√
W

}

∗
+

{
Xm,

Πr

√
W

}

∗
− {ΨΓ−,Ψ}∗ = 0. (6.1)

This does not happen for the 11D supermembrane where the constraint is of the form

{Xm, Pm}∗ + fermions = 0. (6.2)

In (6.1), where a linear term is present, it is possible to eliminate exactly one degree

of freedom (with internal index) but in (6.2) the gauge degrees of freedom cannot be

eliminated correctly, unless an additional assumption is made. It is not possible to impose

the static gauge for the supermembrane on compact base manifold [6]. It would imply

automatically the vanishing of string-like spikes that are present in the formulation, and

the spectrum of the hamiltonian would not be continuous.

6.3 General properties of our construction

• Our action starts from the formulation of the supermembrane with a topological

condition and extends it to include nonabelian U(N) interactions while preserving

all of the symmetries and constraints of the theory. This means that we work at high

energies where gauge fields and supergravity contribution are strongly correlated.

The analysis is then valid for any number of M2-branes large or small.

• We are mainly interested in characterizing the M2-branes interactions by themselves.

The theory is not scale invariant so there is no a sextic scalar potential in the action,

it remains quartic in the fields although now, valued on a U(N) algebra.
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• The single MIM2 action contains a gauge field invariant under symplectomorphisms

defined on the (2+1)D worldvolume action of the supermembrane. The first class con-

straint generating the symplectomorphisms is analogous to the Gauss constraint of

SYM theory. It is this property which allows the U(N) formulation without changing

the number of degrees of freedom. In the low energy description of the 11D super-

membrane the situation is different since it only contains scalar fields in the bosonic

sector. For that case, in order to introduce a gauge field without changing the degrees

of freedom a Chern-Simons type extension is needed.

• We are describing a supersymmetric theory of the multiple M2-branes (2+1)D (with

gauge and gravity sector coupled) strongly coupled immersed in a M9xT 2 target

space with N=1 supersymmetry. Quantum corrections are relevant in this case and its

spectral properties are controlled by the bosonic sector. The abelian MIM2 has a well-

defined supersymmetric quantum formulation in terms of a Feynman path integral.

We have argued that this property remains valid in the nonabelian regularized version

with the ordinary product.

• We may perform a matrix regularization of the proposed action of multiple M2-branes

minimally immersed in the compactified space. We are able to do it since the central

charge condition allow a proper treatment of the harmonic forms present on actions

formulated on compactified spaces [44].

• Our approach is not covariant. It is a LCG formulation. However, remarkably, the

bosonic sector of the theory corresponds to a non-standard reduction of SYM with

the star- product defined in section 5, from 10D to (2 + 1)D. This is so, because the

light cone coordinates decouple in our sector of the theory, since we are able to solve

completely the constraint for X− once the gauge fixing condition has been imposed.

The global constraint (2.3) guarantee that there is no winding condition on X−. The

LCG supersymmetric algebra has 8 generators, it is related to the one found in [41]

for the 11D abelian supermembrane.

6.4 Nonconstant star-product

We would like to emphasize that our approach is not related to a noncommutative Seiberg-

Witten (SW) limit of String theory. In order to close the algebra of constrains while

keeping the invariance of the action, we introduced a Fedosov star-product. It is not

related to the constant B-field of SW. In fact the SW formulation is a local description, by

Darboux theorem of the Fedosov star-product. Although our construction is based on a

compactification on a 2-torus it does not correspond to the theory on the noncommutative

torus done in [61]. For the abelian formulation of the MIM2 we do not need to introduce an

star-product since the constraint closes at first order. In the nonabelian case the constraint

still closes at first order iff the number of colors go to infinite or iff we restrict our analysis

to a regularized case for an arbitrary number of colors. At exact level formulation (not

regularized) of the MIM2’s with an arbitrary number of colors we need to introduce a

Fedosov the star-product to close the algebra. This gives a precise indication on how U(N)
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gauge group is compatible with area preserving diffeomorphisms. The particular case of

SU(2) corresponds to the case where the symplectic structure vanishes and it corresponds

to a ordinary-type of SYM description. It would be nice to see the connection, if any,

between our results and the fact that for low energy descriptions of M2-branes only N = 8

models has been only found for SU(2)×SU(2) [11, 20] gauge group or infinite gauge group

representing a condensate of M2-branes [49], meanwhile the low energy formulation of a

multiple M2 inspired action with an arbitrary number of colors U(N) × U(N) has only

been found for less number of supersymmetries N = 6 [22].
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[57] B. Jurčo, L. Möller, S. Schraml, P. Schupp and J. Wess, Construction of non-Abelian gauge

theories on noncommutative spaces, Eur. Phys. J. C 21 (2001) 383 [hep-th/0104153]

[SPIRES].

[58] M. Wohlgenannt, Introduction to a non-commutative version of the standard model,

hep-th/0302070 [SPIRES].

[59] N. Seiberg and E. Witten, String theory and noncommutative geometry,

JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].

[60] E. Bergshoeff, E. Sezgin and P.K. Townsend, Properties of the Eleven-Dimensional Super

Membrane Theory, Ann. Phys. 185 (1988) 330 [SPIRES].

[61] A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory:

compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [SPIRES].

– 26 –

http://dx.doi.org/10.1088/0264-9381/25/24/245003
http://arxiv.org/abs/0806.4777
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.4777
http://dx.doi.org/10.1088/1126-6708/2008/06/105
http://arxiv.org/abs/0804.3629
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.3629
http://dx.doi.org/10.1016/S0550-3213(01)00566-1
http://arxiv.org/abs/hep-th/0108046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0108046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JDGEA,40,213
http://dx.doi.org/10.1023/B:MATH.0000027508.00421.bf
http://arxiv.org/abs/q-alg/9709040
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=Q-ALG/9709040
http://dx.doi.org/10.1016/S0550-3213(01)00191-2
http://arxiv.org/abs/hep-th/0102129
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0102129
http://dx.doi.org/10.1007/s100520100731
http://arxiv.org/abs/hep-th/0104153
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104153
http://arxiv.org/abs/hep-th/0302070
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0302070
http://dx.doi.org/10.1088/1126-6708/1999/09/032
http://arxiv.org/abs/hep-th/9908142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9908142
http://dx.doi.org/10.1016/0003-4916(88)90050-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA,185,330
http://dx.doi.org/10.1088/1126-6708/1998/02/003
http://arxiv.org/abs/hep-th/9711162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9711162

	Introduction
	D = 11 supermembrane with central  charges on a M(9) x T*2 target manifold
	Quantum supersymmetric analysis of a single MIM2

	Lessons from naive non-abelian extensions of the MIM2: some interesting limits
	Some interesting limits

	The multiple MIM2's action with arbitrary number of colors: a generalized star-product
	N = 8 LCG supersymmetry
	Discussion and conclusions
	Main results
	The case of M2 without central charge condition
	General properties of our construction
	Nonconstant star-product


		2010-06-04T13:55:58+0200
	Preflight Ticket Signature




