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Abstract. Multilabel was introduced as an extension of multi-class clas-
sification to cope with complex learning tasks in different application
fields as text categorization, video o music tagging or bio-medical label-
ing of gene functions or diseases. The aim is to predict a set of classes
(called labels in this context) instead of a single one. In this paper we
deal with the problem of feature selection in multilabel classification.
We use a graphical model to represent the relationships among labels
and features. The topology of the graph can be characterized in terms
of relevance in the sense used in feature selection tasks. In this frame-
work, we compare two strategies implemented with different multilabel
learners. The strategy that considers simultaneously the set of all labels
outperforms the method that considers each label separately.

1 Introduction

Many complex classification tasks share that each instance can be assigned with
more than one class or label instead of a single one. These tasks are called multil-
abel to emphasize the multiplicity of labels. This is the case of text categorization
where items have to be tagged for future retrieval; frequently, news or other kind
of documents should be annotated with more than one label according to differ-
ent points of view. Other application fields include semantic annotation of images
and video, functional genomics, music categorization into emotions and directed
marketing. Tsoumakas et al. in [11, 12] have made a detailed presentation of
multilabel classification and their applications.

From a computational perspective, the aim of multilabel classification is to
obtain simultaneously a collection of binary classifications; the positive classes
are referred to as labels, the so-called relevant labels of the instances. A number of
strategies to tackle multilabel classification tasks have been published. Basically,
they can be divided in two groups [11, 12].

Strategies in the first group try to transform the learning tasks into a set
of single-label (binary or multiclass) classification tasks. Binary Relevance (BR)
is the most simple, but very effective, transformation strategy. Each label is
classified as relevant or irrelevant without any relation with the other labels.

On the other hand, proper multilabel strategies try to take advantage of cor-
relation or interdependence between labels. The presence or absence of a label



in the set assigned to an instance may be conditioned not only by the feature
values of the instance, but also by the values of the remaining labels.

Feature selection is an important issue in machine learning in general. In
multilabel, accordingly to [12], most feature selection tasks have been addressed
by extending the techniques available for single-label classification using the
bridge provided by multilabel transformations. Thus, when the BR strategy is
used, it is straightforward to employ a feature subset selection on each binary
classification task, and then combining somehow the results [16]. In [10], the
authors present a feature selection strategy based on the transformation called
label powerset.

Kong et al. [6] presented a multilabel selection method in the special case
where instances are graphs so that the selection has to find subgraphs. Finally,
in [18] feature selection is performed using a combination of principal component
analysis with a genetic algorithm.

We propose to extend a well known filter devised for multiclass classification
tasks, FCBF (Fast Correlation-Based Filter) [17]. This filter computes the rela-
tion between features and the target class using a non-linear correlation measure,
the Symmetrical Uncertainty (SU). For this reason we have to assume that all
feature values are discrete.

The core idea of the method proposed here is to represent the relationships
between the variables involved (features and labels) in a multilabel classification
task by means of a graph computed in two stages. First, we build the matrix of
SU scores for all pairs of variables. Then, we compute the spanning tree of the
complete undirected graph where the nodes are the variables, and the edges are
weighted by SU scores.

Clearly, the inspiration underlying this apporach is rooted in seminal papers
such as [2]; in this case a spanning tree was used to factorize a probability
distribution from a Bayesian point of view. In [14], this kind of graphs were used
for multi-dimensional classifications. Our approach, however, is not based on
Bayesian networks. We prove that the spanning tree links can be characterized
in terms of relevance (in the sense of feature selection) and redundance of features
and labels.

The paper is organized as follows. In the next section we present the formal
framework for multilabel classification including the definition of scores and loss
functions devised to measure the performance of classifiers. Then we present the
graphical model that relates features and labels. The fourth section is devoted to
report and discuss a number of experiments carried out to evaluate the proposals
of the paper. The last section summarizes some conclusions about the work
presented here.

2 Formal Framework for Multilabel Classification

A formal presentation of a multilabel classification learning task can be given as
follows. Let L be a finite and non-empty set of labels {l1, . . . , l|L|}, and let X be



an input space. A multilabel classification task can be represented by a dataset

D = {(x1, Y1), . . . , (x|D|, Y|D|)} (1)

of pairs of instances xi ∈ X and subsets of labels Yi ⊂ L. The goal is to induce
from D a hypothesis defined as follows.

Definition 1. A multilabel hypothesis is a function h from the input space to
the set of subsets (power set) of labels P(L); in symbols,

h : X −→P(L) = {0, 1}L. (2)

Given a multilabel classification task D, there is a straightforward approach
to induce a multilabel hypothesis from a dataset D, the so-called Binary Rele-
vance strategy. For each l ∈ L, this approach induces a binary hypothesis

hl : X −→ {0, 1}, (3)

and then its predictions are defined as

h(x) = {l : hl(x) = 1}.

In any case, the prediction h(x) of a multilabel hypothesis can be understood
as the set of relevant labels retrieved for a query x. Thus, multilabel classifica-
tion can be seen as a kind of Information Retrieval task for each instance; in this
case the labels play the role of documents. Performance in Information Retrieval
is compared using different measures in order to consider different perspectives.
The most frequently used measures are Recall (proportion of all relevant doc-
uments (labels) that are found by a search) and Precision (proportion of re-
trieved documents (labels) that are relevant). The harmonic average of the two
amounts is used to capture the goodness of a hypothesis in a single measure. In
the weighted case, the measure is called Fβ . The idea is to measure a tradeoff
between Recall and Precision.

For further reference, let us recall the formal definitions of these measures.
Thus, for a prediction of a multilabel hypothesis h(x), and a subset of truly
relevant labels Y ⊂ L, we can compute the following contingency matrix,

Y L \ Y
h(x) a b

L \ h(x) c d
(4)

in which each entry (a, b, c, d) is the number of labels of the intersection of the
corresponding sets of the row and column. Notice for instance, that a is the
number of relevant labels in Y predicted by h for x.

According to the matrix, (Eq. 4), we thus have the following definitions.

Definition 2. The Recall in a query (i.e. an instance x) is defined as the pro-
portion of relevant labels Y included in h(x):

R(h(x), Y ) =
a

a+ c
=
|h(x) ∩ Y |
|Y |

. (5)



Definition 3. The Precision is defined as the proportion of retrieved labels in
h(x) that are relevant Y :

P (h(x), Y ) =
a

a+ b
=
|h(x) ∩ Y |
|h(x)|

. (6)

Finally, the tradeoff is formalized by

Definition 4. The Fβ is defined, in general, by

Fβ(h(x), Y ) =
(1 + β2)PR

β2P +R
=

(1 + β2)a

(1 + β2)a+ b+ β2c
. (7)

The most frequently used F-measure is F1. For ease of reference, let us state the
formula of F1 for a multilabel classifier h and a pair (x, Y ):

F1(h(x), Y ) =
2|h(x) ∩ Y |
|Y |+ |h(x)|

. (8)

These measures are not proper loss functions in the sense that high scores
mean good performance. Thus, for instance, to obtain a loss function from Fβ
scores it is necessary to compute the complementary (1−Fβ). In any case, when
we try to optimize Fβ , we mean to improve the performance according to this
measure; that is, to maximize Fβ or to minimize 1− Fβ .

So far, we have presented functions able to evaluate the performance of a
hypothesis on one instance x. To extend these functions to a test set, we shall
use the so-called microaverage extension of these score functions. For further
reference, let

D′ =
{

(xi, Yi) : i = 1, . . . , |D′|
}

be a multilabel dataset used for testing. Moreover, for ease of reading, we have
expressed the microaverage of F1 as percentages in the experiments reported at
the end of the paper. Thus, the formulas for a hypothesis h are the following:

F1(h,D′) =
100

|D′|

|D′|∑
i=1

2|h(x′
i) ∩ Y ′

i |
|Y ′
i |+ |h(x′

i)|
. (9)

Additionally, to avoid cumbersome notation, we have overloaded the meaning of
the symbol F1 for the microaverage extensions.

3 Modeling the Relationships of Labels and Attributes

In this section we introduce a graphical representation of the relevance rela-
tionship between labels and the attributes or features used to describe input
instances; in this paper we shall use attribute and feature as synonyms. To make
a formal presentation, throughout this section, let D be a multilabel classification
task (Eq. 1) with instances x ∈ X , and labels in L.



If X can be represented by vectors of dimension |X |, D can be seeing as a
matrix M given by

M = [X L] (10)

where X and L are matrices with |D| rows (one for each training example), and
|X | and |L| columns respectively. The first matrix, X, collects the input instance
descriptions; while columns represent attributes (or features). As we said in the
Introduction, we assume that the entries of matrix X are discrete values. On the
other hand, the matrix L has Boolean values: L[i, j] = 1 if and only if the i-th
example of D has the label lj ∈ L.

In this paper we extend the filter FCBF (Fast Correlation-Based Filter) in-
troduced in [17] to multilabel classification tasks. Since this filter was devised
for dealing with multiclass classification tasks, we need to involve the whole set
of labels. From a formal point of view, FCBF deals with a matrix X and just
one column of matrix L. Thus, we are going to review the selection method of
FCBF using the matrix M that collects all labels at the same time.

Given a single class and a collection of predictive attributes or features,
the filter FCBF proceeds in two steps: relevance and redundancy analysis, in
this order. For both steps the filter uses the so-called symmetrical uncertainty, a
normalized version of the mutual information. Let us now rewrite the formulation
of this measure applied to the columns of the matrix M. It is based on a nonlinear
correlation, the entropy, a measure of the uncertainty that is defined for a column
mj of the matrix as follows

H(mj) = −
|D|∑
i=1

Pr(mi
j) log2(Pr(mi

j)). (11)

Additionally, the entropy of a column mj after observing the values of another
column mk is defined as

H(mj |mk) = −
|D|∑
r=1

Pr(mr
k)

|D|∑
s=1

Pr(ms
j |mr

k) log2(Pr(ms
j |mr

k)), (12)

where Pr(mr
k) denotes the prior probabilities for all possible values of column

mk; and Pr(ms
j |mr

k) denotes the posterior probabilities of mj .
In a similar way, it is possible to define H(mj ,mk) using in (Eq. 11) the joint

probability distribution.
The information gain (IG) of mj given mk, also known as the Kullback-

Leibler divergence, is defined as the difference between the prior and posterior
entropy to the observed values of mj . In symbols,

IG(mj |mk) = H(mj)−H(mj |mk) = H(mj) +H(mk)−H(mj ,mk). (13)

The information gain is a symmetrical measure. To ensure a range of values in
[0, 1], FCBF uses a normalized version, the symmetrical uncertainty (SU) defined
as follows

SU(mj ,mk) = 2

[
IG(mj |mk)

H(mj) +H(mk)

]
= 2

[
1− H(mj ,mk)

H(mj) +H(mk)

]
. (14)



To return the list of relevant variables for a single variable, FCBF first re-
moves those attributes whose SU is lower or equal than a given threshold. Then,
FCBF orders the remaining attributes in descending order of their SU with the
class, and applies an iterative process to eliminate redundancy. This process is
based on approximate Markov blankets; in the multilabel context, this concept
can be formulated as follows.

Definition 5. (Approximate Markov Blanket) Given three different columns m,
mi and mj in M, mj forms an approximate Markov blanket for mi if and only
if

SU(mj ,m) ≥ SU(mi,m) ∧ SU(mi,mj) ≥ SU(mi,m). (15)

Notice that the aim of this definition in [17] is to mark the feature mi as
redundant with mj when the goal is to predict the values of m. To avoid tie situ-
ations that would require random choices, we exclude the equalities of (Eq. 15).
In other words, we assume that all SU values are different. Hence, for further
reference, we make the following definitions.

Definition 6. (Redundancy) The column mi is redundant with mj for predicting
m if and only if

SU(mj ,m) > SU(mi,m) ∧ SU(mi,mj) > SU(mi,m). (16)

Once we have reviewed the core of FCBF, to extend it to multilabel classifi-
cation tasks, we start computing the Symmetrical Uncertainty (SU) for all pairs
of columns of matrix M.

Definition 7. (Symmetrical Uncertainty Matrix) Given a multilabel classifica-
tion task D, with labels in L, the SU matrix is formed by the symmetrical un-
certainty of all columns of M (Eq. 10),

SU = [SU(m,m′) : m,m′ ∈ columns].

This matrix represents a weighted undirected graph in which the set of vertices
is the set of columns; that is, the set of attributes of X and labels in L. To order
this graph, we now compute the spanning tree with maximum SU values.

Definition 8. (Maximum Spanning Tree) MST is the maximum spanning tree
of the SU matrix.

Figure 1 shows one MST for an hypothetical dataset. Our aim now is to
explain the meaning of this tree in terms of relevance of the attributes and
labels. The general idea is to compare the topology of the MST with the results
of applying the filter FCBF considering each column as the category and the
others as predictors.

To compute the MST we may use, for instance, Kruskal’s algorithm [7]. The
edges are ordered from the highest to the lowest SU values. Then, starting from
an empty MST, the algorithm iteratively adds one edge to the MST at each
step, provided that it does not form a cycle in the tree. We shall see that this
basic building step can be interpreted in terms of redundancy. First, however,
we state some propositions to establish the ideas presented here.
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Fig. 1. Maximum Spanning Tree of an hypothetical multilabel task, see definition 8.
Nodes marked with l stand for labels. Nodes with an Xi represent attributes: X1 are
the attributes at distance 1 from labels, and X2 are attributes at distance 2

Proposition 1. If m and m′ are two adjacent nodes in the MST defined in
(Def. 8), then m′ is relevant for m using the filter FCBF.

Proof. If we assume that there is another label m′′ that removes m′ from the list
of relevant nodes for m, then m′ will be redundant with m′′ for m. In symbols,

SU(m′′,m) > SU(m′,m) ∧ SU(m′′,m′) > SU(m′,m). (17)

In this case, however, the link between m and m′ could not be included in the
MST. Therefore, there cannot exist such a node m′′, and so m′ is relevant for m
according to the filter FCBF.

Proposition 2. If m is adjacent to m′, and this label is adjacent to m′′ (m′′ 6=
m) in the MST, then m′′ is redundant with m′ for m.

Proof. Consider the triangle of vertices m,m′,m′′ in the complete graph repre-
sented by the SU matrix (Def. 7). Since the edge m−m′′ is not included in the
MST, we have that

SU(m′,m) > SU(m′′,m) ∧ SU(m′′,m′) > SU(m′′,m).

Thus, m′′ is redundant with m′ for m according to (Def. 6).

The conclusion is that, given a column m in M, its adjacent labels in the
MST are relevant for it. Moreover, if m,m′,m′′ is a path in the MST, m′′ is
relevant for m′, which is in turn relevant for m. Hence, m′′ is redundant with m′

for m. However, sometimes redundant information helps classifiers to increase
their performance, thus we may heuristically select some redundant items in
order to achieve better performance. In our case, this heuristic is implemented
fixing in the graph the distance to targets from predictors; this distance will be
called level of proximity.



3.1 Multilabel Ranker

Taking into account the previous results, in order to select a subset of features
to predict the labels, given a dataset D, we can fix a level of proximity k, and
then our proposal is the following:

– Compute the Symmetrical Uncertainty Matrix SU of attributes and labels.
– Compute the Maximum Spanning Tree (MST).
– Select the attribute nodes whose distance to any label is smaller than or

equal to k, see Figure 1.

Notice that this method produces a ranking of features; thus, we call it Mul-
tilabel Feature Ranker (MLfR). In fact, increasing the level of proximity (k) we
obtain a sequel of features in decreasing order of usefulness to predict a set of
labels. However, the features are returned in chunks (in quanta) instead of one
by one. In general, there are more than one feature at a given distance from the
set of labels.

4 Experimental Results

In this section we report a number of experiments conducted to test the multil-
abel feature ranker MLfR in two and complementary dimensions: the classifica-
tion performance and the quality of the ranking.

First we check the capacity of MLfR to optimize a performance score like F1

(Eq. 9). For this purpose, with each training data we built the MST (Def. 8)
and then we selected the best k (Section 3.1) using an internal (in the training
set) 2-fold cross validation repeated 5 times [4]. The range of k values included
{1, 2, . . . , 20} and k50, k75 and k100, where kt is the smallest k value that ensures
that the t% of all features are selected. Since the aim was to compare strategies
for feature selection, the number of discretization bins were constant in all cases.

To obtain a multilabel learner with this selection scheme we used two state
of the art multilabel base learners. The first one is IBLR-ML [1]. We used the
implementation provided by the authors in the library Mulan [13, 12], which is
built on the top of Weka [15]. We wrote an interface with MatLab. The second
base learner used was the Ensemble of Classifier Chains (ECC) [9] in the version
described in [3]; for this reason we called it ECC*. The implementation was made
in MatLab using the BR built with LibLinear [8, 5] with the default parameters:
a logistic regression learner with regularization parameter C = 1.

On the other hand, to test the quality of the ranking of features produced by
MLfR, we computed the number of features selected by the first chunk (k = 1)
and the F1 achieved with those features. To summarize in one number the quality
of the first chunk of the ranking, we computed the contribution of each feature
to the F1 as follows,

contribution =
F1(K = 1)

#features(K = 1)
. (18)



To compare the results obtained by MLfR, we computed the F1 scores achieved
by the base learners without performing any selection at all. Additionally, to
compare the quality of the rankings we wanted to contrast the multilabel rank-
ing with a purely binary ranker; that is, a ranker that considers labels one by
one. To make a fair comparison we implemented a binary relevance version of
MLfR as follows. For each label l ∈ L, we computed MLfR considering only that
label. The set of features at distance k from l obtained in this way, MLfRl(k),
were joined together for all labels to get a chunk of level k in the so-called Binary
Relevance Feature Ranker (BRfR).

BRfR(k) =
⋃
l∈L

MLfRl(k) (19)

The comparison presented here was carried out using 8 datasets previously
used in experiments reported in other papers about multilabel classification.
Table 1 shows a summarized description of these datasets including references
to their sources. Attributes with continuous values have been discretized in 10
bins using a same frequency procedure. The comparison was performed using a
simple hold-out method. We used the split of datasets in training and testing
sets provided by the sources of the data, when available. The size of the splits are
also shown in Table 1. Other details about the datasets, included preprocessing,
can be found following the references provided in the table.

Table 1. The datasets used in the experiments, associated statistics, and references to
the sources of the data

#Instances
train test total #fea. |L| Cardinality Source

enron 1123 579 1702 1001 53 3.38 [13]
genbase 463 199 662 1185 27 1.25 [13]
medical 333 645 978 1449 45 1.25 [13]
slashdot 2500 1282 3782 1079 22 1.18 [9]
emotions 391 202 593 72 6 1.87 [13]
reuters 5000 2119 7119 243 7 1.24 [1, 19, 20]
scene 1211 1196 2407 294 6 1.07 [13]
yeast 1500 917 2417 103 14 4.24 [13]

The scores achieved in F1 by the classifiers compared are shown in Table 2.
To make statistical comparisons we considered together the scores obtained with
all base learners, since the objective was to compare different selection strategies
and not base learner scores.

Thus, we observe that although the scores obtained by selectors are higher
in average than those achieved without any selection, the differences are not
significant using a paired, two-sided, Wilcoxon signed rank test. Also, there are
no significant differences between the scores obtained with the two selection
approaches. On the other hand, both selectors reduce considerably the number



Table 2. Number of features and F1 scores achieved in test data when the aim in grid
search (for selectors) was to optimize F1

Base MLfR BRfR
dataset #fea. F1 #fea. F1 #fea. F1

IBLR-ML enron 1001 41.78 26 49.79 49 48.25
genbase 1186 99.00 46 99.15 40 98.31
medical 1449 47.33 88 68.24 85 70.41
slashdot 1079 15.80 46 26.04 48 26.27
emotions 72 64.41 72 64.41 72 64.41
reuters 243 74.38 189 74.78 151 76.78
scene 294 70.29 294 70.29 294 70.29
yeast 103 61.72 103 61.72 103 61.72

ECC* enron 1001 53.49 920 52.82 1001 53.49
genbase 1186 99.41 68 98.31 65 98.31
medical 1449 61.62 88 69.81 85 69.14
slashdot 1079 37.54 1079 37.54 1079 37.54
emotions 72 60.59 38 60.10 37 59.37
reuters 243 76.87 207 78.02 204 78.07
scene 294 56.29 294 56.29 294 56.29
yeast 103 59.51 30 58.02 38 59.03

Table 3. F1 and number of features selected in the first chunk (k = 1) for MLfR and
BRfR. The scores achieved when no selection is performed is included for comparison.
Additionally, for each ranker we computed the contribution of each feature to the F1

score (see Eq. 18)

Base MLfR BRfR
dataset #fea. F1 #fea. F1 contri. #fea. F1 contri.

IBLR-ML enron 1001 41.78 26 49.79 1.92 49 48.25 0.98
genbase 1186 99.00 46 99.41 2.16 40 99.15 2.48
medical 1449 47.33 88 68.24 0.78 85 70.41 0.83
slashdot 1079 15.80 46 26.04 0.57 48 26.27 0.55
emotions 72 64.41 1 33.04 33.04 5 52.44 10.49
reuters 243 74.38 44 74.13 1.68 45 73.93 1.64
scene 294 70.29 3 24.58 8.19 6 38.35 6.39
yeast 103 61.72 2 51.58 25.79 9 54.65 6.07

ECC* enron 1001 53.49 26 42.58 1.64 49 51.77 1.06
genbase 1186 99.41 46 97.81 2.13 40 98.31 2.46
medical 1449 61.62 88 69.81 0.79 85 69.14 0.81
slashdot 1079 37.54 46 25.72 0.56 48 25.40 0.53
emotions 72 60.59 1 36.42 36.42 5 49.97 9.99
reuters 243 76.87 44 74.95 1.70 45 74.91 1.66
scene 294 56.29 3 13.85 4.62 6 25.98 4.33
yeast 103 59.51 2 54.33 27.16 9 56.57 6.29



of features used for classification. The differences are not significant between
selectors.

It could be expected important reductions of the number of features and the
error rates for high dimensional problems such as Enron or Slashdot. But the
scores shown in Table 2 for ECC* report null or insignificant reductions; the
reason can be found in the poor quality of the classifiers, both datasets provide
the smallest F1 scores for this learner.

The statistically significant differences appear when we check the quality of
the first chunk. Thus, the contribution of each of the features obtained with
MLfR for k = 1 is significantly higher than that of the features returned by
BRfR in the same conditions. In this sense we conclude that the ranking learned
from a multilabel point of view is better than the ranking obtained considering
each label separately.

5 Conclusions

We have presented an algorithm to learn a ranking of the features involved in a
multilabel classification task. It is an extension of the FCBF (Fast Correlation-
Based Filter) [17], and it uses a graphical representation of features and labels.
The method so obtained, MLfR (multilabel feature ranker), was compared with
a version that considers each label separately, in the same way as BR (Binary
Relevance) learns a multilabel classifier. We experimentally tested that the mul-
tilabel version achieves significantly better results than the BR release when
testing the quality of the rankings.

Moreover, the graph built by MLfR provides a valuable representation of the
correlation and interdependence between labels and features. We proved formally
that the topology of the graph can be read in terms of relevancy and redundance
of the features and labels.
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