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Abstract

In hierarchical classification, classes are arranged in a hierarchy represented by a tree
or a forest, and each example is labeled with a set of classes located on paths from
roots to leaves or internal nodes. In other words, both multiple and partial paths are
allowed. A straightforward approach to learn a hierarchical classifier, usually used
as a baseline method, consists in learning one binary classifier for each node of the
hierarchy; the hierarchical classifier is then obtained using a top-down evaluation
procedure. The main drawback of this näıve approach is that these binary classifiers
are constructed independently, when it is clear that there are dependencies between
them that are motivated by the hierarchy and the evaluation procedure employed. In
this paper, we present a new decomposition method in which each node classifier is
built taking into account other classifiers, its descendants, and the loss function used
to measure the goodness of hierarchical classifiers. Following a bottom-up learning
strategy, the idea is to optimize the loss function at every subtree assuming that
all classifiers are known except the one at the root. Experimental results show that
the proposed approach has accuracies comparable to state-of-the-art hierarchical
algorithms and is better than the näıve baseline method described above. Moreover,
the benefits of our proposal include the possibility of parallel implementations, as
well as the use of all available well-known techniques to tune binary classification
SVMs.
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1 Introduction

Many real-world domains require automatic systems to organize objects into
known taxonomies. For instance, a news website, or a news service in general,
needs to classify the latest articles into sections and subsections of the site
[1–6]. This learning task is usually called hierarchical classification. Although
most of its applications deal with textual information, there are other fields in
which hierarchical classification can be useful. The authors of [7,8] described
an algorithm to classify speech data into a hierarchy of phonemes. A system
was presented in [9] in which a robot can infer the similarity between different
tools using a learned taxonomy. Another interesting task is related to biological
terms: the Gene Ontology [10] is a controlled vocabulary used to represent
molecular biology concepts and is the standard for annotating genes/proteins.
This task has recently been addressed using hierarchical classification [11,12].

Hierarchical classification differs from multiclass learning in that: i) the whole
set of classes has a hierarchical structure usually defined by a tree, and ii) each
object must be labeled with a set of classes consistent with the hierarchy: if
an object belongs to a class, then it must belong to any of its ancestors. In
multi-label learning tasks, see for instance [13,14], training examples belong
to a subset of labels too, but the output space does not necessarily have any
hierarchical structure.

The aim of hierarchical classification algorithms is to learn a model that can
accurately predict a set of classes; notice that these subsets of classes generally
have more than one element and are endowed with a subtree structure. In
the more general case, see Figure 1, these subtrees may have more than one
branch (we then say that there are multipaths in the labels) and subtrees may
not end on a leaf (i.e. they include partial paths). In this paper we will present
a learning algorithm for hierarchical classification able to deal with multiple
and partial paths.

1.1 Related work

As in multiclass classification, the algorithms available in the literature used
to solve hierarchical classification can be arranged into two main groups: those
that take a decomposition approach, and those that learn a hierarchical classi-
fier in a single process. Decomposition algorithms learn a model for each node
of the hierarchy using different methods; a hierarchical classification of an ob-
ject is then obtained by combining, in some way, the predictions of these in-
dividual classifiers. The algorithms presented in [1–3,11] belong to this group.
Hierarchical classification can, however, be seen as a whole rather than a series
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Fig. 1. Our approach can deal with examples that belong to multiple and partial
paths; for instance an example can belong to classes {1,2,4,3,6,12}.

of local learning tasks; the idea being to optimize the global performance all
at once. This approach is adopted in [4–8].

In [1], Koller and Sahami employ a Bayesian classifier at each internal node
of the hierarchy to distinguish between its children. In the learning stage,
they only use those instances that belong to the class as training instances.
Their approach does not permit multipath or partial paths in the labels: the
examples must belong to exactly one class at the bottom level of the hierarchy
and the algorithm always predicts a single leaf.

In [2], a classifier is trained at each node and the outputs of all classifiers are
combined by integrating scores along each path. After training the support
vector machines (SVM) classifiers, the authors fit a sigmoid to the output
of the SVM using regularized maximum likelihood fitting. The SVM thus
produces posterior probabilities that are directly comparable across categories.

In [3], Cesa-Bianchi et al. presented an algorithm able to work with multi-
paths and partial paths. Essentially it constructs a conditional regularized
least squares estimator for each node. This is an on-line algorithm and in each
iteration an instance is presented to the current set of classifiers, the predicted
labels are compared to the true labels, and regularized least squares estimators
are updated.

A two-step approach was presented in [11]: first, an SVM model is learned for
each node in an attempt to distinguish whether an instance belongs to that
node, and then a Bayesian network is used to ensure that the predictions are
consistent with the hierarchy.

Cai and Hofmann [4,5] presented two algorithms based on the large margin
principle. These authors also derive a novel taxonomy-based loss function be-
tween overlapping categories that is motivated from real applications. The
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difference between both papers is that in the former their algorithm is only
able to predict one category, while in the latter, they employ the category
ranking approach proposed in [15] to deal with the additional challenge of
multipaths.

In [6], Rousu et al. presented a kernel-based method in which the classifica-
tion model is a variant of the maximum margin Markov network framework.
This algorithm relies on a decomposition of the problem into single-example
subproblems and conditional gradient ascent for optimisation of these sub-
problems. They propose a loss function that decomposes into contributions of
edges so as to marginalize the exponential-sized problem into a polynomial
one.

An on-line algorithm and a batch algorithm were presented in [7,8] combining
ideas from large margin kernel methods and Bayesian analysis. The authors
associate a prototype with each label in the hierarchy and formulate the learn-
ing task as an optimization problem with varying margin constraints. They
impose similarity requirements between the prototypes corresponding to ad-
jacent labels.

Finally, Vens et al. [16] compare three decision tree algorithms on the task
of hierarchical classification: i) an algorithm that learns a single tree that
predicts all classes at once, ii) one that learns a separate decision tree for each
class, and iii) an algorithm that learns and applies such single-label decision
trees in a hierarchical way. The first one outperforms the others in all aspects:
predictive performance, model size and efficiency.

1.2 Our approach

Some of the papers cited above, for instance [3,6], compare their methods with
two baseline algorithms: a kind of ”flat” one-vs-rest multiclass SVM and a hi-
erarchical classifier based on SVM, usually called H-SVM . Both algorithms
consist in learning a binary classifier for each node (class) of the hierarchy to
predict whether an example belongs to the class at that node or not. The dif-
ference between both methods is that H-SVM constructs each binary classifier
using only training examples for which the ancestor labels are positive, while
multiclass SVM uses all examples. In order to make a fair comparison with
hierarchical approaches and to guarantee consistent predictions with respect
to the hierarchy, in the prediction phase of both baseline algorithms, the set of
models are applied to an instance using a top-down evaluation procedure until
a classifier fails to include that node in its predicted classes. This evaluation
process also means that both algorithms are able to deal with multipath and
partial path predictions.
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In the experimental results reported in the literature, H-SVM is very com-
petitive with respect to the proposed hierarchical algorithms and outper-
forms flat multiclass SVM. The only reason explaining the latter result is
that H-SVM employs the predefined hierarchy to select the training examples
used to build each SVM classifier. H-SVM takes into account the fact that,
given the evaluation procedure used, the binary classifier of each node will be
applied after its ancestors.

However, the main drawback of H-SVM is that binary classifiers are still con-
structed independently. As in multiclass classification, the advantage of di-
rect methods over decomposition approaches is that the formers can capture
some dependencies between individual classifiers. In the context of hierarchi-
cal classification, the presence of such dependencies is even clearer. They are
motivated by the hierarchy and, in the case of H-SVM , also by the evaluation
procedure.

In this paper, we shall present a new decomposition method that aims to im-
prove the performance of H-SVM . Let us remark that H-SVM takes into ac-
count the hierarchical dependencies between the classes to select the training
examples for each binary classifier. We want to exploit these dependencies even
more. In our approach, binary classifiers are not independent: each node clas-
sifier is learned considering the predictions of other classifiers, its descendants,
and the loss function used to measure the goodness of hierarchical classifiers.
Following a bottom-up learning strategy, the idea is to optimize the loss func-
tion at every subtree assuming that all classifiers are known except the one
at the root. We shall show that the performance of the two baseline methods
described in this section can be improved using this learning method. The aim
is to prove that a decomposition approach for hierarchical classification can
be as successful as in multiclass classification [17].

In addition to the performance obtained, the advantages of decomposition
algorithms for hierarchical classification are derived from their modularity.
They can be straightforwardly implemented in a parallel platform to obtain
a very fast learning method. They are simple and can be built, with some
easy adaptations, with the user’s favorite binary classifier; for instance, SVM.
Moreover, the overall performance of the classifier can be improved using well-
known techniques available for tuning binary classifiers, as occurs with SVM.

1.3 Outline of the paper

The paper is organized as follows. The next section formally introduces hier-
archical learning, including appropriate loss functions, and the notation used
throughout the rest of the paper. The third section is devoted to explaining the
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proposed decomposition method in detail. We present the main idea and show
how it can be easily implemented using cost-sensitive binary SVM. Finally,
the last section reports some experiments on benchmark data sets conducted
to compare the approach presented here with other state-of-the-art algorithms
in the context of hierarchical classification.

2 Hierarchical classification

In hierarchical classification, we have a set of classes arranged according to
a known taxonomy. Formally, we have a tree T with r nodes, one for each
class. In fact, we could start from a forest of trees F , but then we would add
an artificial root node to join the whole set of classes in a tree. Therefore, in
what follows, we shall consider our hierarchy to be represented by a tree T .
In this context, hierarchical classification tasks are defined by a training set
S = {(x1,y1), . . . , (xn,yn)}, in which each example is described by an entry
represented by a vector xi of an input space X , and a vector yi of an output
space Y ⊂ {−1,+1}r. We shall interpret each output yi as a subset of the
set of classes {1, . . . , r}: yij = +1 if and only if the ith example belongs to the
jth class. In the following, we shall use the symbol yi both as a vector and
as a subset of classes when no confusion can arise. We shall assume that all
elements of Y observe the underlying hierarchy defined by T in the sense that

∀yi ∈ Y , yij = −1⇒ ∀k ∈ des(j), yik = −1,

in which des(j) stands for the set of descendants of node or class j, but not
including j.

A straightforward approach to learn tasks of this kind may consist in learning
a family of binary models {w1, . . . ,wr}, one for each node (class) of T . For
instance, using linear classifiers, an entry x will be assigned to all classes j
such that (+1 = sign(〈wj,x〉)). However, this procedure may lead to incon-
sistent predictions with respect to T . To avoid these, a top-down prediction
procedure can be used, as in [3,6]. Thus, an entry can only be assigned to a
class j if it was previously classified into its parent class, par(j); therefore, an
entry not assigned to one class, will automatically not be assigned to any of
its descendants. This approach is followed, for instance, by the two baseline
methods described in Section 1.2.

2.1 Loss functions

To complete the specification of the hierarchical learning task, we need to de-
cide which loss function will be used to measure the goodness of the hypothesis
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learned. A first option may be to employ the zero-one loss function:

l0/1(yi,y
′
i) = [yi 6= y′i]. (1)

The problem is that it is not possible using this loss function to capture any
difference between very wrong predictions and nearly correct ones.

In a real-world application, hopefully, an expert in the field could provide us
with the costs of having false positives (fp(j)) and false negatives (fn(j)) for
each class j [4]. Then, we can define

lT (yi,y
′
i) =

∑
j∈yi−y′i

fn(j) +
∑

j∈y′i−yi

fp(j). (2)

Nevertheless, in the experiments reported below, as in [4–6], we always assume
that all costs have value 1, and so we obtain a loss function that only reflects
the cardinality of the symmetric difference of a pair of subsets of classes: the
number of different elements. In symbols:

l∆(yi,y
′
i) =

r∑
j=1

[yij 6= y′ij] = |(y′i − yi) ∪ (yi − y′i)| = |y′i 	 yi|. (3)

In [6], Rousu et al. proposed other loss functions, weighting the classes accord-
ing to the proportion of the hierarchy that is in the subtree Tj rooted by node
j, or sharing the relevance of each node between its siblings starting with 1
for the root. It is easy to see that these loss functions are particular cases of
the general framework, lT , presented here.

3 A semi-dependent decomposition hierarchical classifier: H-SVM lT

We shall now describe our approach to build hierarchical learners based on
the use of binary classifiers and a straightforward implementation using SVM.
Following the notation of the previous section, we assume that we have before
us a learning task specified by a training set S and two real positive functions,
fp and fn, to compute the costs of false positives and false negatives of classes,
respectively.

The aim of this paper is to discover how to design a decomposition approach
to learn a competitive hierarchical classifier, in the same way that decomposi-
tion methods are used to successfully solve multiclass classification tasks. Our
goal is to improve the performance of the two most popular decomposition
algorithms used as baseline methods in hierarchical classification papers: a
kind of flat SVM and H-SVM , see Section 1.2. Recall that the only difference
between both methods is the set of examples used to learn each model wj.
Formally,
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• Flat SVM: all entries of S will be considered and, as in multiclass learning
when we are using the one-vs-rest strategy, the subset of positive (S+

j ) and
negative (S−j ) examples will be given by

S+
j = {(xi,yi) : yij = +1}, (4)

S−j = {(xi,yi) : yij = −1}.

• H-SVM : learns to distinguish between those examples that belong to j’s
parent,

S+
j = {(xi,yi) : yij = +1}, (5)

S−j = {(xi,yi) : yi,par(j) = +1 ∧ yij = −1}.

According to these definitions, both options only differ in the S−j set. For
example, considering the tree depicted in Figure 1, using H-SVM , S−7 would
only contain examples that belong to class 4 and do not belong to class 7,
while in flat SVM it would contain all the examples that do not belong to
class 7. Therefore, H-SVM is faster because it uses less examples, i.e. only
those that belong to the parent of the node which model is being calculated,
and more effective, as has been proven in several experimental results reported
in previous papers. The main drawback of flat SVM is that individual models
are built considering examples of a kind that it will probably not classify so
often given the evaluation procedure used. For instance, using all examples
to learn classifier w7, the learning process considers examples that do not
belong to any of its ancestors but the root, i.e. instances that only belong
to the subset of classes {1, 3, 5, 6, 10, 11, 12, 13, 14, 15, 16}. In the prediction
procedure, however, said model (w7) will only classify those examples if its
ancestor models, w2 and w4, fail (classifying those instances as positive). So,
w7 considers some objects that are not so useful for the main task that this
model has to perform: classify examples of class 4 and its descendants, the
very examples that are used by H-SVM .

3.1 Main ideas

Our proposal is based on two main ideas:

(1) individual classifiers must be dependent on those that are related to them
according to the hierarchy, and

(2) individual classifiers must be learned by locally optimizing our hierarchi-
cal loss function (Eq. 2), instead the binary zero-one loss function.

Let us examine these two ideas. Obviously, the only way to build a hierarchical
classifier, made up of a set of dependent individual classifiers {w1, . . . ,wr},
is using an algorithm that learns all these models at once. However, these
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methods present the disadvantage of their computational complexity, which
depends on the number of classes. This number is usually much bigger in hier-
archical classification tasks than in multiclass problems. We can significantly
reduce this complexity by following a decomposition approach, but we have
to pay a price: we cannot build each classifier depending on all others. We
have to restrict ourselves to learn each classifier depending only on some of
the others.

Given the hierarchy described by T , we basically have two options: each clas-
sifier can depend on its ancestors, using a top-down learning strategy, or on its
descendants, using a bottom-up algorithm. But it makes more sense for each
classifier to depend on its descendants. The main reason is that, depending
on the top-down prediction procedure used to ensure hierarchically consistent
responses, parent models can change the predictions of their descendants:
whenever they classify an example as negative, it is also classified as negative
in all of their descendant classes. Therefore, a model has more influence on
the overall performance of the learner when it is closer to the root. Taking
into account these circumstances, it is preferable for models near to the root
to be computed later, using the information of their descendants: they can
know the predictions of their descendant models and use these predictions to
build a classifier adapted to them, thus improving the overall performance of
the local hierarchical learner placed at that subtree. Following this reasoning,
our approach uses a bottom-up learning strategy, models are calculated from
leaf nodes to the root of the tree, and each classifier depends on the classifiers
of its descendant classes.

The second idea is to change the loss function optimized to learn each individ-
ual classifier. As in multiclass tasks, the individual classifiers of the proposed
hierarchical decomposition methods optimize the binary zero-one loss func-
tion. In hierarchical classification, however, this setting is not appropriate.
Moreover, if we consider that in our approach each binary classifier wj will
be built when all other classifiers of the subtree rooted at node j (Tj) are
known, then we can optimize any hierarchical loss function instead the binary
zero-one loss function.

In fact both ideas are complementary: locally optimizing the hierarchical loss
function described in Eq. 2 requires that the different subsets of binary clas-
sifiers must be considered together. Combining both, our method is based on
building each binary classifier optimizing the hierarchical loss function used,
and considering that all classifiers of the subtree rooted at that node have been
learned before. Our experimental results will show that a better decomposition
method can be obtained using this bottom-up learning procedure.
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3.2 Using cost-sensitive learning to optimize lT at every subtree

To the best of our knowledge, all the new loss functions proposed to deal with
hierarchical classification, including our proposal (Eq. 2), are example-based
functions, i.e., they decompose linearly into a combination of the individual
classification errors. In order to optimize such functions, we need only bear in
mind that it will not be the same to classify each training example incorrectly;
in other words, each example can make a different contribution to the overall
loss. These are the kind of tasks that cost-sensitive learning methods [18]
solve. Our approach is therefore based on assigning different costs to each
example during learning; these costs depend on the hierarchy of classes, the
loss function used and, as we shall see, the top-down prediction procedure.
Before learning all our binary classifiers, we have to calculate the cost that
each example must have and then apply any binary cost-sensitive learner able
to assign different costs to each example.

In the trivial case, when we are learning a model wj of a leaf node j, for
instance w7 in the learning task depicted in Figure 1, the loss of each example
xi is

lT (yij, y
′
ij) =


0 if yij = y′ij,

fn(j) if yij = +1, y′ij = −1,

fp(j) if yij = −1, y′ij = +1,

since we only have to consider that model. From the point of view of the
classifier wj, the maximum cost or loss caused by an example is the difference
between the loss when the classification of the example is wrong (fn(j) or
fp(j)) and when the example is classified correctly (always 0). Then the cost
assigned to an example xi in order to compute a leaf model wj is:

cij =

 fn(j)− 0 if yij = +1,

fp(j)− 0 if yij = −1.
(6)

In the case of positive examples, this difference is fn(j), and fp(j) if the
example is negative. Notice that, if functions fp and fn always return 1 (l∆ loss
function), every example will have the same cost. Obviously, this also occurs
when fp and fn always return another constant value. In such situations,
the leaf classifier learned by a cost-sensitive method and by its counterpart
learner that optimizes the binary zero-one loss function, will be the same. This
will be the reason why our algorithm optimizing l∆ loss function (Sections 3.3
and 3.4) will only differ from H-SVM in those classifiers attached to internal
nodes; classifiers at leaf nodes will be exactly the same because there is no
sub-hierarchy involved in that subproblems.
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In the more general case, when we are learning an internal node classifier (for
instance, w4 in our example), things become more complicated. First, we must
bear in mind that, following our bottom-up learning strategy, its descendant
models (w7, w8 and w9 for model w4) have already been learned, and we
can know the consistent top-down predictions of that models (y′i,des(j)) for
all examples xi of the data set Sj used to build that classifier (predictions
{y′i7, y′i8, y′i9} for the examples of S4). In this case, the loss of each example in
all different situations is:

lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)}) =

∑
k∈yi,des(j)−y′

i,des(j)
fn(k) +

∑
k∈y′

i,des(j)
−yi,des(j)

fp(k) if yij =y′ij =+1,

0 if yij =y′ij = −1,

fn(j) +
∑
k∈yi,des(j)

fn(k) if yij =+1, y′ij =−1,

fp(j) +
∑
k∈y′

i,des(j)
fp(k) if yij =−1, y′ij =+1.

(7)

This definition requires some explanations. First, notice that the loss function
now also considers the labels of the descendant classes of node j: yi,des(j) and
y′i,des(j). The only situation in which there is no loss is when the example
is labeled as negative by model wj and yij = −1. This is due to the fact
that, since labels are consistent with the hierarchy, the true labels yi,des(j) and
predicted labels y′i,des(j) are all −1. Let us recall that in this case the predicted
labels are negative because we are applying the top-down prediction procedure
discussed through the paper: if y′ij is −1, then all its descendant labels must
also be negative.

Perhaps the most surprising part of this definition is that, even when a positive
example (yij = +1) is correctly classified by model wj (y′ij = +1), there can be
some loss. This loss is caused by its descendant classifiers and is the sum of its
false positives and false negatives; i.e., the expression in Eq. 2 excluding the
root node. In the two other cases, when predictions of wj are wrong, the loss
is the sum, for all the nodes of Tj (including the root), of false negatives for
positive examples and the sum of false positives for negative examples. Here
we apply the expression of Eq. 2 considering that one of the subsets, yi,des(j)
or y′i,des(j), is empty. As before, this is guaranteed by the top-down prediction
procedure.

In this general case, the cost of each example in Sj is computed again as
the difference between the loss when the example is incorrectly classified and
when the example is correctly classified by wj. For negative examples, this
expression is:

cij = fp(j) +
∑

k∈y′
i,des(j)

fp(k)− 0. (8)
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Notice that, as fp and fn are positive functions, this cost is always greater
than 0. In the case of positive examples, the cost of each example is given by
the following expression:

cij = fn(j) +
∑

k∈yi,des(j)

fn(k)−
∑

k∈yi,des(j)−y′
i,des(j)

fn(k)−
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k). (9)

It should be noted that this expression can be negative for some examples,
wheneverfn(j) +

∑
k∈yi,des(j)

fn(k)

 <

 ∑
k∈yi,des(j)−y′

i,des(j)

fn(k) +
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k)

 ,
or 0 when both terms are equal. In the former case, this means that it is prefer-
able to fail those examples at node j because the loss in its descendant classes
is greater. When the cost is 0, it does not matter whether the classification of
these examples is right or wrong as the loss is the same in both situations. In
fact, we can remove these examples from the Sj data set.

These two cases explain why it is important for our approach to learn, at each
internal node, binary models that depend on their descendant classifiers. Our
method not only assigns a different relevance to each example during learning
using the costs described previously, but can also change its class, when the
cost is negative, or not considering it when its cost is 0.

3.3 Optimizing l∆: an example

In order to better explain the previous section, we shall now describe an ex-
ample to learn the binary classifier for class 4 of the hierarchical classification
problem depicted in Figure 1. The data set used, S4, is shown in Table 1. The
table includes the true labels (yi,des(4)) and the predicted labels (y′i,des(4)) of
the descendants of class 4. To obtain these predictions we will have used the
binary classifiers w7, w8 and w9 that have been learned previously according
to the bottom-up procedure of our hierarchical learner.

For ease of understanding, we shall assume that the functions fp and fn are
always 1. In this situation, we use l∆ instead of lT as our loss function. The
cost of each example to learn binary model w4 (Eq. 8 and Eq. 9) will be
computed by means of:

cij =

 1 +
∣∣∣yi,des(j)∣∣∣− ∣∣∣yi,des(j) 	 y′i,des(j)

∣∣∣ if yij = +1,

1 +
∣∣∣y′i,des(j)∣∣∣ if yij = −1.

(10)
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Table 1
Data set to illustrate how to compute ci4 costs in order to optimize w4 in the
hierarchical classification task shown in Figure 1: S+

4 = {x1,x2,x3} and S−4 =
{x4,x5,x6}

{yi4,yi,des(4)} {y′i4,y′i,des(4)}

S4 yi4 yi7 yi8 yi9 yi4 yi7 yi8 yi9

x1 1 1 1 1 ? 1 -1 1

x2 1 -1 -1 -1 ? 1 1 -1

x3 1 -1 -1 1 ? 1 1 1

x4 -1 -1 -1 -1 ? -1 -1 -1

x5 -1 -1 -1 -1 ? 1 1 -1

x6 -1 -1 -1 -1 ? 1 -1 -1

Using this expression, we can now easily calculate the cost for every example
in S4:

c14 = 1 + |{7, 8, 9}| − |{7, 8, 9} 	 {7, 9}| = 3,

c24 = 1 + |{∅}| − |{∅} 	 {7, 8}| = −1,

c34 = 1 + |{9}| − |{9} 	 {7, 8, 9}| = 0,

c44 = 1 + |{∅}| = 1,

c54 = 1 + |{7, 8}| = 3,

c64 = 1 + |{7}| = 2.

The importance of each example is now very different. For instance, x1 and
x5 are the most relevant examples to learn w4: if this model does not classify
both correctly, the loss in that subtree will increase more than if it fails the
other examples. As was discussed before, some positive examples (x2) can
have a negative cost, meaning that it is preferable to classify them incorrectly
because the loss in its descendant classes is greater; or cost 0 (x3): it makes no
difference whether the classification of these examples is right or wrong. Costs
for negative examples are always positive, see Eq 10. In the next section, we
describe how to deal with all these different situations in order to implement
individual binary classifiers.

3.4 A straightforward implementation of our approach using binary SVMs

Algorithm 1 describes our bottom-up learning procedure. It constructs indi-
vidual models from leaves to the root. In each iteration, binary classifiers of
the deepest nodes not built yet are computed. We observe that an efficient im-
plementation of this algorithm can obtain these models in parallel. However,
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Algorithm 1 Learning hierarchical classifier

1: function Learning(S, T ) : {w1, . . . ,wr}
2: CurrentLevel = Leaves(T )
3: while CurrentLevel 6= ∅ do
4: compute Sj, ∀j ∈ CurrentLevel
5: compute cij, ∀j ∈ CurrentLevel, ∀(xi, yij) ∈ Sj
6: learn wj, ∀j ∈ CurrentLevel
7: compute {y′ij,y′i,des(j)}, ∀(xi, yij) ∈ S, ∀j ∈ CurrentLevel
8: CurrentLevel = PreviousLevel(T , CurrentLevel)
9: end while

10: return {w1, . . . ,wr}
11: end function

the degree of parallelism of our algorithm is less than in the case of flat SVM
or H-SVM , in which all binary classifiers can be computed in parallel.

Before learning each classifier wj, the algorithm constructs the corresponding
data set, Sj. The most important part of this process is to calculate the cost of
every example of Sj using the expressions discussed previously. After building
each individual classifier, the algorithm obtains the predicted labels for all
the examples in our original data set, S. Notice that the algorithm not only
computes y′ij, it also recalculates the predicted labels of all descendant classes
of j (y′i,des(j)) to take into account the fact that, in the prediction process, the
subset of models already learned {wj,wk : ∀k ∈ des(j)} will be applied using
the top-down evaluation procedure.

To learn each individual classifier, practitioners can employ their favorite bi-
nary learner whenever it is able to assign a different cost to each example.
Users can also choose the most suitable hierarchical loss function for their
application, but this must be a particular case of the general loss function
lT presented in Eq. 2. If the selected loss function is l∆ (Eq. 3), most binary
learners can be used, as the cost of every example will be an integer value.
In that case, so as to reflect the different relevance of the examples in Sj, the
algorithm can repeat each example as many times as the absolute value of its
cost. If this value is negative, then it must use the absolute value of that cost
and invert its original class, yij. Finally, if an example has cost 0, it must be
removed from Sj.

In the experimental results reported in the next section, we have used a
weighted SVMs [19] as our binary learner. This kind of SVM is based on
assigning a different weight or cost to each example that is proportional to
the importance of correctly classifying that example. Formally, our method
solves the following kind of optimization problems 1 :

1 For ease of reading, we omit bias bj ; however, bias can be easily included by
adding an additional feature of constant value to each xi
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min
w,ξ

1

2
〈wj,wj〉+ C

∑
xi∈Sj

|cij| · ξij, (11)

s.t. ȳij〈wj,xi〉 ≥ 1− ξij,
ξij ≥ 0, ∀i : (xi, yij) ∈ Sj,

where factor C controls the amount of regularization, cij is calculated using
Eq. 8 and Eq. 9 (to optimize lT ) or Eq 10 (l∆), and ȳij = yij · sign(cij). We
use the absolute value of cij and change the original class when this value is
negative. Let us remark that the number of constrains of this optimization
problem is the same as of the traditional binary SVM. In fact, if we set all cij
as 1, as happens when our method optimizing l∆ learns classifiers attached to
leaf nodes, both problems are equal.

The dual problem can be derived by standard Lagrangian techniques:

max
α

−1

2

∑
xi∈Sj

∑
xk∈Sj

αiαkȳij ȳkj〈xi,xk〉+
∑

xi∈Sj

αi (12)

s.t. 0 ≤ αi ≤ |cij|C, ∀i : (xi, yij) ∈ Sj.

Therefore, the only difference with respect to binary SVM is in the upper
bound of the box constraint.

Theorem 1 At the solution w∗j , ξ
∗ of the optimization problem in Eq 11 on

the training data set Sj, using Eq. 8 and Eq. 9 to calculate costs cij, ∀(xi, yij) ∈
Sj, the value of

∑
xi∈Sj

|cij| · ξij is an upper bound of

∑
xi∈Sj

lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})− lT ({yij,yi,des(j)}, {yBij ,yBi,des(j)}),

in which {y′ij,y′i,des(j)} are the consistent predictions using {w∗j ,wk : ∀k ∈
des(j)} and considering that {yBij ,yBi,des(j)} are obtained applying the subset of

models {wB
j ,wk : ∀k ∈ des(j)}, in which wB

j is the best or ideal model (which
may be impossible to obtain) for class j, in the sense that it always makes the
prediction that causes less loss in the subtree Tj.

PROOF. In other learning tasks, the second term of the above expression
is always 0 (the ideal model has no loss), but here we must consider the
loss caused by descendant models. In other words, we want to prove that∑

xi∈Sj
|cij|·ξij is an upper bound of the loss caused by wj when its descendant

models are already learned. We only have to demonstrate that the following
holds for each example

|cij| · ξij ≥ lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})− lT ({yij,yi,des(j)}, {yBij ,yBi,des(j)}).
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Following the definition in Eq 7, for negative examples we have that:

lT ({yij,yi,des(j)}, {yBij ,yBi,des(j)}) = min(0, fp(j) +
∑

k∈y′
i,des(j)

fp(k)) = 0.

Using Eq 8,

∣∣∣∣∣∣∣fp(j) +
∑

k∈y′
i,des(j)

fp(k)

∣∣∣∣∣∣∣ · ξij ≥ lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})− 0,

and this expression is always true because

lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})=


0 if 0 ≤ ξij < 1

fp(j)+
∑
k∈y′

i,des(j)
fp(k) if ξij ≥ 1.

In the case of positive examples, lT ({yij,yi,des(j)}, {yBij ,yBi,des(j)}) is (using once
again Eq 7)

min

 ∑
k∈yi,des(j)−y′

i,des(j)

fn(k) +
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k), fn(j) +
∑

k∈yi,des(j)

fn(k)

 . (13)

If the minimum is the first term (cij > 0 and ȳij = yij · sign(cij) = +1, see
Eq 9), and now applying Eq 9,

∣∣∣∣∣∣∣fn(j) +
∑

k∈yi,des(j)

fn(k)−
∑

k∈yi,des(j)−y′
i,des(j)

fn(k)−
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k)

∣∣∣∣∣∣∣ · ξij ≥
lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})−

 ∑
k∈yi,des(j)−y′

i,des(j)

fn(k) +
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k)

 ,
and this is always true, because lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)}) (see Eq 7) is


∑
k∈yi,des(j)−y′

i,des(j)
fn(k) +

∑
k∈y′

i,des(j)
−yi,des(j)

fp(k) if 0 ≤ ξij < 1

fn(j) +
∑
k∈yi,des(j)

fn(k) if ξij ≥ 1.

If the minimum in Eq 13 is the second term (cij < 0, ȳij = −1), then we have
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to prove that

∣∣∣∣∣∣∣fn(j) +
∑

k∈yi,des(j)

fn(k)−
∑

k∈yi,des(j)−y′
i,des(j)

fn(k)−
∑

k∈y′
i,des(j)

−yi,des(j)

fp(k)

∣∣∣∣∣∣∣ · ξij ≥
lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)})−

fn(j) +
∑

k∈yi,des(j)

fn(k)

 .
And this inequality holds because lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)}) is the oppo-
site to that of the previous case (its original class is inverted in the optimization
problem in Eq 11),


fn(j) +

∑
k∈yi,des(j)

fn(k) if 0 ≤ ξij < 1∑
k∈yi,des(j)−y′

i,des(j)
fn(k) +

∑
k∈y′

i,des(j)
−yi,des(j)

fp(k) if ξij ≥ 1.

The case when both terms are equal (cij = 0) is trivial because

lT ({yij,yi,des(j)}, {y′ij,y′i,des(j)}) = lT ({yij,yi,des(j)}, {yBij ,yBi,des(j)}).

In fact, as mentioned previously, these examples are deleted from Sj. 2

The same demonstration can be employed to prove that, using Eq 10 to com-
pute cij in the optimization problem equation (11), term

∑
xi∈Sj

|cij| · ξij is an
upper bound of the l∆ loss caused by w∗j , since l∆ is a particular case of the
lT loss function.

4 Experimental results

The main aim of this section is to show that the method presented here can
improve the performance of the two decomposition algorithms, flat SVM and
H-SVM , that are usually selected as baseline methods in papers that present
new hierarchical classifiers. For that reason, we implemented, not only our
proposed algorithm H-SVMlT , but also another version of our approach, called
SVMlT , that is the counterpart method of flat SVM. Since we did not have
available functions fp and fn for the data sets used, both versions optimized
locally (at every subtree) the loss function l∆ (Eq. 3). In the following we
denoted them as H-SVMl∆ and SVMl∆ , and the difference between them is
the same that between H-SVM and flat SVM: the data sets used to learn each
individual binary classifier (see Eq. 4 and Eq. 5).
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Let us recall that H-SVMl∆ and H-SVM use the same examples to learn each
model (applying Eq. 5 in step 4 of Algorithm 1). The only difference between
them is that the former optimizes locally (at every subtree) the hierarchi-
cal loss function l∆ and H-SVM optimizes the binary zero-one loss function.
The same occurs between, SVMl∆ and flat SVM, both use the same training
points (all examples in this case, Eq. 4) and the difference, again, is that our
approach learns cost-sensitive classifiers. Thus, since we are using l∆ as our tar-
get loss function, classifiers at leaf nodes are exactly the same in H-SVMl∆ and
H-SVM ; then, they only differ in those classifiers attached to internal nodes.
The same happens between SVMl∆ and flat SVM.

Additionally, we wanted to compare our approach with two state-of-the-art
learners that use different methods. The algorithms used were H-M3 of Rousu
et al. [6] and HMSVM of Lujuan et al. [5], both of them search for a global
optimum loss (in this case the loss function l∆).

The comparison was done with three benchmark information retrieval (IR)
data sets. Thus, in addition to our objective loss function l∆ (Eq. 3) and l0/1
(Eq. 1), we also report the most common performance measures of IR tasks:
precision, recall, and F1.

The implementation of H-M3 and HMSVM were provided by the authors while
the implementation of the baseline algorithms (SVM and H-SVM ) and the ver-
sions in which binary classifiers are not independent (SVMl∆ and H-SVMl∆ )
were done modifying slightly Joachims’ SVMperf [20]; this SVM implemen-
tation provided us with an excellent base due to its linear complexity. In all
cases, when it was needed, we set the regularization parameter C = 1 and
we used a linear kernel. All the scores reported were estimated by means of a
stratified fivefold cross validation repeated two times. Following Demsar [21],
we used the Wilcoxon signed-ranks test to compare the performance of two
classifiers.

We used three well-known data sets in information retrieval 2 . The documents
were represented as bag-of-words and no word stemming or stop-word removal
was performed. The first data set, REUTERS Corpus Volume 1 (RCV1) [22],
is composed of 7500 documents described by 19770 features. The ’CCAT’
family of categories (Corporate/Industrial news articles) was used as the label
hierarchy. This hierarchy represents a tree with maximum depth 3 and with a
total of 34 nodes. The tree is quite unbalanced: there are 18 nodes residing in
depth 1, 14 nodes in depth 2 and one node in depth 3 (see Figure 2a). In this
data set, 8% of examples have multiple partial paths; that is, these examples
are classified into classes that are not in the same path from the root. The

2 These data sets can be downloaded from the following urls:
http://users.ecs.soton.ac.uk/cjs/resource files/hierarchy data.tar.gz
http://people.csail.mit.edu/jrennie/20Newsgroups/
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a) b)

c)

Fig. 2. Hierarchy of the three data sets: a) REUTERS Corpus Volume 1, b) World
Intellectual Property Organization, and c) 20 Newsgroups

second dataset, WIPO-alpha, was published by the World Intellectual Prop-
erty Organization [23], and it is the second data set used in these experiments.
We used the D section of its hierarchy. This section contains 1730 documents
described by 74436 features. There are 188 nodes in the tree organized as
follows: 7 in depth 1, 20 in depth 2, and 160 in depth 3 (see Figure 2b). In
this data set there are no examples classified into more than one path and
all of them end on a leaf. The last data set, 20 Newsgroups, is a collection of
18774 documents (after removing duplicates) described by 61188 features and
belonging to 20 different newsgroups in a hierarchy of 28 nodes: 7 in depth 1,
13 in depth 2, and 7 in depth 3 (see Figure 2c). No partial or multi paths are
presented in this data set.

Table 2 shows the scores obtained in RCV1 using the setting described above
and stands out those scores that have significant difference with respect to
H-SVMl∆ . The key loss is l∆, since this is our optimization target; on the
other hand, from an IR point of view F1 is the most relevant measure. If we
refer to the baseline methods and our counterpart versions, H-SVMl∆ achieves
better l∆ and F1 results than H-SVM , and also better than the one-vs-
rest variants SVMl∆ and SVM . Moreover, the differences between SVMl∆ and
SVM are significant too in l∆ (p < 0.07) and F1 (p < 0.01). In l∆ and F1,
H-SVMl∆ outperforms H-M3 and HMSVM , even the baseline H-SVM is better
than both algorithms. Looking at Precision and Recall scores, our method
increases the number of false positives and decreases the number of false neg-
atives. Finally, in loss l0/1 the differences between our approach and baseline
methods are not very clear; in this loss H-M3 achieves the best result.

The scores in WIPO-alpha data set are shown in Table 3. Here, again, scores
that have significant difference with respect to H-SVMl∆ are stand out. We
can see bigger differences in this data set than in RCV1. Again, algorithm
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Table 2
Prediction losses l0/1, l∆, precision P, recall R and F1 (and standard deviations)
on RCV1 data set. All scores are given as percentages, but the values of the column
labeled by l∆ are the average of Eq. 3 across the test set. The best result in each
measure is highlighted in bold. When the difference between H-SVMl∆ and another
algorithm is statistically significant in a Wilcoxon signed-ranks test with threshold
of 0.05 then a † or a ∗ is attached to the value. The † indicates that the corre-
sponding algorithm is significantly better than H-SVMl∆ , whereas a ∗ indicates
that H-SVMl∆ is significantly better than the other algorithm

l0/1 l∆ P R F1

SVM 27.18∗±1.09 0.504∗±0.027 93.31†±0.81 68.94∗±1.56 79.29∗±1.17

SVMl∆ 27.61∗±0.93 0.500∗±0.024 92.64†±0.60 69.83∗±1.36 79.63∗±1.02

H-SVM 24.20 ±0.99 0.475 ±0.027 90.56†±0.89 73.77∗±1.42 81.30∗±1.08

H-SVMl∆ 24.38 ±0.91 0.473±0.027 89.31 ±1.02 75.16 ±1.54 81.62 ±1.07

H-M3 23.39†±1.15 0.490∗±0.032 89.51 ±0.90 73.59∗±1.72 80.77∗±1.29

HMSVM 28.44∗±1.02 0.743∗±0.033 93.21†±0.86 50.60∗±1.97 65.58∗±1.76

Table 3
Prediction losses l0/1, l∆, precision P, recall R and F1 (and standard deviations)
on WIPO-alpha data set. See column and symbol descriptions in Table 2

l0/1 l∆ P R F1

SVM 83.60∗±2.34 1.641∗±0.029 94.99†±1.11 62.27∗±0.53 75.22∗±0.39

SVMl∆ 82.34∗±4.01 1.621∗±0.043 94.20†±1.22 63.41∗±1.28 75.78∗±0.79

H-SVM 74.44∗±3.31 1.553∗±0.055 92.77†±1.22 66.38∗±1.97 77.36∗±1.11

H-SVMl∆ 71.58 ±2.12 1.512±0.060 90.76 ±1.12 69.27 ±1.03 78.57 ±0.88

H-M3 69.33†±1.94 1.582∗±0.061 91.92†±1.23 66.29∗±1.40 77.02∗±1.00

HMSVM 53.83†±2.42 2.240∗±0.139 72.00∗±1.74 72.00†±1.74 72.00∗±1.74

H-SVMl∆ outperforms the rest of algorithms in l∆ and F1. Differences between
SVM and SVMl∆ are significant too in l∆ (p < 0.02) and F1 (p < 0.01). In this
data set, HMSVM obtains the best result in the loss l0/1 and there is a big
difference between H-SVMl∆ and its counterpart H-SVM , although in the one-
vs-rest variants the difference is smaller.

The same behavior is presented in the scores of 20 Newsgroups dataset (Ta-
ble 4). Here again, H-SVMl∆ achieves better l∆ and F1 results than H-SVM ,
and also better than the one-vs-rest variants SVMl∆ and SVM . Differences
between SVMl∆ and SVM are significant too in l∆ and F1 (p < 0.01). In this
data set, best results are achieved by HMSVM .

We can appreciate that the proposed algorithms perform better in the WIPO-
alpha data set. The reason of that behavior is that, paying attention to the
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Table 4
Prediction losses l0/1, l∆, precision P, recall R and F1 (and standard deviations)
on 20 Newsgroups data set. See column and symbol descriptions in Table 2

l0/1 l∆ P R F1

SVM 35.64∗±1.16 0.716∗±0.029 89.92∗±0.48 87.44†±0.65 88.66∗±0.47

SVMl∆ 35.59∗±1.22 0.714∗±0.030 89.93∗±0.55 87.51†±0.57 88.70 ±0.46

H-SVM 30.82 ±1.16 0.696∗±0.030 92.02 ±0.41 85.71∗±0.67 88.75∗±0.51

H-SVMl∆ 30.78 ±1.17 0.694 ±0.030 92.01 ±0.46 85.78 ±0.65 88.79 ±0.50

H-M3 34.98∗±1.64 0.687 ±0.037 93.11†±1.12 84.85∗±0.90 88.78 ±0.59

HMSVM 18.06†±0.69 0.582†±0.025 90.92∗±0.38 90.89†±0.41 90.91†±0.40

hierarchies in Figure 2, RCV1 and 20 Newsgroups data sets have a more simple
hierarchy, with several nodes at depth 1. In fact, in RCV1, H-SVMl∆ and
H-SVM only differ in seven out of 34 binary classifiers (the number of internal
nodes), and only four of them have a hierarchy with more than two nodes. A
similar situation is presented in 20 Newsgroup data set where they only differ
in seven out of 28 binary classifiers. The hierarchy of WIPO-alpha is bigger
and there are many nodes at different levels. In this case, there are many more
internal nodes and most of them have several descendants. This suggests that
our method can improve more the performance of H-SVM in those data sets
in which the hierarchical structure is more complex.

In our opinion, these results show that we need to consider the existent depen-
dencies between individual classifiers in order to build a useful decomposition
hierarchical learning algorithm based on binary SVMs. Our method exploits
this aspect, capturing some of those dependencies, thanks to every individual
model is learned considering its descendant classifiers and optimizing locally
a function loss appropriated to hierarchical classification tasks.

5 Conclusions

In this paper, we have presented a learning method for hierarchical classifi-
cations tasks based on the decomposition approach: our learner is composed
of a set of individual binary cost-sensitive classifiers, one for each class of the
hierarchy. The main novelty of our approach is that these models are not in-
dependent from one another, as usually occurs in decomposition approaches.
Each individual classifier depends on the models of its descendant classes. The
algorithm is based on the use of a bottom-up learning procedure that allows
a generic hierarchical loss function to be considered when models are learned.
In the experiments reported in Section 4, we also confirm the good scores of
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this approach against both, state-of-the-art algorithms like [5,6] and baseline
methods.

One of the aims of this work is to prove that decomposition methods can
be as useful in hierarchical classification tasks as in multiclass classification
where this kind of approach is widely used in real applications. Additionally,
decomposition strategies generally have the advantage of modularity. It is thus
possible to have fast parallel implementations for hierarchical classifications.
Moreover, each binary classification could be learned using well-known SVM
implementations, and the regularization parameters or the kernels employed
may be tuned. As always, the choice of the right kernel may be a crucial point
in the performance of any classification task.
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