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ABSTRACT 

 

 This paper presents a brand new method to calibrate a Cylindrical Three-Hole Probe (CTHP) in a “non-nulling” 

operating mode. This calibration method employs the definition of a new normalization factor used in the calibration 

coefficients of the probe. By means of this new normalization, singular points are preserved to appear in the calibration 

coefficients. In addition, the angular range attainable when using this new calibration is increased in 80 degrees with 

respect to the typical angular ranges of traditional calibrations. To validate this study, an uncertainty analysis of the 

probe using this new method is carried out, resulting in significantly lower uncertainties for the whole angular range of 

the probe. Complementarily, the influence of the angular distance between the holes of the probe on both angular 

ranges and maximum uncertainties is also performed in the paper. From this analysis, it is established that the optimal 

angular separation for the holes must be chosen to be between 50 and 60 degrees. Finally, to illustrate the usefulness of 

this procedure, a set of experimental measurements were conducted downstream of the rotor of an axial turbomachine, 

using the new normalization factor in a CTHP with an angular distance of 60 degrees between the holes. The results 

revealed that the complex, unsteady flow within the blade passages can be perfectly captured, including those regions 

with high variations in the flow angle, like the shear layers of the wake fluid or both casing and hub boundary layers. In 

summary, this newly developed calibration method enables to measure large variations of the flow angle, in particular, 

up to 140 degrees. 

 

 

 

INTRODUCTION 

 

 Multihole pressure probes present notable 

advantages with respect to hot-wire probes and laser 

doppler velocimetry (LDV) systems, since both pressure 

and velocity magnitudes are simultaneously available 

when measuring pressure differentials. Introducing 

miniature sensors with high frequency response, it is 

possible to measure unsteady flows, wakes behind 

moving elements and even turbulence. 

 In the case of certain unsteady flows, like those 

encountered within turbomachinery environments, the 

magnitude and direction of the velocity fields may 

present important variations over their integral time 

scales. The typical angular range of three- and five-hole 

probes is usually around ±30º, which is wide enough for 

a large number of applications. However, while 

conducting an experimental survey to measure the flow 

field in an axial turbomachine with a CTHP, it was 

found that the angular range of the probe was 

inadequate. At a first glance, it was thought that the 

angular distance between the holes, 45 degrees, was the 

key parameter limiting the angular range. Based on 

previous experiences and knowledge in the design of 

hot-wire probes ([1]), the authors decided to built a new 

CTHP with a larger distance between the holes, i.e. 60 

degrees. It would be expectable that a larger distance 

between the holes would offer a wider angular range of 

the probe. Surprisingly, the results that were obtained 

after the calibration of the modified probe showed that 

no improvement in the angular range was achieved 

increasing the holes angular separation. This fact is 

illustrated in figure 1, representing the experimental 

angular coefficient for both probes: the white-dotted 

line for an angular distance of 60 degrees and the gray-

dotted line for 45 degrees. Note that the angular range is 

exactly the same in both cases: ±30º. 

 As a consequence of this astonishing conclusion, it 

was initiated a new investigation about the behavior of 

the calibration coefficients in multihole pressure probes. 

The investigation led to the establishment of a 

calibration procedure based on the definition of a new 

normalization factor, which is responsible for an 

outstanding increment of the angular range of the 

probes: up to 70 degrees. 

 In this paper, an analysis of the calibration 

coefficients that are obtained after introducing the new 

normalization factor is carried out. It will be shown that 
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the characteristics of the calibration can be justified 

from the pressure distribution around a cylinder. In 

addition, the uncertainty levels that are derived from 

this new normalization are presented. To complete the 

analysis, the influence of the angular distance between 

the CTHP holes -denoted as “δ” throughout the paper- is 

also studied in detail.  

 
 

Figure 1. Experimental angular coefficient for a 

CHTP with angular distance of 60º and 45º.  

 

 Finally, the calibration coefficients obtained for a 

CTHP with an angular distance of 60 degrees between 

the holes are documented. In addition, the probe was 

developed and used in a study of the flow downstream 

of the rotor of an axial turbomachine. 

  

 

BACKGROUND 

 

 Among all the types of pressure probes that have 

been developed to obtain two-dimensional velocities in 

fluid flows, the most widely used are those designed 

with three holes (THP). Obviously, these probes are 

composed of three pressure transducers placed in a 

holder. The holder can adopt different geometries, being 

the most popular the wedge-shaped and the cylindrical-

shaped probes. In this study we are just considering 

three-hole pressure probes mounted on a cylindrical 

arrangement. References [2] and  [3] present a complete 

review of the different topologies of probes including 

the main operative characteristics. 

 The pressure distribution over the face of a 

multihole probe depends on the angle that is defined 

between the incidence of the flow and the probe axis. In 

order to determine the direction (two-dimensional) and 

the magnitude of the flow, the pressure on the probe 

face must be necessary measured at least in three taps. 

The first one must be placed on the direction of the 

measurements while the others are equally spaced 

towards both sides of the probe. A typical sketch with 

this configuration is shown in Fig. 2. The pressure that 

is measured in the central port provides the stagnation 

conditions when the flow is aligned with the hole. The 

difference between  the pressures felt in the lateral ports 

is related to the flow incidence angle according to an 

appropiate calibration method. 

 

 
 

Figure 2. Sketch of a CTHP. 

 

 By definition, the pressure probes constitute a 

typical intrusive method for measuring velocity fields. 

Since it is desirable to guarantee a reduced blockage of 

the probe in the freestream, the front face of the holder 

must be as small as possible, as long as the structural 

integrity of the probe is not compromised. Besides, all 

the flow parameters must be measured with the lowest 

distortion over the flow field. Under these constraints, 

the probe geometry must be a slender body, with a 

characteristic radius considerably smaller than the probe 

length. Though it would be expectable that a holder 

aligned streamwise should provide optimal results, a 

circular crossed-section probe presents less negative 

effects on the angle of attack of the ports when the flow 

is not normal to the probe ([4]). 

 Pressure probes present two different operating 

modes. The simplest one, in terms of data processing, is 

referred to as “nulling” mode. In this case, the probe is 

aligned with the flow direction so the angle of attack 

with respect to the central hole is set to zero. As a result, 

the central port is measuring the stagnation pressure of 

the flow, while the lateral ports are providing identical 

values, proportional to the static pressure. The 

aerodynamic center of the probe must be previously 

determined in the calibration setup ([5]). As a 

consequence, it requires of a highly-complex 

repositioning system leading to long acquiring times 

(the probe has to be aligned in each one of the 

measuring locations). Therefore, unsteady flows cannot 

be described using this method. The second operating 

mode, called “non-nulling”, does not require any spatial 

alignment with respect to the flow incidence. In 

particular, the probe is placed at a constant flow angle 

(yaw) of the test section. Both magnitude and direction 

of the flow are determined according to a previous 

calibration that correlates the pressure values measured 

in the probe ports with the real flow conditions ([6]). 

When the probes are operating in “non-nulling” mode, it 

is possible to measure unsteady flows if the pressure 

transducers present an accurate frequency response. 

Since the flow inside turbomachinery passages is 

inherently unsteady, the paper will analyze in detail the 
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performance of a CTHP operating in a non-nulling 

mode. 

Practically, all the methods that can be found in the 

literature regarding the calibration procedure of 

multihole pressure probes ([7]) have a common feature: 

they are using normalized calibration coefficients. Such 

coefficients, as defined in [8], are obtained for a three-

hole probe as a function of the total pressure, P0, the 

static pressure, PS, and all the pressures measured in the 

central hole, PC, and in both left-hand side, PL, and 

right-hand side holes, PR, yielding: 

 

 

( )

0 C 0 SL R
Po Ps

C L R

P P P PP P
C ;    C ;     C

Q Q Q

Q P 0.5 P P



− −−
= = =

= − +

 (1) 

 

where Cα represents the angular coefficient, CPo and CPs 

are the total and static pressure coefficients and Q is the 

normalization factor that is introduced in all the 

coefficients. It is important to recall that is necessary to 

find a relationship between all the variables that are 

introduced in (1) in order to get accurate measurements 

of a particular flow field. Typically, this relationship can 

be found by means of a direct calibration of the probe 

([9]). 

 

 
 

Figure 3. Magnitude and direction of the flow 

obtained using a typical THP calibration. 

 

 The calibration setup of a probe is based on a 

repositioning sequence of the probe inside a known flow 

field. This means that the relative angle position of the 

flow respect to the flow direction has to be 

progressively modified using a highly-precise angular 

stepping mechanism. For every angular position, the 

total and static pressures as well as all the pressure 

measurements in the holes are stored. Using these 

pressure values, all the calibration coefficients defined 

in (1) are directly obtained. Since the probe is 

symmetric, it is possible to fulfill the calibration just 

considering positive (or negative) incidence angles of 

the flow. However, in order to avoid slight differences 

derived from imperfections of the probe during the 

manufacturing process, it is preferred to conduct a 

complete calibration setup.   

 The calibration coefficients to be obtained following 

(1) and the procedure to determine both magnitude and 

direction of the flow after completing a measuring 

sequence with a CTHP is sketched in Fig. 3. Once the 

angular coefficient Cα is calculated, the flow angle is 

known and the values of both pressure coefficients, CPo 

and CPs are also determined. These coefficients allow us 

to calculate both static and total pressures of the flow. 

The difference between them, i.e. the dynamic pressure, 

is immediately related to the velocity magnitude of the 

flow. 

 Some authors have attempted to derive optimal 

mathematical fittings for the curves of the calibration 

coefficients. Different examples can be found in the 

literature, like references [10] and [11], where  it is dealt 

the definition of third-order polynomial functions to 

represent local values of all the variables. The main goal 

is placed on the development of general relationships to 

avoid numerical tools that are necessary in the post-

processing. However, due to the improvement of the 

computational resources in recent years, it is always 

preferred to employ interpolation methods from direct 

measurements in the calibration sequence, rather than 

mathematical approaches with higher levels of 

inaccuracy in the computation of flow variables. 

 On the other hand, when this kind of multihole 

probes are calibrated with normalized coefficients (1), 

the key point is the establishment of the maximum 

operative ranges attainable for the probe. Basically, 

different criteria about the amplitude of their ranges can 

be defined if they are related to the angular range of the 

measurements, to the velocity range that is measurable 

and even to the frequency response of the probes. 

 Existing multihole pressure probes in classical 

references offer a quite diverse angular ranges for the 

measurements. As shown in references [4] and [12], 

three- and five-hole probes with angular ranges of ±30º 

and ±25º respectively present a limited overall 

performance. Large angular ranges have been obtained 

by some researchers (up to ±70º and, even, ±80º), but 

through the design of probes with higher number of 

ports: seven holes in the case of references [8] and [13]. 

 Differences in the angular range of the 

measurements -even for two probes with the same 

number of holes and angular distance between them- are 

due to the calibration procedure used when obtaining 

Cα, CPo and CPs. In order to reduce the number of 

samples in the calibration setup, it is mandatory that the 

angular coefficient Cα varies monotonously with the 

flow angle α. Otherwise, a unique value of the flow, α, 

cannot be determined from the angular coefficient. 

Notice that the curve that defines the angular coefficient 

depends on the calibration procedure that is employed 

due to the normalization factor, Q. Anyway, there is 

always a maximum angle between the flow and the 

probe axis that implies that the flow is detached in two 

of the three holes of the probe ([14]). When this angle is 

exceeded, all the calibration data cannot be reduced to 
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obtain the velocity field, so this is the upper limit of the 

angular range of the measurements. 

 Other typical problem that arises in the 

normalization with the coefficient Q is the introduction 

of singular points for all the pressure coefficients when 

Q turns to zero. In fact, the problem is not really 

associated to the apparence of singular points, which 

could be avoided easily by means of some kind of 

mathematical operator. The definitive problem lies in 

the non-monotonous behavior of the curve of the 

angular coefficient when operating close to the 

singularities.  

 Basically, the calibration method is based on the fact 

that when the pressure coefficients are normalized, they 

vary significantly with the flow incidence angle, but are 

practically independent of the flow velocity ([8]). The 

normalized calibration coefficients are obtained 

considering that the pressure distribution around a 

cylinder can be expressed as follows: 

 

 ( )S d pP P P C= +    (2) 

 
where Pd corresponds to the dynamic pressure, Cp is the 

pressure coefficient and θ represents the angle between 

every point in the cylinder surface and the freestream 

direction. In the case of a three-hole probe, with a 

construction angle δ, the pressure in every hole (central, 

left and right) is given by: 
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If all the expressions in (3) are introduced in the 

definition of the normalized calibration coefficients (1), 

it is easily demonstrated that the coefficients are 

independent of both total and static pressures, being 

determined only by the pressure coefficient Cp. 

 The theoretical distribution of the pressure 

coefficients over a cylinder can be determined following 

the potential flow theory as a function of the angle θ, 

according to: 

 

 
2

pC 1 4sin= −  (4) 

 

which has been represented in Fig. 4 (inviscid line). 

Experimental distributions of the coefficient when both 

laminar and turbulent boundary layers (BL) are 

developed over the cylinder are also included in the 

figure. Noticeable differences can be found between the 

experimental results and the theoretical predictions. 

Thus, in the case of the laminar boundary layer, the flow 

separation overcomes at θ=82º (15), inducing a wide 

wake with relatively low pressures, which results in a 

high value of the pressure coefficient. On the contrary, 

when the turbulent BL is set on, the separation arises for 

an angle of 120 degrees, the wake is narrower than 

before and higher pressures with a minor drag 

coefficient are found. 

 
 

Figure 4. Pressure coefficient around a cylinder: 

inviscid, laminar and turbulent situations. 

 

 The potencial flow theory presents good agreement 

with the experimental results when θ is small, but 

important discrepancies appear when large angles are 

considered. In order to complete a rigorous analysis of 

all the calibration coefficients, a typical experimental 

distribution of Cp has been introduced in the following 

section, instead of the potential law. 

 

 
 

Figure 5. Drag coefficient as a function of the 

Reynolds number. 

 

 Figure 5 represents the variation of the drag 

coefficient for a cylinder as a function of the Reynolds 

number. This means that the distribution of the pressure 

coefficient is also a function of the flow velocity. 

However, it is possible to find large ranges where CD is 

practically constant. When Re is below 4·105, the BL 

presents laminar characteristics from the stagnation 

point to the locations where the flow is detached, with 

an important drag coefficient on the cylinder. When Re 

is between 4·105 and 7·105, there is a strong decay of 

the drag coefficient, usually known as “drag crisis”, 

because of the instabilities of the flow arising from the 

critical number on. The transition to turbulent flow is 

characterized by a movement of the separation point 

towards the rear side of the cylinder, resulting in a 

narrower wake with lower drag. The variation of the CD 

when Re is between 106 y 107 is due to the transition to 

turbulent flow of those regions in the BL where the flow 

has not been detached earlier. Anyway, in the range 

between 104 and 4·105, CD is practically constant, so it 
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can be perfectly assumed that Cp is independent of the 

velocity magnitude there. 

 

 
Figure 6. Strouhal number vs. Reynolds number. 

 

 The third limiting factor of the CTHP performance 

is referred to the frequency response of the probe. 

Though the flow around the probe may be steady, the 

wake behind the cylinder is inherently unstable, with an 

oscillating pattern that depends on the Reynolds 

number. The wake rolls up in vortices that are regularly 

shed from the cylinder. This kind of wakes is usually 

known as “Von Kàrman vortex street”. The frequency 

associated to the vortex shedding is a function of the 

Strouhal number. 

 Figure 6 shows the variation of the Strouhal number 

with the Reynolds number (adapted from [15]). In the 

range between 104 and 4·105, the Strouhal number is 

practically constant with a typical value of 0.2. Beyond 

the shedding frequencies associated to a Strouhal 

number of 0.2, the measurements of the probe are not 

capturing real flow physics. Instead, the sensors are 

measuring the Von-Kàrman vortex street or even 

oscillations of the probe itself. 

 

 

ANGULAR CALIBRATION 

 

 This section contains a theoretical analysis of the 

calibration coefficients in the case of a CTHP with an 

angular distance of 45 degrees between the holes. The 

calibration coefficients that are obtained using a 

traditional normalizing factor Q are compared to the 

new set of coefficients derived from an improved 

normalization factor QN. 

 The distribution of the pressure coefficient Cp in the 

central hole should be obtained rolling the probe 360 

degrees about its own axis. However, since the interest 

is now placed in developing a theoretical framework of 

the calibration setup, the analysis is afforded using 

bibliographic data. Thus, we have employed for 

convenience a curve fitting tool based on splines 

through the experimental data collected in [16] for a 

Reynolds number of 2.3·104. The Cp distributions in 

both left (L) and right (R) holes have been constructed 

shifting the original data for the central hole ±45º 

respectively. The final distributions in the three-holes, 

which are a function of the flow angle α, are plotted in 

figure 7. Though adapted from experimental results, Cp 

distributions imposed like this have to be considered as 

ideal, since these assumptions imply that there is no 

uncertainty associated either to the angular distance of 

the holes or to the probe misalignment. 

  

 
 

Figure 7. Pressure coefficients in the holes of a 

CTHP with an angular distance of 45º. 

 

 As expected, the maximum of the pressure 

coefficient in the central port is obtained for a flow 

angle of 0 degrees. Similarly, maximum values for both 

left and right ports are reached respectively at ±45º. If 

the construction angle of the probe would be 60 degrees, 

then the maximum values for both lateral holes would 

be placed at ±60º. 

 Following, with the pressure distributions of figure 

7, the calibration coefficients that are derived from the 

traditional calibration (normalization factor Q) are 

shown in figure 8. 

 The total and static pressure coefficients, CPo and 

CPs, are very similar. Both of them are symmetric 

respect to an incidence flow angle of 0 degrees. In the 

angular range of ±30º are positive, showing values 

between 0 and 4. For the angular range of ±10º are 

nearly constant, rising as the flow angle increases 

towards ±30º. On the contrary, the angular coefficient 

Cα is anti-symmetric respect to a flow angle of 0 

degrees. This way, it takes positive values for negative 

incidence angles and negative values for positive 

incidence angles, ranged from -6 to 6. At a 0 degree 

flow angle, the angular coefficient is zero. 

 The significance of figure 8 is that the angular range 

of a CTHP calibrated with the traditional method is just 

limited to the interval between -30 and 30 degrees. 

Outside of this angular range, the angular coefficient is 

no longer monotonous with the flow angle, as illustrated 

in figure 9. Shown in the figure is the distribution of the 
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angular coefficient calculated with the regular 

normalization factor Q, for two probes with construction 

angles of 45 (black line) and 60 degrees (gray line). The 

x-axis has been extended to include an angular range of 

±70º. Notice that outside the interval of [-30º,+30º], 

singular points are introducing sharp discontinuities in 

the coefficient. As a result, beyond the internal angular 

range, the calibration data cannot be reduced to obtain a 

unique flow angle, limiting the use of the probe. 

 

 
 

Figure 8. Calibration coefficients using the 

traditional normalization factor Q, δ=45º. 

 

 In addition, as observed in figure 9, both probes with 

different construction angles exhibit a similar attainable 

angular range. As a consequence of this result, an 

attempt was made to bring out a new method to 

calibrate a CTHP, with the final objective of increasing 

the angular range of the probes. 

 By definition, the angular coefficient is calculated as 

the pressure differential on the left and right holes, 

divided by the normalization factor –eq. (1)–. If the 

normalization factor would be value unity, the pressure 

differential between ports L and R would offer a 

monotonous angular coefficient along an angular range 

of, at least, twice the construction angle of the probe 

(see figure 7). With that pressure differential in the 

numerator of the angular coefficient, it was necessary to 

find a normalization factor as constant as possible when 

varying the flow angle. This new normalization factor is 

labelled as QN.   

 
 

Figure 9. Angular coefficient obtained using the 

normalization Q for two CTHP with angular 

distances of 45º and 60º.  

 

First of all, it is considered what happens in case of 

positive flow angles. In this case, the pressure 

distribution in the left hole is quite constant. Besides, up 

to 60 or 70 degrees, the pressure distribution in the 

central hole is quite similar to the inviscid behavior of 

potential flow (see figure 4), so it could be expressed as 

a function of 
2cos  . The pressure distribution in R is 

obtained moving the central distribution an angular 

distance equal to the construction angle of the probe. As 

a consequence, it could be expressed as a function of 
2sin  . This trigonometric correlation for sine and 

cosine functions is valid in the angular range between 0 

and 90 degrees, which includes the angular interval 

considered in this discussion. However, the objective is 

to find an approximate relationship between the 

pressure ports, rather than an exact mathematical 

expression. Then, since 
2 2cos sin 1 cte+ = = , the 

new coefficient QN could be defined as the sum of both 

pressures in C and R. On the other hand, QN must be 

independent of the static pressure. Considering that the 

pressure in L is nearly constant for positive flow angles, 

it is feasible to subtract twice the sum of the pressures in 

the central and right holes in order to eliminate the static 

pressure in the definition of QN. This yield: 

 

 
N C R LQ P P 2 P     for    0º= + −    (5) 

 
 This definition provides a normalization factor, 

independent of the static pressure, which can be 

expressed as the product of the dynamic pressure times 

a certain function of the flow angle. Thus, by means of 

QN, an angular coefficient independent of the dynamic 

pressure and only function of the flow angle is 

available. 

 Previous discussion is exclusively applicable for 

positive flow angles. In the case of negative incidences, 

it is necessary to reconsider this reasoning, so it can be 

deduced that the normalization factor should be now: 

 

 
N C L RQ P P 2 P     for    0º= + −    (6) 
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 In the calibration process, it is possible to define 

different angular coefficients in case of positive or 

negative flow angles, but when measuring this 

discrimination is unpractical. For a real measurement, 

you may have different angular coefficients only if you 

can differentiate the sign of the angular range using 

some of the pressure values sensed in the probe holes. 

Fortunately, in the case of the normalization factor QN 

defined through (5) and (6), the flow angles are positive 

when PR>PL and negative when PL>PR. Even when the 

flow angle is zero, both pressures in the left and right 

holes are the same, so QN presents no discontinuities for 

α=0º. In summary, the calibration coefficient QN is 

defined as: 

 

 
C R L R L

N

C L R L R

P P 2 P     for    P P
Q

P P 2 P     for    P P

+ −  
= 

+ −  
 (7) 

  

 Figure 10 shows the angular coefficient that is 

calculated using QN for two probes with an angular 

distance of 45 (black line) and 60 degrees (gray line) 

between the holes. The angular coefficient with this new 

method is monotonous, with a large angular range (up to 

±70º) and it is not presenting any singularity with the 

flow angle. Moderate values between -1.25 and 1.25 are 

exhibited by this new angular coefficient. In a similar 

fashion to previous traditional calibration, Cα is negative 

in the case of positive flow angles and negative when 

the incidence is positive, being zero with no incidence 

angle. 

 Moreover, as shown in Fig. 10, both probes share a 

very similar attainable angular range (±70º), 

independently of the angular separation δ. The 

distribution of the angular coefficient is also very 

similar, though they present slight differences, 

especially in the slope at certain regions of the plot. 

Further insight in this concern will be made when 

analyzing the influence of the construction angle over 

the angular coefficient in following sections. 

 

 
 

Figure 10. Angular coefficient obtained using the 

new normalization QN for two CTHP with angular 

distances of 45º and 60º. 

 

 

The reason for an angular range of ±70º with no 

limitations in the construction angle of the CTHP is 

really a consequence of the variation of the 

normalization factor QN. When the magnitude of the 

pressure differential between L and R starts to decrease 

with the construction angle δ, the normalization factor 

QN is reduced as well, even in a faster rate. Therefore, 

the monotony of the angular coefficient with the flow 

angle is preserved, even after that the pressure 

differences L-R are no more a monotonous function of 

α. If the normalization factor QN would have been 

constant, the angular range would be severely limited by 

the angular separation between the holes. 

The question arises as to why the angular range of 

the probe is precisely ±70º, independently of the angular 

distance of the holes. Shown in figure 11 is a partial 

zoom of previous figure 7 pointing out the limits of the 

angular range. In the proximity to 70 degrees, the 

pressure in the left hole is practically constant. The 

pressure in the right hole begins to fall from higher 

levels while the pressure in C has reached its minimum 

and now begins to increase. This implies that from the 

point with the minimum pressure value in C on, it is not 

possible to discriminate the pressure values, leading to 

the appearance of unacceptable double solutions for the 

flow angle. This assertion is a purely mathematical 

conclusion, based on the fact that the three-equation 

linear system given in (3) has no unique solution when 

the flow angle is outside the angular range of ±70º. 

Also, when the pressure values in C and L are 

approximately equal to each other, the uncertainty of the 

measurement is dramatically increased and the probe 

resolution fails. Additional insight on this topic will be 

presented in the next section. 

 

 
 

Figure 11. Limits of the angular range for a CTHP 

calibrated with the normalization factor QN. 

 

Summarizing, the great advantage of this new 

method (based in the normalization factor QN) to 

calibrate a CTHP is that the angular range of the probe 

is improved in 80 degrees. Therefore, it is possible to 

dispose of a pressure probe that allows measuring over a 

large range of flow onset angles, in particular up to 140 

degrees. 
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UNCERTAINTY 

 

 Having defined this new calibration method, it is 

necessary to analyze the uncertainty levels associated to 

the normalization factor QN. Present investigations 

confirm that not only the angular range is increased, but 

also the uncertainty levels are roughly different respect 

to typical acceptable tolerances. 

 In many ways, the factor QN can be considered as 

two times the traditional coefficient Q, since it is 

calculated using twice the pressure values of the holes. 

Then, the uncertainty of the measurements associated to 

the coefficient QN may be estimated somehow as twice 

the uncertainty of the measurements calibrated using Q. 

Nevertheless, the uncertainty in the angular coefficient 

is small because of the reduced transfer of uncertainty in 

the mathematical process. In fact, though the 

uncertainty in the flow angle is higher (shown later) for 

small flow angles, the uncertainty in the velocity 

magnitude and the static pressure are lower, even inside 

the typical angular range of traditional calibration 

(between ±10º and ±30º). 

 The methodology proposed in [17] has been 

followed to evaluate the uncertainty of the flow 

variables measured with a CTHP. Hence, according to 

previous distributions of the angular coefficient, the 

flow angle can be expressed in terms of a unique 

explicit analytic function of Cα. Mathematically 

speaking: 

 

 

2

2 2

CI I
C 



 
= 

 

 (8) 

 

Using the definition of the angular coefficient in (1), 

the uncertainty of Cα can be also obtained following an 

analogous algebra: 
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 (9) 

 

where Q is the traditional normalization factor. To that 

end, it has been supposed that the uncertainty in the 

pressure is the same for all the holes, being equal to the 

uncertainty in a pressure measurement, IP, which is 

basically determined by the uncertainty of the pressure 

transducers. 

 The uncertainty of the traditional normalization 

factor Q is given by: 

 

 

2 2 2

2 2

Q P

C L R

2

P

Q Q Q
I I

P P P

3
I

2

        
 = + +  =     
        

= 

 (10) 

 

Substituting equation (10) into (9), the uncertainty of 

the angular coefficient is expressed as a function of the 

uncertainty in the pressure measurement: 

 

 
2

2 2 P

C 2

I3
I 2 C

2 Q 

 
= + 
 

 (11) 

 

Finally, including equation (11) in (8), the 

uncertainty of the flow angle is: 

 

 2 PI3
I 2 C

C 2 Q
 



 
=  +  

 
 (12) 

 

where the derivative of the angle with respect to the 

angular coefficient must be evaluated numerically. 

Analogous considerations lead to define the relative 

uncertainty for the velocity magnitude as well as the 

static pressure uncertainty, according to: 

 

 v Ps

P

d

I C3
I

v 2 2P
=    (13) 

 2 2

Ps Po Ps P

3
I 1 C C I

2
 = + +    (14) 

 

Applying identical deductions in the case of the new 

calibration method, the uncertainty of the normalization 

factor QN is: 

 

 N

2 2 2

2 2N N N

Q P

C L R

2

P

Q Q Q
I I

P P P

6 I

        
 = + +  =     
        

= 

 (15) 

 

From (15), all the uncertainties associated to the 

flow angle, the velocity magnitude and the static 

pressure for the new calibration are given by: 

 

 2 P

N

I
I 2 6C

C Q
 



 
=  +  

 
 (16) 

 v Ps

P

d
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I

v 2 P
=    (17) 

 2 2

Ps Po Ps PI 1 6 C C I = + +  
 (18) 
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Figure 12. Calibration coefficients and uncertainty levels in a CTHP with δ=45º obtained through traditional 

(Q) and improved (QN) calibrations. 

 

The right column of figure 12 shows the 

distribution of all the uncertainties formulated before as 

a function of the flow angle. Both results for traditional 

(dashed lines) and new (solid lines) calibrations are 

included in the array of plots. In addition, the left 

column of the figure reproduces the calibration 

coefficients that are derived from both normalization 

factors Q and QN. All the uncertainties have been made 

non-dimensional. The uncertainty of the flow angle is 

expressed as a percentage of the pressure uncertainty, 

IP, relative to the dynamic pressure Pd. This means that, 

for instance, if α=30º the uncertainty in the flow angle 

is about 0.5 degrees for every 1% of IP/Pd. The 

uncertainty for the static pressure is referenced to the 

uncertainty of the pressure measurement. Finally, the 

relative uncertainty for the velocity has been made 

non-dimensional with the relative uncertainty of the 

dynamic pressure, instead of using the static pressure. 

This implies that the static pressure of the flow cannot 

be excessively high respect to the dynamic pressure. 

From figure 12, it is observed a common feature for 

both calibrations: the uncertainty of the flow angle 

tends to infinite when the normalization coefficient 

tends to zero (at ±30º for Q and ±70º for QN). This is 

because the angle uncertainty is calculated dividing by 

the normalization factor –equations (12) and (16)–. 

Alternatively, though the relative uncertainty of the 

velocity and the uncertainty of the static pressure are 

not obtained dividing by the normalization factor –

equations (13), (14), (17) and (18)–, both variables tend 

to infinite at ±30º when using the traditional 

calibration. This is a consequence of the behavior of 
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both static and total pressure coefficients, that are also 

infinite at ±30º (left column of the figure). On the 

contrary, the relative uncertainty of the velocity and the 

uncertainty of the static pressure in case of the new 

calibration are increased towards ±70º, but limited to 

finite values. 

For a flow angle of zero degrees, the uncertainty in 

the angle measurement is the same for both 

calibrations. Inside the angular range of ±30º, the 

uncertainty Iα is slightly higher when using the new 

calibration than the traditional one. Even so, at ±60º it 

is considerable small with just 1º for every 1% of IP/Pd. 

 The relative uncertainty in the velocity magnitude 

and the uncertainty in the static pressure are a bit 

higher when calibrating with QN for α=0º. On the other 

hand, in the angular intervals [-30º, -10º] and [10º,30º], 

the results show a better performance of the new 

calibration method. Complementarily, the relative 

uncertainty of velocity takes values ranged between 0.5 

and 1.2 times IP/Pd for the whole angular range, which 

is an exceptional good result. The uncertainty of the 

static pressure is strongly increased from 1.2 to 2 times 

IP at ±40º, reaching up to 6 times IP when being nearby 

±70º. 

 Anyway, overall differences between the 

uncertainties evaluated for both calibration methods are 

not significant in the angular range of ±30º. Therefore, 

the new calibration is not only providing a CTHP that 

is capable of measuring angular variations of the flow 

up to 140 degrees, but it also presents reasonable low 

uncertainties for the whole angular range of the probe. 

 

 

INFLUENCE OF THE ANGULAR DISTANCE 

BETWEEN THE HOLES 

 

 Having observed that with the new normalization 

factor QN, the attainable angular range of a CTHP is 

practically the same for a construction angle of 45 that 

for an angle of 60 degrees, it led to investigate if it is 

possible to find an optimal construction angle δ in 

order to minimize the uncertainty in the measurements. 

Figure 13 shows the angular coefficient normalized 

with QN as a double function of the flow angle and the 

angular distance between the holes. In this case, 

beyond a separation distance of 70 degrees, the angular 

coefficient of the probe losses its monotonous behavior 

around a flow angle of 0 degrees, so the calibration 

cannot provide a unique value and fails. This 

characteristic is also reproduced for angular distances 

of the holes below 25 degrees (not shown in the 

figure). Hence, the theoretical limits for these 

construction angles of the probe are between 25 and 70 

degrees. 

Probes designed with the lowest separation angles 

are presenting angular coefficients with a higher slope 

when the flow angle is approaching to zero degrees. 

However, within the range of 50 to 60 degrees for the 

angular separation of the holes, the slope of the angular 

coefficients is more uniform for the whole range of 

flow angles. A priori, a uniform slope of the angular 

coefficient implies a lower uncertainty in the 

measurements, since the uncertainty of the angle 

measurement is obtained from that slope –equation 

(16)–. Therefore, it is quite suspectable that, in terms of 

uncertainty, the optimal separation angles between the 

holes of the probe must be chosen between 50 and 60 

degrees. Respect to the horizontal range, though small 

variations in the maximum angular range of the 

measurements are observed in figure 13 (the different 

tails of all the distributions), they are sufficiently small 

to be omitted. 

Through the complete set of formulae developed 

for the new calibration in the previous section, the 

uncertainty in the measurements for the flow angle, the 

velocity magnitude and the static pressure have been 

represented as a function of both flow angle, α, and 

angular distance, δ, in the left column of figure 14. 

Since there are excessive variations in the 

uncertainties as a function of both angles, the particular 

case for a flow angle of zero degrees has been 

extracted from the three-dimensional map and plotted 

in the right column of the figure. These plots are also 

including maximum values of uncertainty and mean 

values averaged for every angular distance. To enhance 

 
Figure 13. Angular coefficients obtained from the new calibration (QN) for a CTHP as a function of the angular 

distance δ between the holes. 
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the visualization of the results, the three-dimensional 

maps are only showing the values within an angular 

range of ±60º, since the uncertainty levels are 

dramatically increased when the flow angle is outside 

that range. 

 The uncertainty of the angle measurement is quite 

constant for angular distances of the holes between 30 

and 65 degrees. For a flow incidence of zero degrees 

(dashed lines) it takes values around 0.25 degrees for 

every 1% of IP/Pd. The mean uncertainty (solid black 

lines) is limited to 0.5 degrees for every 1% of IP/Pd, 

while the maximum uncertainty (gray lines) is 

maintained about 1 degree for every IP/Pd. Beyond an 

angular distance of 65 degrees for the holes, the 

uncertainties tend to be infinite. 

 The mean value of the relative uncertainty for 

velocity is basically constant, averaging 0.6 times IP/Pd. 

In a similar fashion, the mean value of the uncertainty 

for the static pressure is placed around 2 times IP for 

the whole range of construction angles. In addition, in 

case of both velocity and static pressure uncertainties, 

the maximum values and the distribution when α=0º 

are increased if the angular distance between the holes 

is reduced. When α=0º, the relative uncertainty of the 

velocity is placed between 0.6 and 1.5 times IP/Pd, 

while the uncertainty of the pressure varies from 1.5 to 

3.2 times IP. Finally, the results show that maximum 

values of the velocity uncertainty overlap with the 

values of zero-degree flow angle when the angular 

 
 

Figure 14. Uncertainty of a CTHP calculated from the new calibation (QN) as a function of both flow angle, α 

and the angular distance between the holes, δ.
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distance of the holes is below 40 degrees. The values 

range between 0.75 and 1.5 times IP/Pd. In the case of 

the static pressure, maximum values of uncertainty are 

placed between 3.5 and 5.7 times IP. In any case, all the 

uncertainty ranges of the probe are perfectly acceptable 

for typical applications (e.g., turbomachinery, 

boundary layers, free shear flows). 

 As a conclusion, figure 14 points out that, in terms 

of accuracy of the probe uncertainty, the more 

desirable design of the probes is achieved when the 

angular distance between the holes is chosen to be from 

50 to 60 degrees (“optimal range” in the figure). 

However, other designs with angular separation ranged 

from 45 to even 65 degrees are also perfectly valid, 

since the angular range is practically conserved and the 

uncertainty of the measurements is still well-restricted. 

 

 

EXPERIMENTAL APPLICATION 

 

 As a practical application, a specific-designed 

CTHP to measure the flow downstream of the rotor of 

an axial turbomachine, has been developed and 

calibrated according to the new method presented in 

this paper. The axial turbomachine is a single-staged, 

low-speed axial fan with a typical stator-rotor 

configuration.  

 The main objective of this experiment is to measure 

a highly-complex, incompressible flow which is 

roughly uniform in the radial plane (at midspan) but 

presents large non-uniformities in the circumferential 

direction. Therefore, in the central positions of the 

blade passages, the flow can be assumed to be two-

dimensional, with a typical wake-jet structure that is 

periodically modifying the flow angle at the exit. 

Consequently, the flow patterns can be perfectly 

described by means of a typical two-dimensional 

pressure probe like a CTHP. 

 The rotor of the turbomachine is rotating in front of 

the probe location, so the probe is alternatively facing 

fluid flow coming from the free-stream region of the 

blade passages and fluid flow coming from the rotor 

wakes. Since the wake fluid presents and important 

velocity deficit associated to the blade blockage, there 

are important variations in both magnitude and 

direction of the flow in every blade passing period. 

 The probe frequency response that is necessary to 

acquire the typical length and time scales of this 

phenomenon, must be at least ten times the blade 

passing frequency (BPF). In addition, in the analysis of 

the CTHP uncertainty, it was assumed that the static 

pressure cannot be excessively large compared to the 

dynamic pressure. Effectively, downstream of the 

rotor, the static pressure is hardly modified in the 

tangential direction, but slightly changing in the radial 

direction. This means that a CTHP calibrated using the 

new normalization factor is perfectly accurate to 

describe a fluid flow with these characteristics.  

 Figure 15 shows a sketch of the pressure probe 

designed to measure the flow patterns of the axial flow 

fan. In particular, the diameter of the probe is 8 mm 

with a total length of 75 cm. With these dimensions, 

the Reynolds number based on the probe diameter and 

the free-stream velocity is around 2·104. The probe was 

designed for an angular separation of 60 degrees 

between the holes, which are placed at 15 mm from the 

semi-spherical tip. The hole-labelling convection is C, 

L and R for central, left and right holes as usual. 

Previous experiments were conducted using a similar 

probe, but with an angular distance of just 45 degrees. 

Respect to the probe holes, they are containing 

miniature pressure sensors of 2.3 mm diameter and 16 

mm length. The cylindrical geometry of the probe 

allows placing the transducers in an equally spaced 

layout of 120 degrees around the probe axis. This 

arrangement implies a minimum distance between the 

transducers, so it is feasible to construct a probe with 

the diameter as small as possible. The distance from 

the holes face to the transducers is 4 mm for both left 

and right ports, while it is increased to 8 mm in the 

central port (see the top view in the sketch). Since the 

holes are so close one to each other, the frequency 

response of the probe is just depending on the 

transducers sensibility.  

 

 
Figure 15. Sketch of the specific-designed CTHP to 

measure the flow downstream of the rotor.  

 

 Figure 16 shows a typical experimental calibration, 

obtained using the new normalization factor QN, for the 

CTHP. The calibration was carried out in a stepping 

rotational mechanism using angular intervals of 10 

degrees. Though this sequence is not very precise, it is 

useful to appreciate the calibration data. For instance, 

with these coarse distributions, it is possible to expose 

that the probe is slightly misaligned within the holder, 

approximately 5 degrees. Notice that using a 

calibration method based on mathematical curve 

fitting, all the coefficients would be approached to 

theoretical distributions. As a consequence, this slight 

misalignment would derive in a classical bias error. By 

means of the calibration methodology presented in this 

paper, this error is vanished because it is really 

integrated with the information of the calibration. 
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Figure 16. Experimental calibration according to 

normalized coefficients, QN, for a CTHP with δ=60º. 

 

 Figure 17 shows the results of an instantaneous 

measurement downstream of the fan rotor. The 

pressure signals acquired in the holes have been 

already translated to values of velocity magnitude and 

flow angle. 

 The velocity magnitude has been made non-

dimensional with the blade tip velocity. The flow angle 

is referred to the probe axis. The horizontal axis 

represents time, non-dimensionalized by rotor blade 

passing period, Tr. At a first glance, though the signals 

are extremely turbulent, it is possible to identify the 

rotor wakes in the angle signal, with large variations 

ranging from -20º to 45º. Moreover, some other traces 

(not shown here) have presented even higher variations 

of the flow angle between the wake fluid and the free-

stream flow. Obviously, this justifies the election of 

CTHP calibrated in order to obtain large angular 

resolution. 

 
Figure 17. Instantaneous measurement of the 

velocity magnitude and the flow angle with a CTHP. 

 
Figure 18. Blade-to-blade maps of both velocity 

magnitude and flow angle measured with a CTHP. 

 

 Complementarily, a set of measurements were 

conducted in a transverse sector covering the whole 

span of the machine over one stator pitch. Then, 

information of the flow was acquired in several 

circumferential locations for a constant radius (at 

midspan in the map on top of figure 18); and also in a 

few radial positions for a particular angular phase (the 

map in the bottom of the figure). The pressures sensed 

in the holes are transformed into velocity magnitudes 

and flow angles as usual. The raw data is additionally 

ensemble-averaged in order to remove turbulence. 

Thus, a trigger signal is also employed to enable a 

correct phase-locked sampling that allows the 

identification of every rotor phase when ensemble-

averaging in the post-processing ([18]). This technique 

is suitable to obtain temporal evolutions of the velocity 

field in both radial and circumferential maps, like those 

represented in figure 18. 
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 The map on top shows the circumferential 

distribution of the velocity field at midspan. The 

velocity is made non-dimensional with the blade tip 

velocity as before. The x-axis represents the tangential 

position, ranging from 0 to 1 as a fraction of a 

complete stator pitch, while the y-axis represents time 

non-dimesionalized by Tr. The drawing reveals a 

residual wake coming from a stationary stator vane 

(gray dashed line), since it is fixed to a particular 

angular position over time. This implies that the stator 

wakes have not been completely mixed-out when 

convected throughout the rotor passage. Similarly, the 

rotor wakes are also identified (black dashed lines) 

with transversal bands of low velocity running 

diagonally across the map. Obviously, they are 

diagonal because they are moving tangentially over 

time. Nearby the rotor wakes, there is also a transversal 

band of high velocity that corresponds to the blade-to-

blade velocity gradient established from the pressure 

side to the suction side of the blades. The velocity 

magnitude varies between 0.4 and 0.46 times the blade 

tip velocity, with the minimum values on the rotor 

wakes as expected. 

 Figure 18 is completed with a radial map of the 

flow angle with respect to the probe axis. In this case, 

the time is positioned in the abcisa, while the vertical 

axis represents the normalized span of the machine. 

Since the measurements were acquired in a particular 

circunferential position respect to the stator pitch, it is 

totally representative that no traces of unmixed stator 

wakes are visible in the map. On the contrary, it is 

clearly identifiable the presence of a rotor wake 

(dashed black line) with higher flow angles when t/Tr = 

0.75. Furthermore, maximum flow angles are 

associated with the wall annulus boundary layers in 

both hub and tip regions, while significant uniform 

flow conditions are observed in the midpassage of the 

blades. These results, drawn in a spatial-temporal 

diagram, have been derived from an ensemble-

averaging procedure, so the variations of the flow angle 

are necessary lower (up to 40º) than those registered in 

the instantaneous signals of figure 17. As expected, 

these measurements have revealed the complexity of 

the flow patterns downstream of the rotor of an axial 

turbomachine. 

 Summarizing, this application has shown the ability 

of a CTHP, calibrated with the normalization factor 

QN, to measure unsteady two-dimensional flows with 

significant variations in the flow angle.  

 

 

CONCLUSIONS 

 

 This paper develops a brand new calibration 

method for a CTHP working in “non-nulling” mode, 

which is based on the definition of an improved 

normalization factor. The new calibration of the probe 

extends the attainable range of the measurements in 80 

degrees with respect to the typical angular ranges 

derived from traditional calibrations. 

 

  

 Moreover, this new calibration is fulfilled using 

directly a numerical adjustment of the calibration data, 

instead of a mathematical curve fitting of the 

calibration coefficients. Therefore, typical errors 

associated to manufacturing imperfections or 

misalignments in the calibration setup are skipped. 

 It has been confirmed that the angular range of the 

probe is practically independent of the angular 

separation of the holes. It is also documented that, with 

the new calibration, the angular range of the 

measurements is limited by the angle that is 

determining the minimum pressure coefficient in the 

central hole of the probe. 

 To validate this study, an uncertainty analysis of the 

new calibration has been carried out. It has been found 

that the uncertainty is not significantly modified with 

respect to traditional calibrations, being even lower for 

certain angular intervals. In any case, global 

uncertainties in the measurements with this new 

calibration are perfectly acceptable for all the attainable 

angular range of the probe.   

 Additionally, further investigations were 

undertaken in order to find the optimal construction 

angle of the probe in terms of uncertainty levels. It was 

found that the optimal angular distance for the holes is 

ranged between 50 and 60 degrees. However, those 

probes designed with separation angles from 45 to 65 

degrees are perfectly usuable, since the angular range is 

practically maintained and the uncertainty maxima can 

be still assumed.  

 Finally, a CTHP with an angular distance of 60 

degrees was specific-designed to perform experimental 

measurements downstream of the rotor of an axial 

turbomachine. Prior to measure, the calibration 

coefficients derived from the improved normalization 

factor were determined experimentally. As a result, it 

was revealed that the attainable angular range of the 

probe is increased up to ±70º. 

 A detailed analysis of the jet-wake pattern within 

the turbomachine passage has confirmed that the probe 

is capable of capturing the basic flow phenomena, even 

though high unsteadiness and large variations of the 

flow angles may be present. 

 With the new calibration developed in this paper, it 

is possible to employ a CTHP that enables to measure 

two-dimensional unsteady flows with variations in the 

flow angle of up to 140 degrees under acceptable levels 

of uncertainty.  
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NOMENCLATURE 

 

BL   Boundary Layer 

BPF  Blade Passing Frequency 
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CTHP  Cylindrical Three-Hole Probe 

FHP  Five-Hole Probe 

LDV  Laser Doppler Velocimetry 

SHP  Seven-Hole Probe 

THP  Three-Hole Probe 

 

C   Central hole 

Cα   Angular coefficient 

CD   Drag coefficient 

Cp   Pressure coefficient 

CPo   Total pressure coefficient 

CPs   Static pressure coefficient 

Iα   Angle uncertainty, [deg.] 

ICα   Angular coefficient uncertainty 

IP   Pressure uncertainty, [Pa] 

IPs   Static Pressure uncertainty, [Pa] 

IQ   Normalization coefficient uncertainty 

IQN   New normalization coefficient uncertainty 

Iv   Velocity uncertainty, [m/s] 

L   Left hole 

P   Pressure, [Pa] 

PC   Central hole pressure, [Pa] 

Pd   Dynamic pressure, [Pa] 

PL   Left hole pressure, [Pa] 

P0   Total pressure, [Pa] 

PR   Right hole pressure, [Pa] 

PS   Static pressure, [Pa] 

Q   Normalization coefficient 

QN   New normalization coefficient 

R   Right hole 

Re   Reynolds number 

St   Strouhal number 

t   Time, [s] 

Tr   Rotor blade passing period, [s] 

U   Rotor tip speed, [m/s] 

v   Flow velocity, [m/s] 

 

Greek letters 

 

α   Flow angle (yaw angle), [deg.] 

δ   Construction angle of the probe, [deg.] 

θ   Angle around the cylinder, [deg.] 

θS   Separation angle, [deg.] 
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