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Magnetization processes in rectangular versus rhombic planar superlattices of magnetic bars
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Rectangular and rhombic patterned superlattices of magnetic bar elements have been experimentally studied
and theoretically modeled in order to analyze the role of the array geometry in their magnetization reversal
and coercivity. The results show that a dominating part of the coercive field (≈250 Oe) is due to the reversal
processes within a single bar element (independent of the array geometry) which is well described by the
standard micromagnetic calculation. Otherwise, a smaller (≈60 Oe) but significant difference between the
magnetization loops in the two geometries is related to the magnetostatic coupling effects between the bars and it
is reasonably accounted for with a simple model of Coulomb-like interaction between terminal magnetic charges.
The possibility to use this geometry effect to control the performance of artificial magnetic media is discussed.
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Systems of magnetic micro- and nanoelements with dipolar
or exchange coupling are interesting both for fundamental
physics and for practical applications (e.g., for magnetic
recording media).1–9 Fundamental interest is motivated by the
possibility to controllably form nontrivial collective magnetic
states10 and manipulate phase transitions11,12 between them,
controlled either by the material and shape parameters of
nanoelements and by the geometric parameters of artificial
superstructures. Such superstructures for prospective applica-
tions in spintronics and nanotechnologies are mainly studied
in the simplest geometry of a square superlattice, having
high enough symmetry13–15 which can hide however certain
important manifestations of magnetic interactions.

To check the importance of the lattice geometry for
the magnetic ground state and dynamical properties, we
have studied magnetic properties of two artificial lattices
made from Cobalt microbar elements and having rectangular
(rec) and rhombic (rho) geometry. They were fabricated
using the electron-beam lithography Raith system and lift-
off techniques. The net magnetization M was studied by
Magneto-Optical Transverse Kerr effect.16 In this system, a
laser beam is focused on a 300 μm spot over the sample,
sensing the average magnetic response of the whole array to
the external magnetic field H applied along the x-direction.
The magnetic domain structures were probed by Nanotec
Atomic Force Microscope with Nanosensors PPP-MFMR
magnetic cantilevers in the magnetic force microscopy (MFM)
measuring mode under applied in-plane magnetic field up to
950 Oe. Scanning electron microscopy images show that the
fabricated Co elements are of a = 1.5 μm and b = 0.3μm
size (along the x and y Cartesian axes, respectively) at 0.3 μm
separation between them (Fig. 1), while their thickness was
defined in the deposition process as c = 0.04 μm. The rec- and
rho-superlattice geometries are coherent along all the patterned
200 × 200 μm square arrays.

The observed magnetization loops (Fig. 2), at reversing
H from its maximum value downward to negative values,
maintain the initial saturation level M ≈ Ms until a sudden

drop at a nucleation field −Hn, then passing M = 0 at a
coercive field −Hc and finally reaching the inverted saturation
−Ms at the related field −Hs . The respective stages at reversing
from −Hs upward occur at positive Hd , Hc, Hs values.
Notably, all these characteristic fields in the rec-geometry:
Hn ≈ 110 Oe, Hc ≈ 203 Oe, and Hs ≈ 331 Oe are somewhat
reduced compared to those in the rho-geometry: ≈ 186, 272,
and 543 Oe, respectively. The slope |dM/dH | is almost
identical for the two geometries at the nucleation stage but
becomes sizeably slower for the rho-geometry at the inversion
stage. These geometry effects are undoubtedly beyond the
experimental errors and so are due to magnetic interactions
between the bar elements (see below).

A deeper insight on the underlying physics is obtained from
the MFM data at sweeping the applied field from Hs to −Hs for
each geometry. Figure 3 shows that the magnetization reversal
mostly occurs through formation of specific linear domains
(LD) along the x-direction. In the rec-case, these domains
show more tendency to intercalation, that can be seen as “linear
antiferromagnetism” (LAFM), while in the rho-case they more
tend to merging or to ferromagnetism (FM), especially in the
inversion stage as indicated by arrows in Figs. 3(c) and 3(g).

Discussing the magnetic states of the overall system, it is
reasonable to distinguish between the two main tasks: first, the
geometry independent hysteresis defined by reversal processes
in an isolated element and, second, the geometry dependent
magnetostatic interactions between elements, sensitive to the
angles between their magnetizations and relative position
vectors.

The reversal processes in an individual element can be
suitably described within the common framework of micro-
magnetic OOMMF routine,17 tracing the steps from the initial
fully saturated state, through formation and propagation of
certain vortex and domain structures within the bar, until reach-
ing its full inverse saturation. The exact shape of fabricated
elements and standard parameters of magnetization Ms ≈
1400 emu/cm3, exchange constant A ≈ 3 × 10−6 erg/cm,
and uniaxial anisotropy constant Ku ≈ 4 × 104 erg/cm3 were
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FIG. 1. Bar elements of a length, b width, and b separa-
tion, forming two types of superlattices: (i) rectangular (rec) and
(ii) rhombic (rho). Dashed lines show the respective unit cells.

used. The resulting hysteresis loop shown in Fig. 2 is almost
rectangular with the (micromagnetically defined) coercivity of
Hm−m ≈ 250 Oe, close to the average value for two geometries
in our samples.

The second task is about the correlations between com-
pleted reversals in neighbor elements, leading to formation of
LD structures. It is based on the model magnetic energy of
an array of fully saturated bar elements with Zeemann and
magnetostatic interaction terms:

E = mH
∑

n

σn + ω

2

∑
n′ �=n

σnσn′U (n − n′). (1)

Here m = Msabc is the saturated magnetic moment of a bar
element, ω = m2/(ab2) is the interaction energy scale, and the
Ising-like variable σn = ±1 indicates the x-orientation of the

FIG. 2. Magnetization loops for rec (solid circles) and rho (open
circles) structures. Solid line indicates the calculated hysteresis loop
for an isolated bar element by the OOMMF routine. Arrows indicate
the characteristic field values for upward reversal process in the rho-
geometry.

bar moment centered at the point n = (x,y) (see Fig. 1). The
expression for U (x,y) depends on specific shape of bars, and
for a × b rectangles of negligible thickness, it is analytic:

U (x,y) = 2F (x,y) − F (x + a,y) − F (x − a,y), (2)

where

F (x,y) =
[
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)
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(
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)
− 2f

(y

x

)]
x
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with f (z) = z arcsinh z − √
1 + z2 is the interaction between

two lines of magnetic charges on bar x-faces (seen as dark
and bright spots in the MFM images, Fig. 3) at separation
(x,y) between their midpoints. This F (x,y) tends to the
Coulomb 1/r law, so U (x,y) to the dipole-dipole 1/r3 law,
at long distances, r =

√
x2 + y2 � a,b, but deviates from it

for close neighbors. The strongest interaction between the
closest neighbors in the same row, U (a + b,0), results in the
strongest FM correlation along each x-line and defines LD
as the most robust structure in all transient states for both
geometries of the array. But the lattice geometry is important
for weaker correlations between LDs and so for collective
magnetic behavior in each case.

An evident geometry sensitive value is the difference �εα

(α = rec,rho) of energies per element between the FM and
LAFM states (for H = 0). Its values calculated from Eqs. (1)
and (2), �εrho ≈ −0.103ω and �εrec ≈ 0.238ω, indicate FM
ground state in the rho-case but LAFM in the rec-lattice. Notice
that the “array transition temperatures” Tα ∼ |�εα|/kB can
be as huge as ∼106 K, making the FM ground state in the
rho-case quite stable thermally, up to the Curie point Tc of bar
material (though easily reoriented by the applied field). But in
the rec-case, the field-induced metastable FM state can stay
“frozen” at all T < Tc, preventing to reach the true LAMF
ground state.

As seen from the above MFM data (Fig. 3), the mag-
netization reversal in the considered arrays occurs through
propagation of LDs, and the next important issue are the
conditions for their stability upon their returning to the initial
(noninverted) magnetic configuration. This stability can be
characterized by the corresponding energy differences for a
FM array in the presence of LD from L elements and without
it:

δεrec = −2
L∑

i=1

[ ∞∑
n=L+1

un−i,0 + 2
∞∑

n=1

∞∑
m=1

un−i,m

]
,

δεrho = −2
L∑

i=1

{ ∞∑
n=L+1

un−i,0

+ 2
∞∑

n=1

[ ∞∑
m=1

un−i,2m +
∞∑

m=1

un−i+ 1
2 ,2m−1

]}
, (3)

where un,m = U [(a + b)n,2bm]. These quantities calculated
in function of L (Fig. 4) rapidly attain linear asymptotics:
δεα → δα + Lmhα , with the characteristic field values hrec ≈
−9.7 Oe and hrho ≈ 4.1 Oe, so the (necessary) stability
condition for each geometry, H > hα , is certainly assured
for H within the experimental range of magnetic reversal
in Fig. 2.
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FIG. 3. Remagnetization processes at sweeping from positive to
negative applied field for rec- (a)–(d) and rho- (e)–(h) superlattice
geometries. Inverted areas in each case are outlined and shadowed,
showing linear domains tendency to intercalation or “linear antifer-
romagnetism” in the rec-case and to merging or ferromagnetism in
the rho-case (indicated by the arrows in panels c and g).

Once LD stability is assured, the particular steps of its
formation can be seen as a sequence of reversals in single
elements along the LD line, under local fields acting on
them. These fields result from the uniform external field and
magnetostatic interactions of a given bar element with its
neighbors. The reversal should be easiest in an element next to
the “head” of an extending LD (Fig. 5), since its strongest
interactions with neighbors in the same row are canceled.
The reversal conditions for this element are alike those for

FIG. 4. Energy differences, δεα , for an FM array with and without
an LD vs its length L, and their linear asymptotics for L � 1. Open
symbols and dashed line are for α = rec while solid symbols and
line are for α = rho.

an isolated bar, except for a relatively weak contribution to the
reversal energy by interactions with neighbors in other rows:

ζrec = −2ω

∞∑
n=−∞

∞∑
m=1

un,m,

(4)

ζrho = −2ω

∞∑
n=−∞

∞∑
m=1

un+ 1
2 ,m.

The calculated values: ζrec ≈ −0.257ω and ζrho ≈ 0.11ω,
define the respective contributions to the nucleation field
δHrec = ζrec/m ≈ −48 Oe and δHrho = ζrho/m ≈ 21 Oe.
Evidently, these δHα values turn to be more relevant for the
array reversal than the above considered hα .

Now, comparing all the contributions to the magnetic rever-
sal, we conclude that the dominating one is the single-element
Hm−m value, while the difference between the geometry
sensitive terms δHrho − δHrec ≈ 69 Oe well agrees with the
observed rec−rho difference of Hd values.

At further advance of reversal, the slope |dM/dH | is
mainly controlled by the interactions between close LDs. In
the adopted model, they are repulsive for rec- but attractive for
rho-geometry as follows from the corresponding calculations
based on Eqs. (1) and (2): urec ≈ 0.114ω and urho ≈ −0.055ω

(per element). This can explain the observed tendency to LD
merging and the slower approach to inverted saturation in the
rho-case [by a higher resistance to reversal of the “frontier”

H

ILD

FIG. 5. Schematics of reversal conditions for the least stable bar
element, next to the “head” of LD.

052402-3



BRIEF REPORTS PHYSICAL REVIEW B 84, 052402 (2011)

elements in residual noninverted clusters, compare Figs. 3(c)
and (g)].

In more general, the geometry dependence of magnetic
superlattices can be analyzed considering the above rec- and
rho-systems as the extreme cases in the continuous series of
superlattices obtained by relative shifts δx between neighbor
chains of bar elements (along the x-axis in Fig. 1). Then it is
obvious that the observed and calculated difference δHrho −
δHrec is maximum in this series. Also, since the values of δHrho

and δHrec have opposite signs, it can be expected that, when
varying δx from 0 (rec-case) to (a + b)/2 (rho-case), there
exists a special value x0 that makes the superlattice coercivity
to coincide with that by a single bar element (that is, effective
cancellation of interbar magnetostatic interactions happens).
Otherwise, at increasing the transversal distance between the
chains, the interaction effect (as the rec−rho difference) will
monotonously decrease.

In summary, the experimental, numerical, and analytical
studies on magnetic states of artificial superlattices of magnetic
bar elements show unusual collective properties of these
systems that, besides the known effects of distance between
elements and their aspect ratio,4 are also sensitive to the
symmetry of superlattice. The found lattice geometry effect
on the system coercivity can be controllably enhanced by a
proper choice of element and lattice parameters for tailoring
advanced performance of artificial magnetic media in technol-
ogy applications.
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