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Tree encodings of programs are well known for their representative power and are used
very often in Genetic Programming. In this paper we experiment with a new data struc-
ture, named straight line program (slp), to represent computer programs. The main
features of this structure are described, new recombination operators for GP related to
slp’s are introduced and a study of the Vapnik-Chervonenkis dimension of families of slp’s
is done. Experiments have been performed on symbolic regression problems. Results are
encouraging and suggest that the GP approach based on slp’s consistently outperforms
conventional GP based on tree structured representations.

Keywords: Genetic programming; slp; Vapnik-Chervonenkis dimension.

1. Introduction

Genetic Programming (GP) can be seen as any direct evolution method of computer
programs with the purpose of inductive learning. This general definition makes GP
independent of the data structures used for the representation of the evolved pro-
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grams. The size, the shape and the contents of these computer programs can dynam-
ically change during the evolution process. Usually these programs are represented
either by LISP S-expressions or by directed trees with ordered branches.1 Neverthe-
less, other variants of Genetic Programming have emerged in recent years. Besides
the traditional tree representation of programs, several representation models as
linear or graph representation have been developed.2 Linear Genetic Programming
(LGP) is a GP variant that evolves sequences of instructions from an imperative pro-
gramming language or from a machine language. The term linear, in this case, refers
to the data structure used in the program representation, constituted by sequences
of assignments of operations over constants or variables to another variables. With
this simple representation non-linear expressions can be generated. In 1985 one of
the first applications of linear bit sequences in GP has appeared.3 Other recent con-
tributions are those in4: where a general linear approach was introduced, and also5:
where the first GP approach that operates directly on an imperative representation
was presented. For a complete overview on LGP,6 is a good reference.

This paper focuses on the study of the performance of a new data structure for
representing programs in the linear GP paradigm: straight line programs (slp). In
the present work straight line programs are considered as linear representations of
programs, but they could also be considered as graph representations (see section
2 below). For this linear representation we develop ad-hoc recombination operators
which seem to be more suited for symbolic regression tasks than the straightfor-
ward generalizations given by one-point crossover, k-point crossover and uniform
crossover, commonly used in most linear GP existing approaches.

A particular class of straight line programs, known in the literature as arith-
metic circuits, have a large history and constitute the underling computation model
in the field of Algebraic Complexity Theory.7 Arithmetic circuits with the stan-
dard arithmetic operations {+,−, ∗, /} are the natural model of computation to
study the computational complexity of algorithms solving problems which have an
algebraic flavor. They have been used in linear algebra problems8,9; in quantifier
elimination10,11; and in algebraic geometry.12,13,14 Also non-trivial lower bounds for
the complexity of straight line programs and arithmetic networks solving decisional
problems are exhibited.15

We present experimental results obtained in testing our linear GP approach,
based on slp’s, on symbolic regression problems and compare them to results ob-
tained on the same problems by similar approaches which use tree encoding of
programs. We envision our development as the simplest possible implementation of
a general scheme for evolving slp’s driven by a fitness function that reflects their
ability to solve the considered problem.

As an important theoretical aspect, we also present a study of the classification
complexity of slp’s. In this sense we give an upper bound of the Vapnik-Chervonenkis
dimension of a family of slp’s that is polynomial in the length of the slp’s of the
family. For this purpose we construct a universal slp with a set of parameters, that
represents all the elements of the considered family. The results described in this
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paper are just a basic step towards a GP scenario in which the slp structure is used
to solve real world problems. The paper is organized as follows: in section 2 we de-
fine the data structure straight line program as well as some properties and related
concepts. Section 3 describes the slp-GP approach for solving symbolic regression
problem instances. In section 4 we present some experimental results of the execu-
tion of our implemented algorithm considering several classes of target functions.
In section 5 we analyze the Vapnik-Chervonenkis dimension of our structure to rep-
resent computer programs. Finally, section 6 draws some conclusions and addresses
future research directions.

2. The Data Structure Straight Line Program

Let F = {f1, . . . , fn} be a set of functions, where fi has arity ai, for 1 ≤ i ≤ n, and
let T = {t1, . . . , tm} be a set of terminals. A straight line program (slp) over F and
T is a finite sequence of computational instructions Γ = {I1, . . . , Il} where:

Ik ≡ uk := fjk
(α1, . . . , αajk

); withfjk
∈ F,

αi ∈ T for all i if k = 1 and αi ∈ T ∪ {u1, . . . , uk−1} for 1 < k ≤ l.

The terminal set T satisfies T = V ∪ C, where V = {x1, . . . , xp} is a finite
set of variables and C = {c1, . . . , cq} is a finite set of constants. The number of
instructions l is the length of Γ.

Note that if we consider the slp Γ as the code of a program, at each instruction Ii

a new variable ui is introduced. So the number of variables that do not belong to the
terminal set T, coincides with the number of instructions and also with the length of
Γ. Thus, in the following we will denote a slp Γ = {I1, . . . , Il} by Γ = {u1, . . . , ul}.
Each of the non-terminal variables ui can be considered as an expression over the
set of terminals T constructed by a sequence of recursive compositions from the set
of functions F. We will denote by SLP (F, T ) the set of all slp’s over F and T.

Example 2.1. Let F be a set of three binary arithmetic operations F = {+,−, ∗}
and let T = {1, x1, x2} be the set of terminals. In this situation any slp Γ ∈
SLP (F, T ) is a sequence of polynomials in two variables with integer coefficients. If
we consider the following slp of length 5:

Γ ≡





u1 := x1 + 1
u2 := u1 ∗ u1

u3 := x2 + x2

u4 := u2 ∗ u3

u5 := u4 − u3

(1)

the term computed in u5 is the polynomial:

2x2(x1 + 1)2 − 2x2
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With the following result we give an order of magnitude of the number of slp’s
of a given length l. This number depends on the sets F and T and also on the arity
of the functions belonging to F.

Proposition 2.1. Let F = {f1, . . . , fn} be a set of functions where fi has arity
ai, i = 1 . . . n, and let T = {t1, . . . , tm} be a set of terminals. Then the number of
elements Γ = {u1, . . . , ul} ∈ SLP (F, T ) of length l is

l∏

j=1

(
n∑

i=1

(m + j − 1)ai) (2)

Proof. For the first non-terminal variable u1 there exist
∑n

i=1 mai possibilities.
For u2 there are

∑n
i=1(m + 1)ai options because u1 can appears as an argument

of the function u2. In general, there are
∑n

i=1(m + k − 1)ai possibilities for the
non-terminal variable uk, 1 ≤ k ≤ l. Hence the number of possible slp’s over F and
T of length l is:

l∏

j=1

(
n∑

i=1

(m + j − 1)ai)

Remark 2.1. Every slp Γ = {u1, . . . , ul} over F and T can be represented by a
directed graph GΓ = (V, E). The set of vertices is V = T ′ ∪ {u1, . . . , ul}, where T ′

contains all terminals involved in the computation. The set of edges E is constructed
as follows: for every k, 1 ≤ k ≤ l, we draw an edge (uk, αi) for each i ∈ {1, . . . , ajk

}.
Note that T ′ is the set of leaves of GΓ and it is a subset of the set T of terminals.
Figure 1 is a directed graph representing the slp described in equation 1

To define a semantic function associated to a slp we consider an output space
as follows. Let Γ = {u1, . . . , ul} be a slp over F and T. An output set of Γ,

O(Γ) = {ui1 , . . . , uit}, is any set of non-terminal variables of Γ. Provided that
V = {x1, . . . , xp} ⊂ T is the set of terminal variables, the semantic function of Γ,

denoted as ΦΓ : Ip → Ot, satisfies ΦΓ(a1, . . . , ap) = (b1, . . . , bt), where bj stands
for the value of the expression over V of the non terminal variable uij when we
substitute variable xk by ak; 1 ≤ k ≤ p.

Given two slp’s Γ1 and Γ2 over F and T, they will be said equivalent if they
have the same semantic functions; i.e. ΦΓ1 ≡ ΦΓ2 .

Let Γ = {u1, . . . , ul} be a slp over F and T with output set O(Γ) = {ui1 , . . . , uit}.
Assume that 1 ≤ i1 < . . . < it ≤ l. It is easy to see that the slp Γ′ = {u1, . . . , uit} is
equivalent to Γ. Note that for the computation of the semantic function ΦΓ, at most
u1, . . . , uit are necessary. Hence ΦΓ ≡ ΦΓ′ . From now on we will assume without
loss of generality that the output set of a slp always includes the last assignment.
i.e. ul ∈ O(Γ).
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u5 := -

u4 := *

u2 := *

u1 := +

x1 1

u3 := +

x2 x2

Fig. 1. Directed graph representing a slp

2.1. Straight line programs and trees

In this section we will present some natural relations between straight line programs
and GP-trees.

Definition 2.1. Let Γ = {u1, . . . , ul} be a slp over F and T. For each k ∈ {1, . . . , l}
we define the directed tree Tk associated to uk as follows.

(i) the root of Tk is labeled by fjk

(ii) the subtrees of Tk, from left to right, are Tα1 , . . . , Tαajk

(iii) If αi is an element of the terminal set T, then Tαi has only one node labeled
by αi

The method for constructing Tk requires a recursive process that computes previ-
ously its subtrees. This constitutes a bottom-up process that generates the subtrees
from the leaves to the root. Given a slp Γ = {u1, . . . , ul} we define a relation in the
set of the non-terminal variables {u1, . . . , ul}. We will say that uiRuk if ui appears
in the functional expression assigned to uk. Formally:

Definition 2.2. Let Γ = {u1 . . . , ul} be a slp over F and T . We define the fol-
lowing relation in the set {u1, ..., ul}. Assume ui := fji(α1, . . . , αaji

) and uk :=
fjk

(β1, . . . , βajk
), with i < k. Then uiRuk if and only if ui = βs, for some s,

1 ≤ s ≤ ajk
. If we consider R̄, as the reflexive and transitive closure of R, then it

constitutes an order relation over {u1, . . . , ul}.
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The following definition introduces the forest of trees associated to a slp.

Definition 2.3. Let Γ = {u1, . . . , ul} be a slp over F and T as usually. We define
the forest associated to Γ, as the set of trees F(Γ) = {Ti1 , . . . Tis

} where M =
{ui1 , . . . , uis

} is the set of maximal elements of Γ, considering the relation R̄.

Example 2.2. Let Γ = {u1, . . . , u5} be the following slp:

Γ ≡





u1 := x1 ∗ x2

u2 := x2 ∗ u1

u3 := u1 ∗ u1

u4 := u3 + x2

u5 := u1 ∗ u3

where F = {∗, +} and T = {x1, x2}. then M = {u2, u4, u5} and the forest associated
to Γ, F(Γ) is depicted in figure 2

*

x2 *

x1 x2

+

x1

* *

x1 x2x2

x2

*

**

x1 x2 **

x1 x2 x1 x2

*

2
T T

4
T

5

Fig. 2. Forest associated to the slp Γ of example 2.2

Remark 2.2. The above definition associates to each slp a set of trees. We can
also establish the opposite association as follows. Let T be an ordered tree with
internal nodes in F and leaves nodes in T ; F and T as usually. Then there exists
a slp Γ(T ) = {u1, . . . , ul} associated to T that is unique modulo bijections from
{u1, . . . , ul} to itself. Γ(T ) can be constructed with a strategy that consists in
defining the corresponding instructions ui, 1 ≤ i ≤ l, from the leaves of T to the
root. Following this process, is easy to see that the length l of Γ(T ) is greater than
or equal to the height of T . On the other hand, the equality F(Γ(T )) = {T } can
be deduced from the construction method of Γ(T ). For example, the following slp
has been constructed from the tree T5 in figure 2.

Γ ≡




u1 := x1 ∗ x2

u2 := u1 ∗ u1

u3 := u1 ∗ u2
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2.2. Effective and non-effective code in slp’s

Let us consider the following slp over F = {+, ∗,−} and T = {1, x, y},

Γ ≡





u1 := x ∗ 1
u2 := u1 + y

u3 := u2 ∗ u2

u4 := u1 ∗ y

Let O(Γ) = {u2, u4} be the output set of Γ. Note that if we want to compute the
value of the semantic function of Γ for an input (a1, a2) ∈ IR2, i.e. ΦΓ(a1, a2) ∈
IR2, it is not necessary to compute the intermediate value of u3. In this case the
assignment u3 in Γ could be considered as non-effective code and should be removed.
After eliminating u3 and renaming the remainder assignments in Γ, a new slp Γ′ is
obtained:

Γ′ ≡




u1 := x ∗ 1
u2 := u1 + y

u3 := u1 ∗ y

The slp Γ′ is equivalent to Γ since they have the same semantic function Φ : IR2 →
IR2, Φ(x, y) = (x + y, x ∗ y) if we consider for Γ′ the output set O(Γ′) = {u2, u3}.

In the case of the same slp Γ but now with output set O(Γ) = {u4}, the assign-
ments u2 and u3 would be non-effective code and the new slp Γ′ equivalent to Γ is
the following:

Γ′ ≡
{

u1 := x ∗ 1
u2 := u1 ∗ y

where O(Γ′) = {u2}.
In general, the effective code of a slp Γ = {u1, . . . , ul} with output set O(Γ) =

{ui1 , . . . , uit = ul} is the set of the non-terminal variables involved in the process
of computing ΦΓ. We shall denote this set by:

S = {uj ∈ Γ / ∃ uik
∈ O(Γ) s.t. ujR̄uik

} = {uj1 , . . . , ujm} (3)

where R̄ is the order relation described in definition 2.2. We can assume that j1 <

. . . < jm. For obtaining S we construct a non decreasing chain of sets S0 ⊆ S1 ⊆
· · · ⊆ Sp = S, where S0 = O(Γ) and in general Sk = Sk−1 ∪ {ui ∈ Γ / ∃uj ∈
Sk−1; uiRuj}, being R the relation introduced in definition 2.2. It is easy to see
that the above chain of sets becomes stationary after finitely many steps. In the
worst case Sp becomes Γ. Also it is clear that ujm = ul and that we can construct
a new slp Γ′ = {u′1, . . . , u′m} considering the assignment instructions in S and a
renaming function R over S such that R(ujk

) = u′k. Note that Γ′ is equivalent to Γ
if we consider O(Γ′) = {R(ui1), . . . ,R(uit)}. Also Γ′ satisfies:

∀i ∈ {1, . . . , m} ∃u′j ∈ O(Γ′) s.t. u′iR̄u′j (4)

If Γ = Γ′ we will say that Γ is an effective slp.
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2.3. Computation of the semantic function

Let F be a set of functions and let T be a set of terminals with set of variables
V = {x1, . . . , xn}. The strategy for computing the semantic function of a slp Γ =
{u1, . . . , ul} over F and T that consists of evaluating the non-terminal variables
following the declaration order in Γ, is not a good method when Γ is not an effective
slp. In practice is better to obtain the effective slp equivalent to Γ and then evaluate
this one. The following algorithm describes this method.

Algorithm for computing the semantic function
Input: A slp Γ = {u1, . . . , ul} over F and T, with output set O(Γ) = {ui1 , . . . , uit

};
and a vector of values (a1, . . . , an) where ai is the value of variable xi.

Output: ΦΓ(a1, . . . , an) = (b1, . . . , bt)

(i) Computation of the above described set S = {uj1 , . . . , ujm}, j1 < . . . < jm, by
means of the partial sets Sk. Note that Γ′ = {R(uj1), . . . ,R(ujm)} is effective
and equivalent to Γ.

(ii) For k = 1 to m evaluate R(ujk
) = u′k replacing each occurrence of xi by ai and

each occurrence of u′j , with j < k, by its value, which was previously computed.
(iii) Return the vector of values (R(ui1), . . . ,R(uit)).

3. GP with slp’s for Solving Symbolic Regression Problems

The problem of symbolic regression consists of finding in symbolic form a function
that fits a given finite sample set of data points. More formally, we consider an input
space X = IRn and an output space Y = IR. We are given a set of m pairs sample
z = (xi, yi)1≤i≤m. These examples are drawn according to an unknown probability
measure ρ on the product space Z = X × Y and they are independent identically
distributed (i.i.d.). The goal is to construct a function f : X → Y which predicts
the value y ∈ Y from a given x ∈ X. The criterion to choose function f is a low
probability of error. The empirical error of a function f w.r.t. z is:

εz(f) =
1
m

m∑

i=1

(f(xi)− yi)2 (5)

which is known as the mean square error (MSE).
The symbolic regression problem has been approached by Genetic Programming

in several contexts. Usually, in this paradigm a population of tree-like structures
which encode expressions, is evolved following the Darwinian principle of survival
and reproduction of the fittest. Throughout this paper we adopt straight line pro-
grams as the structures that evolve within the process. One of the advantages is
that the slp structure allows the result of a subexpression to be reused multiple
times during calculation. This permits to express more complex calculations with
less amount of instructions and the resulting individuals are, in general, more com-
pact in terms of size. The step size of variations may also be easier to control in
a slp structure than in a tree structure. In fact, using non-effective code, we can



February 19, 2009 11:13 WSPC/INSTRUCTION FILE ICTAI-IJAIT

A new Linear Genetic Programming Approach Based on Straight Line Programs 9

force the same size for all slp’s in the selected search space. Nevertheless, how much
advantage evolution can take from these features strongly depends on the design of
the recombination operators.

At a very high level language, the whole genetic programming algorithm that
we have implemented is as follows:

generate a random initial population

evaluate the individuals

while (not termination condition) do

for i= 1 to Population_size do

Op:= random value in [0,1]

if (Op < Prob_cross)

then do crossover

if (Op < Prob_cross + Prob_mut)

then do mutation

if (Op < Prob_cross + Prob_mut

+ Prob_repr)

then do reproduction

evaluate new individuals

insert in New_pop

update population with New_pop

Throughout this section, the output set of a slp Γ = {u1, . . . , ul} will always be
constituted by only one variable, i.e. O(Γ) = {ul}. Hence our slp’s will compute
multivariate functions with values in IR.

3.1. The initial population

Let F = {f1, . . . , fn} be a set of functions, where fi has arity ai i = 1 . . . n, and let
T = {t1, . . . , tm} be a set of terminals, as they appear in section 2. The generation
of each slp in the initial population is done as follows.

For the first instruction u1 select fj1 ∈ F at random. Whenever this function is
selected, for each argument i ∈ {1, . . . aj1} of fj1 , an element αi from T is randomly
chosen.

In general the construction of the instruction uk, k > 1, also begins by
a random selection of fjk

∈ F. Now, for i = 1, . . . , ajk
, we randomly choose

αi ∈ T ∪ {u1, . . . , uk−1}.
In practice, an upper bound L for the length of the slp individuals involved in the

GP process, is necessary. So, given this upper bound, the first step of the generation
process for each slp could be the random selection of the length l ∈ {1, . . . , L}.

Note that the slp’s generated with the above strategy could be non-effective.
Nevertheless, our aim is to permit non-effectiveness during the evolution process.
On the other hand we will maintain homogeneous populations of equal length
individuals. In this sense the length will be a parameter of the algorithm. For
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this purpose, given a slp Γ = {u1, . . . , ul} and L ≥ l, we can construct Γ′ =
{u1, . . . , ul−1, u

′
l, . . . , u

′
L−1, u

′
L}, where u′L = ul and u′k, for k = l to L−1, is any in-

struction satisfying the conditions in the slp’s definition. Considering O(Γ′) = O(Γ),
is easy to see that Γ′ is equivalent to Γ. Note that this type of homogeneity is not
possible with populations of tree structures.

3.2. Fitness function

In GP, we measure fitness in some way and then use this measurement to simulate
nature and to control the operations that modify the structures in our artificial
population. The most common approach is to assign to each individual in the pop-
ulation a fitness value by means of some well defined explicit evaluative procedure.
So a fitness function that operates over the search space is defined. Some general
type of fitness in the GP context can be seen in 1. In our case, the procedure to
compute the fitness value of a slp individual will always involve the computation
of the values of the corresponding semantic function over the given sample set of
values for the terminal variables. So given z = (xi, yi) ∈ IRn × IR, 1 ≤ i ≤ m, for
any slp Γ over F and T we will define the fitness of Γ as follows:

Fitz(Γ) = εz(ΦΓ) =
1
m

m∑

i=1

(ΦΓ(xi)− yi)2 (6)

That is, the fitness is the empirical error of the semantic function of Γ w.r.t. the
sample set of data points z. We will use the algorithm presented in 2.3 within the
process to compute the fitness of Γ.

3.3. Recombination operators

3.3.1. Crossover

Because our representation by means of slp’s consists of a finite sequence of in-
structions and taking into account that all individuals have the same length, the
well known crossover methods such as uniform crossover, one-point crossover or
two-point crossover, can be adapted to our situation. The following definition sum-
marizes these adaptations.

Definition 3.1. Let Γ1 = {u1, . . . , uL} and Γ2 = {u′1, . . . , u′L} be two equal length
slp’s over F and T.

(i) The one-point crossover of Γ1 and Γ2 with breakpoint i ∈ {1, . . . , L} produces
the following two slp’s:

Γ′1 = {u1, . . . , ui, u
′
i+1, . . . , u

′
L}; Γ′2 = {u′1, . . . , u′i, ui+1, . . . , uL}

(ii) The two-point crossover of Γ1 and Γ2 with breakpoints i, j ∈ {1, . . . , L}, i < j

produces the following two slp’s:

Γ′1 = {u1, . . . , ui, u
′
i+1, . . . , u

′
j , uj+1, . . . , uL}
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Γ′2 = {u′1, . . . , u′i, ui+1, . . . , uj , u
′
j+1 . . . , u′L}

(iii) The uniform crossover of Γ1 and Γ2 produces two slp’s computed with the aid
of a random binary vector α = (α1, . . . , αL) ∈ {0, 1}L in the following form:

Γ′1 = {v1 . . . , vL}; Γ′2 = {v′1, . . . , v′L}
where vi = ui if αi = 0; vi = u′i if αi = 1 and v′i = u′i if αi = 0; v′i = ui if
αi = 1; i ∈ {1, . . . , L}

Example 3.1. Consider F = {∗, +}, L = 5 and T = {x, y}. Let Γ1 and Γ2 be the
following two slp’s:

Γ1 ≡





u1 := x + y

u2 := u1 ∗ u1

u3 := u1 ∗ x

u4 := u3 + u2

u5 := u3 ∗ u2

Γ2 ≡





u1 := x ∗ x

u2 := u1 + y

u3 := u1 + x

u4 := u2 ∗ x

u5 := u1 + u4

One-point crossover of Γ1 and Γ2 with breakpoint i = 2 produces:

Γ′1 ≡





u1 := x + y

u2 := u1 ∗ u1

u3 := u1 + x

u4 := u2 ∗ x

u5 := u1 + u4

Γ′2 ≡





u1 := x ∗ x

u2 := u1 + y

u3 := u1 ∗ x

u4 := u3 + u2

u5 := u3 ∗ u2

Two-point crossover of Γ1 and Γ2 with breakpoints i = 1, j = 3 produces:

Γ′1 ≡





u1 := x + y

u2 := u1 + y

u3 := u1 + x

u4 := u3 + u2

u5 := u3 ∗ u2

Γ′2 ≡





u1 := x ∗ x

u2 := u1 ∗ u1

u3 := u1 ∗ x

u4 := u2 ∗ x

u5 := u1 + u4

Finally, uniform crossover of Γ1 and Γ2 with random binary vector α = (10110)
produces:

Γ′1 ≡





u1 := x ∗ x

u2 := u1 ∗ u1

u3 := u1 + x

u4 := u2 ∗ x

u5 := u3 ∗ u2

Γ′2 ≡





u1 := x + y

u2 := u1 + y

u3 := u1 ∗ x

u4 := u3 + u2

u5 := u1 + u4

Besides the above recombination operations, we have also designed a new ”ad-
hoc” crossover operation that produces another type of information exchange be-
tween the two parents. The objective is to carry subexpressions from one parent to
the other. A subexpression is represented by an instruction ui and all the instruc-
tions that are used to evaluate ui. This is just the effective piece of code of the slp
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that is needed to compute the expression, over the terminal variables, associated to
ui. Formally, this crossover operator is as follows.

Definition 3.2. (slp-crossover) Let Γ1 = {u1, . . . , uL} and Γ2 = {u′1, . . . , u′L} be
two slp’s over F and T. First, a position k in Γ1 is randomly selected; 1 ≤ k ≤ L.

We consider again the defined relation R, for the description of the set:

Suk
= {uj ∈ Γ / ujRuk} = {uj1 , . . . , ujm

} (7)

with the assumption that j1 < . . . < jm. As it was mentioned above, the set
Suk

is the effective piece of the code of Γ1 related to the evaluation of uk. Next
we randomly select a position t in Γ2 with m ≤ t ≤ L and we modify Γ2 by
making the substitution of the subset of instructions {u′t−m+1, . . . , u

′
t} in Γ2, by the

instructions of Γ1 in Suk
suitably renamed. The renaming function R over Suk

is
defined as R(uji) = u′t−m+i, for all i ∈ {1, . . . , m}. With this process we obtain the
first offspring from Γ1 and Γ2. For the second offspring we symmetrically repeat
this strategy, but now we begin by randomly selecting a position k′ in Γ2.

Example 3.2. Let us consider the slp’s Γ1 and Γ2 from the example 3.1

If k = 3 then Su3 = {u1, u3}, and t must be selected in {2, . . . , 5}. Assumed that
t = 3, the first offspring will be:

Γ′1 ≡





u1 := x ∗ x

u2 := x + y
u3 := u2 ∗ x
u4 := u2 ∗ x

u5 := u1 + u4

For the second offspring, if the selected position in Γ2 is k′ = 4, then Su4 =
{u1, u2, u4}. Now if t = 5, the offspring will be:

Γ′2 ≡





u1 := x + y

u2 := u1 ∗ u1

u3 := x ∗ x
u4 := u3 + y
u5 := u4 ∗ x

3.3.2. Mutation

The mutation is asexual and acts on only one parent. This operation introduces
random changes in the individual. Mutation can be beneficial in reintroducing di-
versity in a population that may be tending to converge prematurely to a local
optimum. The first step when mutation is applied to a slp Γ consists of selecting
an instruction ui ∈ Γ at random. Then a new random selection is made within the
arguments of the function f ∈ F that constitutes the instruction ui. The final step
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is the substitution of the selected argument by another one in T ∪ {u1, . . . , ui−1}
randomly chosen. The formal definition of the mutation operation is as follows:

Definition 3.3. Let Γ = {u1, . . . , uL} be a slp over F and T. Let ui = f(α1, . . . , αn)
be the selected mutation point, where f ∈ F, αk ∈ T ∪{u1, . . . , ui−1}. The mutation
of Γ at point i yields:

Γ′ = {u1, . . . , ui−1, u
′
i, ui+1, . . . , uL}, (8)

where u′i = f(α1, . . . , αj−1, α
′
j , αj+1, . . . , αn), αj 6= α′j ∈ T ∪ {u1, . . . , ui−1} with

j ∈ {1, . . . , n}. j and α′j are both randomly selected.

Reproduction consists of copying an individual from the current population to the
new population.

We use generational replacement between populations, but in the construction
process of the new population the offsprings generated do not necessarily replace
their parents. After a crossover we have four individuals: two parents and two off-
springs. We rank them by their fitness values and we pick one individual from each
of the two first levels of the ranking. If, for example, three of the individuals have
equal fitness value, we only select one of them and the one selected in the sec-
ond place is in this case the worst of the four individuals. This strategy prevents
premature convergence and maintains diversity in the population. There is not a
specific selection process. In fact, we obtain better results if we consider the current
population randomly reordered as a mating pool, instead of using the more usual
fitness-based selection methods.

4. Experiments

4.1. Experimental setting

We have run our implemented algorithm based on GP with straight line programs
considering two groups of target functions. The first group of functions includes
the following three functions that were also used for experimentation in previous
works.16,17

F (x, y, z) = (x + y + z)2 + 1 (9)

G(x, y, z) =
1
2

x +
1
3

y +
2
3

z (10)

K(x, y, z, w) =
1
2

x +
1
4

y +
1
6

z +
1
8

w (11)

The second group of functions is constituted by five functions of several classes:
trigonometric functions, polynomial functions and one exponential function. These
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functions are the following:

f1(x) = x4 + x3 + x2 + x

f2(x) = e−sin 3x+2x

f3(x) = 2.718 x2 + 3.1416 x

f4(x) = cos(2x)
f5(x) = min{ 2

x , sin(x) + 1}

(12)

The experimental results obtained with the first group of target functions are com-
pared with those obtained using standard GP based on tree structures.16,17 The
experimental settings for this first group are summarized in table 1. Function //

Table 1. Summary of experiment setup for
runs with F, G and K as target functions.

Number of sample points 30
Population size 200
Crossover rate 0.9
Mutation rate 0.05
Reproduction rate 0.05
Maximum slp’s length L 12
Function set F {+, −, ∗, //}
Variables V {x, y, z, w}
Constants C {c1, . . . , c6}
Runs per function 100

indicates the protected division i.e. x//y returns x/y if y 6= 0 and 1 otherwise.
The sample points are randomly generated in the range [−100, 100]. The constants
ci, 1 ≤ i ≤ 6, take random values in [0, 1]. For each target function, the constants
are fixed before the beginning of the first run and conserve the assigned values along
the 100 runs.

The experimental settings for the second set of test functions are basically the
same as described in table 1 with the following differences: in this case there are
univariate functions, the set of constants is {0, 1, 2} for the five functions, the basic
set of functions F = {+,−, ∗, //} is incremented with other operations, some of the
functions have a particular interval range for the set of sample points. These last
two aspects are described in table 2 for each of the five functions.

For all the executions, evolution finished after 107 basic operations have been
computed. We define the computational effort (CE) as the total number of basic
operations that have been computed up to that moment.

4.2. Experimental results

A useful tool for comparing performances of evolutionary strategies is the average
over all runs of the best fitness values at termination. This measure is known as the
mean best fitness (MBF). As in hard real-life optimization problems the solution is
unknown, one common attitude is to measure performance after a specified amount
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Table 2. Interval ranges for sample points and
function set for the second group of target func-
tions.

Function Range Function set

f1 [−5, 5] F ∪ {sqrt}
f2 [−π

2
, π

2
] F ∪ {sqrt, sin, cos, exp}

f3 [−π, π] F ∪ {sin, cos}
f4 [−π, π] F ∪ {sqrt, sin}
f5 [0, 15] F ∪ {sin, cos}

of CE. For problems with known solutions, such as those considered in this work,
the success rate (SR), defined as the ratio of successful runs with respect to the
total number of runs which have been finished after reaching a specific CE, is a
good indicator of algorithmic effectiveness.18,19

4.2.1. Experiment 1

First of all we have compared the four defined crossover methods: uniform, one-
point crossover, two-point crossover and slp-crossover. For this purpose we have
picked the function F from the first group and the functions f1 and f2 from the
second group. We have performed 100 executions of our algorithm for each instance
and crossover operator. In the following table we show the corresponding SR and
MBF over the successful runs, for each crossover method and target function. In
this case one run will be considered successful if an individual with a fitness value
lower than 1 is found. We can see clearly that slp-crossover is the best recombination
operator for the studied target functions. Hence, for the rest of the experiments the
slp-crossover will be the selected recombination operator.

Table 3. Success rate an mean best fitness calculated
over the success runs, for each crossover operator.

F f1 f2

SR

uniform 48 82 0
one-point 46 96 0
two-point 46 88 6
slp 52 100 90

MBF

uniform 8,78 · 10−1 5,36 · 10−4 –
one-point 8,25 · 10−1 2,03 · 10−2 –
two-point 8,45 · 10−1 3,76 · 10−2 5,46 · 10−1

slp 9,14 · 10−1 3,40 · 10−7 3,28 · 10−1
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4.2.2. Experiment 2

In this study we compare, for the three functions belonging to the first group, our
plain GP strategy based on slp’s with the GP strategy based on trees. For this
comparative, the MBF and the SR are computed. Following 17: for these functions,
a run will be considered successful if an individual with a fitness value lower than
30 has been evolved. 
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Fig. 3. Best average fitness against CE over 100 independent runs for standard GP with trees
and standard GP with slp’s. Results on function F.
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Fig. 4. Results on function G.

In Figures 3, 4 and 5 the mean best fitness is plotted against computational
effort over the target functions F, G and K, for the two considered data structures
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Fig. 5. Results on function K.

Table 4. Success rate calculated
over 100 independent runs for stan-
dard GP with trees and standard GP
with slp’s.

Function Tree-GP Slp-GP

F 55 90
G 88 100
K 72 84

(trees and slp’s). As shown by the figures, GP with slp’s outperforms standard GP
with trees on every tested function.

Table 4 shows the success rate for 100 independent runs. In terms of SR the
representation based on slp’s is much better than the representation based on trees
for the three tested functions. Considering next the successful runs and using the
slp as data structure, we show in table 5 the mean best fitness and the absolute
best obtained fitness (ABF) after the maximum computational effort of 107 basic
operations was reached.

Table 5. Mean best fitness and ab-
solute best fitness calculated over the
success runs for GP with slp’s.

Function MBF ABF

F 5,63 2,28 · 10−1

G 3,52 5,68 · 10−3

K 5,26 5,67 · 10−2

As conclusion, for the above studied target functions, the use of slp’s as data
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structure in GP is more effective than the standard tree data structure.

4.2.3. Experiment 3

The results of the execution of our algorithm over the second group of five functions
are displayed in table 6. There we present the success rate and also the MBF and the
ABF for the successful runs. In this case, an execution will be considered successful
if an individual of fitness near zero is found. We can observe that our GP approach
based on slp’s also performs quite well on this set of target functions: for all of them
but f2 the success rate is 100%.

Table 6. Success rate, mean best fitness and ab-
solute best fitness for the GP approach based on
slp’s.

Function SR MBF ABF

f1 100 3,40 · 10−7 2,15 · 10−8

f2 90 3,28 · 10−1 2,03 · 10−10

f3 100 9,04 · 10−2 2,13 · 10−6

f4 100 1,15 · 10−3 1,03 · 10−11

f5 100 8,40 · 10−3 6,94 · 10−4

5. Vapnik-Chervonenkis Dimension of Families of slp’s

In the last years GP has been applied to a range of complex learning problems in-
cluding that of classification and symbolic regression in a variety of fields like quan-
tum computing, electronic design, sorting, searching, game playing, etc. A common
feature of both tasks is that they can be thought as a supervised learning problem
where the hypothesis class C is the search space described by the genotypes of the
evolving structures. In the seventies the work by Vapnik and Chervonenkis provided
a remarkable family of bounds relating the performance of a learning machine.20,21

More recently modern presentations of the theory have appeared.22,23 The Vapnik-
Chervonenkis dimension (VCD) is a measure of the capacity of a family of functions
(or learning machines) as classifiers. The VCD depends on the class of classifiers.
Hence, it does not make sense to calculate VCD for GP in general, however it make
sense if we choose a particular class of computer programs as classifiers (i.e. a par-
ticular genotype). Our aim in this section is to go deep into the study of formal
properties of GP algorithms focusing the analysis of the classification complex-
ity (VCD) of straight line programs. In previous work and considering computer
programs, polynomial bounds in the size of the computer programs are given for
VCD.24 In the case of GP-trees, a study of their capacity of classification has been
done, but considering parallel complexity more than sequential time complexity.25

In this case and if the GP-tree internal nodes consist of infinitely differentiable al-
gebraic functionals, sign tests and conditional statements, then the VCD depends
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polynomially on the height of the tree. In the case of sequential time complexity for
GP-trees the upper bound is polynomial in the number of the nodes.26 Our bounds
for the VCD of slp’s as classifiers, considering sequential time complexity, are of
polynomial order in the length of the slp. The following definition of VC dimension
is standard.22

Definition 5.1. Let C be a class of subsets of a set X. We say that C shatters a
set A ⊂ X if for every subset E ⊂ A there exists S ∈ C such that E = S ∩ A. The
VC dimension of C is the cardinality of the largest set that is shattered by C.

Along this section we deal with concept classes Ck,n such that concepts are
represented by k real numbers, w = (w1, . . . , wk); instances are represented by n

real numbers, x = (x1, . . . , xn); and the membership test to the family Fk,n is
expressed by a formula Φk,n(w, x) taking as inputs the pair concept/instance (w, x)
and returning the value 1 if ”x belongs to the concept represented by w” and 0
otherwise.
We can think of Φk,n as a function from IRk+n to {0, 1}. So for each concept w,
define:

Cw := {x ∈ IRn : Φk,n(w, x) = 1}, (13)

The objective is to obtain an upper bound on the VCD of the collection of sets:

Ck,n = {Cw : w ∈ IRk} (14)

For boolean combinations of polynomial equalities and inequalities the following
seminal result by Golberg and Jerrum is known.24

Theorem 5.1. Suppose Ck,n is a class of concepts whose membership test can be
expressed by a boolean formula Φk,n involving a total of s polynomial equalities
and inequalities, where each polynomial has degree no larger than d. Then the VC
dimension V of Ck,n satisfies

V ≤ 2k log2(4eds) (15)

Now follows our main result about the VCD of a collection of subsets classified
or accepted by a family of slp’s. We will say that a subset C ⊂ IRn is accepted by
a slp Γ if the semantic function of Γ express the membership test to C.

Theorem 5.2. (Main Theorem) Let G = Gn,l,q,D,A be the collection of subsets
of IRn that can be accepted by some slp Γ over F and T of length l, with T =
{t1, . . . , tn}, F = {f1, . . . , fq, sign}; fi rational functions of degree bounded by D

and arity ai bounded by A; sign is a function that outputs 1 if its input is greater
or equal than 0 and 0 otherwise. Then the VCD of G satisfies:

V CD(G) ∈ O(t l (log2 q + log2 D) + t log2 s) (16)

where t ∈ O(lq + qA(l2 + nl)) and s ∈ O(3l).
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The first step in order to prove the above theorem is to construct a universal slp
ΓU over FU an TU such that it represents all the elements of the family {Γ}n,l,q,D,A.

The main idea in the construction process of ΓU , is to introduce a set of parameters
which take values in {0, 1}, such that for each specialization of the set of parameters
we obtain a particular slp in {Γ}n,l,q,D,A. This is the purpose of the following lemma.

Lemma 5.1. For any natural numbers n, l, q, D, A, let {Γ}n,l,q,D,A be the family
of the slp’s over F and T of length l, with T = {t1, . . . , tn}, F = {f1, . . . , fq, sign};
fi rational functions of degree bounded by D and arity bounded by A. There exists a
universal slp ΓU over FU an TU such that represents all the elements of {Γ}n,l,q,D,A

and verifies the following properties:

(i) ΓU has length 3l

(ii) |TU | ∈ O(n + lq + qA(l2 + nl))
(iii) FU contains 2l rational functions whose degrees belong to O(qD) and the arities

belong to O(q(n + l)A)

Proof. The first instruction u1 of a slp Γ is constructed by picking a function fi

from F and then selecting ai arguments for fi from T . The following expression
includes all the possibilities by giving values in {0, 1} to the variables x1

i , z1
j , and

yk
i,1; i ∈ {1, . . . , q + 1}, j ∈ {1, . . . , n}, k ∈ {1, . . . , ai} :

u1 := x1
1g

1
1 + x1

2g
1
2 + · · ·+ x1

qg
1
q + x1

q+1sign(z1
1t1 + · · ·+ z1

ntn) (17)

where g1
i are the following rational functions:

g1
i = fi(y1

i,1t1 + · · ·+ y1
i,ntn, . . . , yai

i,1t1 + · · ·+ yai
i,ntn) (18)

For the instruction u1 of Γ, in order to separate the sign function from the
rational functions g1

i , we add two new instructions in the universal slp ΓU in the
following form:

U1 := z1
1t1 + · · ·+ z1

ntn
U2 := sign(U1)
U3 := x1

1g
1
1 + x1

2g
1
2 + · · ·+ x1

qg
1
q + x1

q+1U2

Observe that the number N1 of terminal variables involved in the three instruc-
tions verifies:

N1 ≤ n + n + (q + 1) + qnA (19)

Note also that the degree of the rational functions corresponding to the instruc-
tions U1 and U3 is bounded by 2qD + 1 and arities are bounded by max{2n, (q +
2) + q2nA} = (q + 2) + q2nA

Following this strategy in the construction of ΓU , the instruction uk ∈ Γ pro-
duces the following three instructions included in ΓU :
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U3k−2 := zk
1 t1 + · · ·+ zk

ntn + zk
n+1U3 + · · ·+ zk

n+k−1U3(k−1)

U3k−1 := sign(U3k−2)
U3k := xk

1gk
1 + xk

2gk
2 + · · ·+ xk

qgk
q + xk

q+1U3k−1

Where now, for each i ∈ {1, . . . , q}, the rational function gk
i is the following:

gk
i = fi(pk

i,1, . . . , p
k
i,ai

) (20)

and for each j ∈ {1, . . . , ai}
pk

i,j = yj
i,1t1 + · · ·+ yj

i,ntn + yj
i,n+1U3 + · · ·+ yj

i,n+k−1U3(k−1) (21)

In this general case the number Nk of terminal variables verifies:

Nk ≤ n + (n + k − 1) + (q + 1) + q(n + k − 1)A (22)

The degrees are bounded by 2qD +1 and the arities are bounded by max{2(n+
k − 1), (q + 2) + q2(n + k − 1)A} = (q + 2) + q2(n + k − 1)A

As Γ = {u1, . . . , ul} is of length l, the universal slp ΓU will be of length 3l. Note
that the terminal variables t1, . . . , tn appear in all instructions U3k−2. Then, the
number N of total variables of ΓU verifies:

N ≤ n + l(q + 1) +
l−1∑

i=0

(n + i) + qA

l−1∑

i=0

(n + i) (23)

Operating in equation 23 we obtain:

N ≤ n + l(q + 1) + (qA + 1)(nl +
l(l − 1)

2
) (24)

Hence

N ∈ O(n + lq + qA(l2 + nl)) (25)

Finally, ΓU has 2l rational functions, corresponding to the instructions U3k−2,

U3k; k ∈ {1, . . . , l}, which degrees are bounded by 2qD + 1 and the arities are
bounded by (q +2)+q2(n+ l−1)A. So we obtain that the degrees belong to O(qD)
and the arities belong to O(q(n + l)A)

Remark 5.1. Note that each element of the family {Γ}n,l,q,D,A is obtained giving
values from {0, 1} to the parameters z, x, y. As {Γ}n,l,q,D,A ⊂ SLP (F, T ) with
T = {t1, . . . , tn}, it follows that ΓU includes t parameters with t ∈ O(lq+qA(l2+nl))

Once the universal slp ΓU has been constructed, the second step is to prove the
existence of a universal boolean formula Φt,n(x,w) equivalent to ΓU in the sense
described with the following lemma:

Lemma 5.2. For any natural numbers n, l, q, D, A, as in lemma 5.1, there exists
a universal boolean formula Φt,n(x,w) such that for any slp over F and T, in the
family {Γ}n,l,q,D,A and for any x ∈ IRn the following holds: x is accepted by a slp
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within the family if and only if there is w ∈ IRt such that Φt,n(x,w) is satisfied.
Moreover, the formula Φt,n(x,w) has the following properties:

(i) t ∈ O(lq + qA(l2 + nl))
(ii) Φt,n(x,w) contains s polynomial equations where s ∈ O(3l)
(iii) The equations of Φt,n(x,w) have degree at most O((qD)l)

Proof. Considering the universal slp ΓU of lemma 5.1 and the above remark, is
easy to see that the number t of parameters is in O(lq + qA(l2 + nl)).

To analyze the number of equations and their degrees, observe that ΓU has l sign
instructions, corresponding to U3k−1, 1 ≤ k ≤ l. For each sign instruction, let hk be
the function of (x1, . . . , xn, w1, . . . , wt) that U3k−1 receives as input. It easily follows
by induction that hk is a piecewise rational function of (x1, . . . , xn, w1, . . . , wt) of
formal degree bounded by (2qD + 1)k−1 + 1

Now, for each sign assignment ε = (εk) ∈ {>, =, <}l let Φε be the formula:

Φε =
∧

1≤k≤l

(hkεk0) (26)

Claim A For every ε ∈ {>,=, <}l there are rational functions rk of
(x1, . . . , xn, w1, . . . , wt) of degree bounded by (2qD+1)k−1+1 such that the formula
Φε is equivalent to the formula

∧

1≤k≤l

(rkεk0) (27)

The proof of this claim is by finite induction on the number of conjunctions in
equation 26: for the basic case i = 1, the instruction in ΓU previous to U2 is a rational
function of degree 2. Assume now that Φε =

∧
1≤k≤i−1(hkεk0) satisfies the required

condition. In this case the result follows by noting that the role played by sign
instructions previous to U3i−1 on inputs satisfying formula Φε =

∧
1≤k≤i−1(hkεk0)

is superfluous and U3i−1 is the sign of a rational function ri of degree bounded by
(2qD + 1)i−1 + 1.

In what follows formula in equation 27 will be also denoted by Φε. Notice that
the set of inputs (x1, . . . , xn, w1, . . . , wt) accepted by ΓU can be described by a
disjunction of the formulae Φε, ε ∈ {>,=, <}l. Then we have 3l possibilities for ε

and the involved rational functions have degree at most (2qD + 1)l−1 + 1 (i.e. they
are in O((qD)l)). Finally observe that we can also describe Φε by O(3l) polynomials
which degrees are in O((qD)l).

Proof. (of Main Theorem 5.2) Just plug lemma 5.2 in Theorem 5.1 and it will
result the equation 16.

Finally, if we substitute in the equation 16, t and s by their respective values
and after making the suitable simplifications, we obtain the following corollary:
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Corollary 5.1. Let G = Gn,l,q,D,A be as in theorem 5.2. Then the VCD of G is
polynomial in the length l of the slp’s and satisfies:

V CD(G) ∈ O(qAl2 (l + n) (log2 q + log2 D)) (28)

6. Conclusions and Future Research

We have experimented with a new data structure for representing computer pro-
grams inside the GP paradigm: straight line programs. This data structure allows
to express complex expressions with less amount of instructions than the tree data
structure. We have also designed appropriated recombination operators for slp’s.
Using this data structure a standard GP strategy has been implemented for solving
instances of the symbolic regression problem. Experimentation has been performed
on two sets of target functions. On the first set of functions our strategy based on
slp’s consistently outperforms standard GP: our slp encoding exhibited higher con-
vergence rate and better quality solutions. On the second set of functions our slp
encoding exhibited a success rate of 100% (except on more complicated test func-
tion f2). From these experimental results we conclude that, inside the GP scenario,
straight line programs constitute a promising data structure to represent programs.

In order to go towards a GP scheme based on straight line encoding of programs,
we have perform a study of the VCD of the slp structure. Our conclusion is that
the classification capacity of a family of slp’s is polynomial of degree three in the
length of the elements of the family.

As anticipating in the introduction, the experimental and theoretical results of
this work, despite offering interesting outcomes themselves, must be looked upon as
the first step towards a more general long-term goal. The final long term achieve-
ment that we would like to pursue is the construction of a GP approach based
on straight line programs capable of dealing with some real-world hard problems.
Future work includes a more extensive experimentation over random target func-
tions using several penalty functions to perform model regularization: complexity
regularization using the length of the slp structure and structural risk minimization
based on VCD. 22,27 Another natural ”next step” in our research is the combination
of the plain GP approach developed here with other methods such as optimization
by gradient descendent and with cooperative co-evolution.17
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