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Abstract 

When operational modal analysis (OMA) is used to estimate modal parameters, mode 

shapes cannot be mass normalized. In the past few years, some equations have been 

proposed to scale mode shapes using the mass-change method, which consists of 

repeating modal testing after changing the mass at different points of the structure 

where the mode shapes are known. In this paper, the structural dynamic modification 

theory is used to derive a set of equations, from which all the existing formulations can 

be derived. It is shown that the known equations can be divided into two classes, the 

exact and the approximated equations, where the former class does in fact fulfill the 

equations derived from the theory of structural modification, whereas the remaining 

equations do not, mainly because the change of the mode shapes of the modified 

structure is not taken properly into account. The paper illustrates by simulations the 

large difference in accuracy that exists between the approximate and the exact 

formulations. The paper provides two new exact formulations for the scaling factors, 

one for the non-modified structure and – as the first time in the literature - one for the 

modified structure. The paper illustrates by simulation the influence of errors on the 

measured natural frequencies and mode shapes on the estimation of the scaling factors 

using the two exact formulations from the literature and the new exact formulation 

proposed in this paper. Further, the paper illustrates statistics of the errors on mode 

shape scaling. All simulations were carried out using a plate with closely spaced modes. 
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Nomenclature 

   Matrix         

   Vector         

 c  Damping matrix  

 I  Identity matrix        

 k  Stiffness matrix       

 m  Mass matrix         

  tp  Force vector    

Nm Number of modes 

i0  Scaling factor of the i-th mode of the original structure   

Ii  Scaling factor of the i-th mode of the modified structure 

 m  Mass-change matrix       

 k  Stiffness change matrix 

 i0  Scaled i-th mode shape vector of the original structure  

 Ii  Scaled i-th mode shape vector of the modified structure  

 i0  Unscaled i-th mode shape vector of the original structure  

 Ii  Unscaled i-th mode shape vector of the modified structure    

i0  Natural frequency original structure  of i-th mode   

Ii  Natural frequency modified structure of i-th mode  

 



1.  Introduction 

Operational modal analysis (OMA) has been used in the last years in many civil [1, 

2, 3] and mechanical applications [4, 5]. OMA makes use of natural or operating loads 

to excite a structure, which can be considered an important advantage in large structures 

[6, 7], where the use of artificial excitation devices may be expensive or impractical. 

Another advantage is that the modal tests can be performed with the structure in 

operation such as in a bridge, where the bridge traffic does not need to be interrupted 

during the test. Rather, the traffic loading will be used as the excitation source, so that 

the natural response of the bridge to that loading will be measured and used to perform 

an OMA identification [3]. Vehicles and mechanical systems can be tested in their in-

service condition [8, 9]. 

Since the forces in OMA are unknown, the mode shapes cannot be mass normalized 

and only the un-scaled mode shapes can be determined for each mode [10, 11, 12, 13]. 

However, the scaling factors of the mode shapes must be known in applications where a 

frequency-response matrix needs to be assembled from the modal parameters such as 

structural modification [14, 15], load estimation [16], health-monitoring applications 

[14], damage detection and localization [17], etc. Consequently, an additional procedure 

to calculate the scaling factors is needed.  

In the past few years, several approaches have been given in the literature for 

solving this problem. Some methods to scale mode shapes are based on updating a 

finite-element model of the structure using modal parameters estimated by OMA [18]. 

Another solution has been suggested by Bernal and Gunes [17] based on the assumption 

that the mass matrix of the structure or its inverse is known. 

One way to estimate scaling factors is to modify the dynamic behavior of the 

structure by changing the stiffness and/or the mass and then perform operational modal 

analysis on both the original and the modified structure [10, 11, 12]. The methods based 

on dynamic modification use the modal parameters of both the modified and 

unmodified structure, so that a more extensive experimental testing procedure must be 

applied to estimate the scaling factors.  

The class of scaling technique here denoted as the mass-change method [10, 11, 12, 

19, 20]consists of attaching masses to the points of the structure where the mode shapes 



of the unmodified structure are known. The user selects the number, the magnitude, and 

the location of the masses. The process is schematically shown in Fig. 1. For greater 

ease in the mass modification and the calculation of the scaling factors, lumped masses 

are often used, so that the mass-change matrix  m  becomes, in general, diagonal.  

This approach has been validated by experimental testing of lab-tested structure 

scale models [19, 20], bridges [21], buildings [22], and mechanical systems [8, 9]. The 

mass-change method has also been used in FE-model updating where the modal 

parameters of the modified structure are used as additional information to correct the 

mass and the stiffness matrices of the system [23]. 

The original idea of this approach arises from Parloo et al. [10,11], who derived a  

closed form equation for estimating the scaling factors using a first-order approximation 

for the sensitivity of the natural frequencies with respect to the mass for light-damped 

structures. The application of this formula requires the frequency changes to be as small 

as possible and thus the mass modifications must be reasonably low. This paper 

suggests a mass change of around 5% of the total mass of the structure. 

On the other hand, Brincker and Andersen [12] derived an expression that is 

accurate for relative large frequency shifts, provided that the changes in mode shapes 

are very small or zero. According to these authors, this condition is completely satisfied 

when the spatial distribution of mass modification is proportional to the mass of the 

original structure and thus, for this particular case, the proposed expression is exact.  

The importance of the mass-change strategy, which means that the magnitude, the 

location and the number of masses to be attached to the structure must be defined, was 

presented by Aenlle et al. [19, 20]. These authors showed that the accuracy achieved in 

the scaling-factor estimation depends not only on the accuracy reached in the modal-

parameter identification (as previously suggested by Parloo et al. [10, 11] and Brincker 

and Andersen [12]) but also on the mass-change strategy used to modify the dynamic 

behavior of the structure. The authors propose and validate a simple procedure to 

optimize the mass-change strategy, which uses the natural frequencies and mode shapes 

of the original structure as basic information. They also demonstrated that a mass 

change of 5% is not always sufficient for all mass-change configurations, but the 

number and location of the masses must also be considered. 



Another closed-form expression which does not impose limitations of the spatial 

distribution or the magnitude of the perturbation was proposed by Bernal [24]. The key 

feature of this formulation is the projection of the modes shapes of the modified system 

on the basis of the original structure. The formula considers changes in mode shapes, 

thus allowing for a relative large modification. Results from statistical simulations 

suggest that this formula not only is computationally attractive but can lead to 

improvements in accuracy when compared to the aforementioned alternatives. 

A new formulation, denoted by the author “receptance base mode normalization” 

was proposed by Bernal [25] with which the scaling factors are estimated from an over-

determined system of equations whose coefficients are obtained by evaluating the pole 

residue form of the receptance matrix, at the eigenvalues of the unperturbed system. 

This approach is exact when a full set of modes is used. 

An alternative to the mass-change method consists of changing the stiffness 

(stiffness-change method) which may be achieved by connecting some springs to the 

structure or other alternative devices such as cables or bars, at certain points of the 

structure where the mode shapes are known. Kathibi et al. [26] proposed the use of 

simultaneous mass and stiffness modification to estimate the scaling factors. Using a 

numerical example of a cantilever beam, they demonstrated that the combined mass-

stiffness-change method can produce more accurate results compared to the mass 

change method, especially for the first modes.  

In this paper, an exact set of equations is derived using the structural dynamic 

modification theory, from which all the existing exact and approximated formulations, 

used to estimate the scaling factors by the mass and stiffness-change methods, can be 

inferred.  The assumptions made to establish the existing approximated formulations are 

studied and the accuracy of the results is investigated by performing simulations in 

several dynamic systems.  

When a dynamic system is perturbed adding mass or stiffness, not only the natural 

frequencies and mode shapes are modified but also the scaling factors. The existing 

formulations to estimate the scaling factors of the unperturbed system do not need to 

know the scaling factors of the perturbed system. However, if the scaling factors of the 

perturbed system can be estimated with a reasonable low uncertainty, the accuracy 



achieved in the scaling factors of the original system can be checked. In this paper, an 

exact equation is proposed to estimate the scaling factors of the modified system which 

provides accurate results even for large mass changes.  

2. Structural dynamic modification  

In case of no damping, the equation of motion of a structure subjected to a force 

  tp  is given by: 

          tpukum   ,             (1) 

which provides the eigenvalue equation: 

       0
2
00 km  ,             (2) 

where  0  and 0 are the mass normalized mode shape and the natural frequency, 

respectively, and the subscript „0‟ indicates the un-perturbed or unmodified structure. 

The eigenvectors satisfy the orthogonality conditions: 
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where   I  is the identity matrix. 

If a dynamic modification given by the mass  m  and stiffness  k  matrices is 

applied to the structure, the new equation of motion becomes: 

                tpukkumm   ,          (4) 

which provides the following eigenvalue equation for the i-th mode [14, 15, 27, 28]: 

                     i00
2
Iii00 AkkAmm  ,       (5) 

where Ii  and  iA  are the natural frequency and the eigenvector, respectively, of the i-

th mode. 

The mode shapes of the modified structure  I  are related to those of the original 

structure by: 



     A0I  ,              (6) 

from Eq. (6), it follows that the modified mode shapes  I  are expressed as a linear 

combination of the unmodified mode shapes  0 .   

The un-scaled  
i0  and the scaled or mass normalized  

i0  mode-shape vectors, 

corresponding to i-th  mode, are related by the expression: 

   i0i0i0  ,              (7) 

where the coefficient i0 is the scaling factor of i-th un-modified mode, which is a real 

number in case of no-damping. The corresponding equation for the modified structure is 

given by: 

   IiIiIi  ,              (8) 

if Eqs. (7) and (8) are substituted in Eq. 6,  it results in : 

     B0I  ,              (9) 

which relates the un-scaled mode shapes of both systems. 

From  Eqs. (6)  and (9) can be inferred that the matrices   A  and  B  are related by 

the equation: 

        1
10 AB


 ,           (10) 

where  0  and  1  are diagonal matrices containing the scaling factors of the original 

and the modified structure, respectively. Thus, each term j iB  of matrix  B  is related to 

the corresponding term j iA of matrix  A  by: 

Ii

jij0

ji

A
B




 .            (11) 

It should be noted that the exact relationships between the perturbed and the un-

pertubed systems  given by Eqs. (6) and (9) are  only  possible if a full set of modes are 

used. In case of truncation, Eqs. (6) and (9) are approximated. 



3. A set of equations for the scaling factors 

If Eq. (5) is pre-multiplied with the un-perturbed mass normalized mode shape 

vector  Tj0 , it results in: 

                         i00
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2
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j0 AkkAmm  ,    (12) 

taking into account the orthogonality properties given by Eq. (3) and the projection of 

the perturbed mode shapes on the un-pertubed ones given by Eq. (6), Eq. (12) can be 

expressed as: 

          Ii

2
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j0ji

2
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2

j0 kmA  ,        (13) 

where  j0  is the j-th natural frequency of the un-pertubed system.  

Finally, if Eq. (11) is substituted in Eq.(13), it becomes: 

          Ii

2

Ii

T
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From which a closed form expression for the j-th scaling factor is derived: 

 
        Ii
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Eq. (15) is a set of Nm (number of modes) equations which have to be fulfilled for 

any value of i, i.e., there are as many expressions for the scaling factor of mode j as 

number of modes are considered in the analysis.  Another interpretation is that the 

scaling factor of each mode has to fulfill simultaneously Nm conditions. Moreover, 

these set of equations are un-coupled, i.e., only the modal parameters of the j-th mode 

are needed in Eq. (15). 

The relevance of Eq. (15) is that all the existing formulations for estimating the 

scaling factors can be derived from this equation.  

Eq. (15) is an exact formulation for the scaling factor of the j-th mode when a full 

set of modes are used. In case of a truncated set of modes, the only approximation is the 

necessary approximation of the matrix  B , in which case has to be estimated from the 

limited information given by the truncated set of modes, for instance by: 



     I

1.

0
ˆB̂ 


,            (16) 

where   1

0
ˆ 
  is the pseudo inverse of  0Ψ . The pseudo inverse can be obtained by 

singular value decomposition or by the corresponding least square solution 
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
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Since the pseudo inverse is an estimation, only the approximation  IΨ̂  to  IΨ  , given 

by: 

     B̂ΨΨ̂ 0I  ,            (18) 

can be obtained. Therefore, if a truncated modal space is used in Eq. (16),  none of the 

formulations based on this equation are strictly exact. The term “exact formulations” 

refers to the case where the matrix  B  is known.  

On the other hand, except for closely spaced modes, the off-diagonal terms in 

matrix [B] are usually close to zero whereas the terms in the diagonal are close to one. 

Due to the modal truncation effect, reasonable accuracy is expected for the diagonal 

terms whereas a larger error is expected for the non-diagonal ones, which in turn depend 

on the number of modes used in the analysis. Thus, the equation with highest accuracy 

will normally be taking i=j in Eq. (15) whereas the equations using ji   will normally 

be less accurate.  

3.1 The extended projection approach (Ext-Pr)  

If a reasonable accuracy is expected in the terms of matrix [B], the set of equations 

(15) for the j-th mode can be solved as an over-determined equation given by: 
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which is equivalent to: 

 
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from which can be inferred that the same weight is used for each equation. Due to the 

aforementioned large uncertainty expected in the terms out-off the diagonal in matrix 

[B], it is recommended  to use a different weight for each equation, i.e.: 
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Where the weight iW  can, for example, be taken as: 
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4. Existing formulations with the mass change method  

In recent years, different authors have proposed equations to estimate the scaling 

factors by the mass change method [10, 11, 12, 28]. As the equations given by Eq. (15) 

are exact formulations for the scaling factor, the assumptions made in the existing 

equations will be analysed. 

4.1  The Bernal projection equation (Ber-Pr) 

 If Eq. (15) is particularized for the mass change method     0k   and we take 

ji  , it results in: 
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 ,          (23) 

this equation coincides with that proposed by Bernal [24]. Therefore, the Bernal 

equation [24] is also an exact formulation. 

This equation uses the diagonal terms of matrix  B  and it will always give very 

good estimates of the scaling factor even in cases where the mode shapes change 

significantly.  



4.2 Brincker and Andersen equation (B&A) 

The equation proposed by Brincker and Andersen is expressed as: 

 
     i0

T
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2
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2
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2
i02

i0
m 


 ,          (24) 

and it can be derived from Eq. (15) taking ji   and regarding the matrix  B  as an 

identity matrix, in which case  1Bii   and    i0Ii  . 

4.3 Enhanced Brincker and Andersen equation (E-B&A)   

A better equation which enhances the accuracy provided by the original Brincker 

and Anderssen equation is also derived from Eq. (15), taking ji   , considering also the 

matrix  B  as an identity matrix but keeping both the original and the modified mode 

shapes, i.e.: 
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4.4 The Parloo et al. equation  

The equation of Parloo et al. is given by the expression:   
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  ,          (26) 

and can be derived from Eq. (15), assuming the following simplifications: ji  ,   B  is 

an identity matrix and the following approximation is accepted: 
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4.5 The Bernal RBN equation (Ber-RBN) 

The un-scaled modified i-th mode shape can be expressed as a linear combination 

of the original mode shapes as: 
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,          (28) 



if the term jiB  is isolated in Eq. (15) and substituted in Eq. (28), it becomes: 
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which also can be written as: 
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where ji is a scalar given by: 
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Eq. 30 coincides with that proposed by Bernal [25] and as the author states, except 

for truncation, it is also an exact formulation. 

If Eq. (30) is applied for all the modes considered in the analysis, the following 

over-determined system of equations ( Nmm  equations, where m is the number of 

measuring points, and Nm are the number of modes ) results: 
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If we define a new diagonal matrix  i containing the term ji in the j-th row, Eq. (32) 

can be written in a more compact form as: 
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5. The scaling factors of the modified structure 

Pre-multiplication of Eq. (5) by      Tj0
T

Ij A gives the following equation: 
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if Eq. (8) is substituted into Eq. (34), it becomes: 
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Finally, the scaling factor corresponding to the i-th mode is given by: 
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which is the exact solution for the scaling factor of the i-th modified mode shape, and 

can also be expressed as:  
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Eq. (37) does not have practical application because we cannot estimate the terms of 

matrix  A  from the un-scaled mode shapes. 

On the other hand, if a mass change is applied to a structure resulting in a new mass 

matrix    mm  , the i-th scaling factor of the modified structure is given by: 
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As the mass matrix  m   is not known, the term      Ij
T

Ij m  can be expressed 

as:  
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or alternatively : 
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If Eq. (40) is substituted in Eq. (38), it results:  
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In case of systems with closely spaced modes, at least the contribution of the terms 

corresponding to the near modes must be used in Eq. 41. In case of systems with well-

separated modes, the following approximation provides a reasonable accuracy. 
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If the scaling factors of both the original and the modified structure are known, the 

matrix  A  can be estimated using Eq. (10) and, subsequently, the accuracy of the 

results can be checked because the following equation must be fulfilled for the mass 

change method, i.e.: 
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for the stiffness change method. 

6. Numerical examples 

The scaling-factor accuracy achieved with the expressions discussed in this paper 

has been studied by performing one thousand simulations on an un-damped plate model 

[29] with dimensions 519.3 x 320 x 20 mm and meshed with 99 nodes (see Fig. 2) and the 

following material properties: density   = 1.180 kg/m3, Young modulus  E = 3300 

MPa and Poisson ratio ν = 0.36.  

The natural frequencies and the scaling factors, corresponding to mode shapes 

normalized to unity length, are shown in Table 1. This plate has a variable modal 

distribution with very closely spaced modes (for example the  1
st
 and 2

nd
 modes are 

separated 1 Hz and the 4
th

 and 5
th

 separated 5.5 Hz) and widely separated modes (for 

example modes 3 and 6). The simulations were performed considering 18 sensors 



located at DOF‟s: 1, 5, 9, 19, 23, 27, 37, 41, 45, 55, 59, 63, 73, 77, 81, 91, 95 and 99, 

placing masses randomly at 12 of the 18 measurement points. A total mass change of 

2%, 5% and 15% of the mass of the structure, respectively, was considered in the 

simulations. The results of the first three modes are presented in this paper but the 

modal parameters of the first five modes were considered in the simulations. 

Simulations were initially carried out without considering errors in the modal 

parameters. However, as the largest source of error in the estimation of the scaling 

constants is the uncertainty on the modal parameters, noisy conditions were also 

simulated considering an identification error in the natural frequencies as: 
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and in each component of the mode shapes as: 
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where   and   are random variables with a uniform distribution with limits of [-1 

1].  

When the scaling factors are estimated with the extended projection approach, the 

terms ji   are much less accurate than the term ji  , mainly in noisy conditions. In the 

simulations, only the terms with Bij > 0.2 were considered.  

The errors in the scaling factor for the first three modes, when errors are not 

considered in the modal parameters, are shown in Fig. 3. In this case, the uncertainty is 

only due to modal truncation and the approximations assumed in the derivation of the 

approximated equations (Parloo, B&A and E-B&A). Different scatter has been obtained 

for each mode, but this is expected because the mass change location is not optimal for 

all the modes considered (see [19]). As regards the influence of the mass change 

magnitude, all the equations provide better results for small mass changes. From Fig.3 

can be concluded that the approximated equations only provides a reasonable accuracy 

in separated modes, whereas the exact formulations (Bernal Projection, Bernal RBN and 

the extended proyection approach) are considerably more accurate than the 

approximated equations in both closely and separated modes. 



The statistical distribution of the results provided by the exact formulations for a 

mass-change of 5% is shown in Fig. 4 where it can be observed that the accuracy 

obtained with all the exact formulations are very similar.  

As regards the simulations considering noisy conditions, the results obtained with 

the exact formulations are presented in Fig. 5 to 8, where the statistical distribution 

correspond to mass-changes of 15%..  

The results presented in Fig. 5, which correspond to simulations not considering 

errors in the modal parameters, are included for comparison with the results of other 

simulations. All the exact formulations provide similar results, as it can be observed in 

the statistical distributions.  

The results corresponding to errors in the natural frequencies ( %1.0  ), are shown 

in Fig. 6. Again, all the exact formulations provide similar results, as it can be seen in 

the statistical distribution of the results. When the scaling factors are estimated with the 

Bernal RBN equation and the extended projection approach, some outlier appear for 

mode 3 and mass-change of 15%. From the statistical distributions it can be seen that 

there is a tendency to a slightly smaller bias for the Bernal RBN equation compared to 

the other approaches.  On the other hand, all the equations provide better accuracy as 

large is the mass change magnitude  

Fig. 7 shows the results when only errors in the mode shapes ( %2 ) are 

considered. All the exact formulations provide similar results and there is not a 

significant influence of the mass change magnitude. In this case, a significant number of 

outliers were obtained for mode 3 and a mass-change of 15%, which means that the 

Bernal RBN equation and the extended projection approach are sensitive to errors in the 

mode shapes. Again, there is a clear tendency to smaller bias for the Bernal RBN 

equation (especially for mode three). 

Finally, Fig. 8 presents the results corresponding to errors in natural frequencies 

and mode shapes. The same conclusions on the magnitude of the errors, as those 

obtained considering only errors in natural frequencies, can be extracted, which means 

that the main source of uncertainty come from the errors in the natural frequencies. 

Again, a significant number of outliers were obtained for mode 3 and a mass-change of 

15% with the Bernal RBN equation and the extended projection approach. 



The scaling factors of the modified structure were estimated with Eq. 41 taking as 

scaling factors of  the unperturbed  structurethose  estimated with the Bernal projection 

approach. The errors obtained with the simulations for every mass change are presented 

in Table 2. Less error is obtained in separated modes (mode 3) than for the closely 

spaced modes (1 and 2) and the error increases with increasing mass change.  The error 

is larger in noisy conditions than the case when errors are not considered in the modal 

parameters. On the other hand, the maximum error is approximately 20% for mass 

changes of 2% and 5% of the total mass and 30% for mass changes of 15%.  

If the results obtained for the scaling factors of both the un-perturbed and perturbed 

structure are compared, a better accuracy is obtained for the scaling factors of the un-

modified structure. However, this is expected because from Eq. (41) it can be inferred 

that, besides the scaling factors of the un-perturbed structure, the terms of the j-th 

column of matrix [B] and  the terms of the j-th modified mode shape, contribute to the 

uncertainty of scaling factor Ij . 

 

7. Conclusions 

Two new exact formulations for estimating the scaling factors in operational modal 

analysis, one for the non-modified structure and another one for the modified structure, 

have been proposed and validated by simulations on a plate model. 

The exact formulations are always more accurate than the approximated equations 

and all of them provide similar results for small mass changes. 

The approximated formulations are not recommended for systems with closely 

spaced modes. 

When no errors are considered in the modal parameters, the uncertainty on the 

scaling factor with all the equations used in this paper increase with increasing mass 

change. Under conditions of noise on the modal parameter estimates, the results 

provided by the exact formulations are more accurate for large mass changes.  



The Bernal projection formula provides the overall smallest random errors on the 

scaling factors, as the Bernal RBN and the extended projection formula has a tendency 

to produce more noise (outliers). 

The Bernal projection formula however has the largest bias, the Bernal RBN has 

the smallest bias and the extended projection formula has a bias in between the Bernal 

projection formula and the Bernal RBN. 

The scaling factors of the un-perturbed structure can be estimated with a better 

accuracy that those of the perturbed structure. The Eq. (41) provides a better accuracy 

for separated modes than for closely spaced modes. 
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Editable Figure Captions: 

 

Figure 1. The mass change method. 

Figure 2. Plate model used in the simulations. 

Figure 3. Errors obtained in the simulations. Not errors considered in the modal 

parameters. 

Figure 4 Statistical distribution of the simulations corresponding to a mass-change of  

5%. Not errors considered in the simulations. 

Figure 5. Results of simulations when no error is considered in the modal parameters 

(up). Statistical distribution corresponding to a mass-change of  15% (down). 

Figure 6 Results of simulations when errors (=0.1%) are considered in the natural 

frequencies (up). Statistical distribution corresponding to a mass-change of  15% 

(down). 

Figure 7 Results of simulations when errors (=2%) are considered in the mode 

shapes (up). Statistical distribution corresponding to a mass-change of  15% (down). 

 

Figure 8 Results of simulations when errors are considered in the natural 

frequencies(=0.1%)  and mode shapes (=2%)  (up). Statistical distribution 

corresponding to a mass-change of  15% (down). 
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UNMODIFIED STRUCTURE 

Figure 1. The mass change method. 
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Figure 2. Plate model used in the simulations. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 3. Errors obtained in the simulations. Not errors considered in the modal 

parameters. 
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Fig. 4 Statistical distribution of the simulations corresponding to a mass-change of  5%. Not 

errors considered in the simulations. 
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Fig. 5. Results of simulations when no error is considered in the modal parameters (up). 

Statistical distribution corresponding to a mass-change of  15% (down). 
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Fig. 6 Results of simulations when errors (=0.1%) are considered in the natural frequencies 

(up). Statistical distribution corresponding to a mass-change of  15% (down). 
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Fig. 7 Results of simulations when errors (=2%) are considered in the mode shapes (up). 

Statistical distribution corresponding to a mass-change of  15% (down). 
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Fig. 8 Results of simulations when errors are considered in the natural frequencies(=0.1%)  

and mode shapes (=2%)  (up). Statistical distribution corresponding to a mass-change of  

15% (down). 
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Table 1. Modal properties of the plate. 

Mode 

Natural 

Frequency 

(Hz) 

Scaling 

Factor 
Mode Shape 

1 123.98 3.3113 

 

2 124.09 2.7184 

 

3 277.39 3.4517 

 

4 329.95 2.8361 

 

5 336.3900 3.6770 

 

 

 

 

 

 



Table 2. Errors obtained in the scaling factors of the modified structure. 

 

Errors in  

Mode 
Mass-change 

Natural 

frequencies 

Mode 

shapes 
2% 5% 15% 

No No 

1 10 10 20 

2 5 20 30 

3 10 10 20 

Yes 

 %2  
No 

1 20 20 22 

2 20 22 30 

3 10 12 22 

No 

Yes 

 %2

 

1 20 20 22 

2 20 22 30 

3 4 10 22 

Yes 

 %2  

Yes 

 %2  

1 20 20 20 

2 22 22 30 

3 10 12 22 
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Mode 

Natural 

Frequency 

(Hz) 

Scaling 

Factor 
Mode Shape 

1 123.98 3.3113 

 

2 124.09 2.7184 

 

3 277.39 3.4517 

 

4 329.95 2.8361 

 

5 336.3900 3.6770 

 

 

Table1



 

 

Errors in  

Mode 
Mass-change 

Natural 
frequencies 

Mode 
shapes 

2% 5% 15% 

No No 

1 10 10 20 

2 5 20 30 

3 10 10 20 

Yes 

( )%2=εω  
No 

1 20 20 22 

2 20 22 30 

3 10 12 22 

No 

Yes 

( )%2=εψ

 

1 20 20 22 

2 20 22 30 

3 4 10 22 

Yes 

( )%2=εω  

Yes 

( )%2=εψ  

1 20 20 20 

2 22 22 30 

3 10 12 22 

 

Table2


