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ABSTRACT

Motivated by the time behavior of the functional arising in the variational approach to the Kardar-Parisi-Zhang (KPZ) equation, and in order
to study fluctuation theorems in such a system, we have adapted a path-integral scheme that adequately fits to this kind of study dealing
with unstable systems. As the KPZ system has no stationary probability distribution, we show how to proceed for obtaining detailed as well
as integral fluctuation theorems. This path-integral methodology, together with the variational approach, in addition to allowing analyze
fluctuation theorems, can be exploited to determine a large deviation function for entropy production.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006121

Nonequilibrium systems have attracted a growing research inter-
est during the last decades. Among the many aspects, there
are two that have been extensively studied. On the one hand,
there is the paradigmatic Kardar-Parisi-Zhang (KPZ) model that
describes the growth of rough surfaces for out-of equilibrium
extended systems. On the other hand, there is stochastic thermo-
dynamics that intends to describe, exploiting stochastic variables,
the non-equilibrium dynamics present in microscopic as well as
mesoscopic systems. Here, both aspects have been integrated in
order to analyze the first from the point of view of the second. It
is shown how the variational approach of the KPZ system allows
one to readily obtain fluctuation theorems as well as information
about the large deviation function for the entropy production. It
is expected that such an approach could offer alternative informa-
tion about critical exponents for the KPZ universality class.

I. INTRODUCTION

The last few decades have witnessed a growing interest in
diverse aspects of nonequilibrium systems. Among them, there are

two that we want to address in this paper. The first aspect is related to
a paradigmatic model: the Kardar-Parisi-Zhang (KPZ) equation,1–4

a simple (albeit nontrivial) representation describing the growth of
rough surfaces of an out-of equilibrium extended system. For the
one-dimensional (1D) case, and during the last couple of decades,
researchers have found several amazing exact results (for instance,
to indicate just a few, see Refs. 5 and 6). Some recent review-like
articles could give an idea of the state of the art regarding the
KPZ equation and its critical properties.7,8 Additionally, a novel
variational approach was introduced in Refs. 9–11.

The second aspect refers to the so-called stochastic thermodyn-
amics,12–17,19,20 exploiting continuous (via Langevin-like equations)
as well as discrete (via master equations) descriptions and
approaches, where some recent review-like articles give a panoramic
view of the field and the broad spectrum of fluctuation theorems that
were obtained as well as of their possible applications.21,22

Until very recently, these two aspects have not been analyzed
together, that is, studies on the stochastic thermodynamics for the
KPZ model are scarce.23–25 At variance with the one dimensional
study just done in Ref. 24, we want here to exploit the varia-
tional approach indicated above and introduced in Refs. 9 and 11.
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An extremely interesting aspect of such an approach is that it gives
valid results in all dimensions.

In order to fix ideas, let us start remembering the form of the
KPZ equation,1

∂

∂t
h(r̄, t) = ν∇2h(r̄, t) +

λ

2

(

∇h(r̄, t)
)2

+ F + ξ(r̄, t)

= −
δ

δh
8[h] + ξ(r̄, t). (1)

The functional indicated on the second line was obtained in Refs. 9
and 11 and has the form

8[h] =
ν

2

∫

dr̄
(

∇h(r̄, t)
)2

−

∫

dr̄ F h(r̄, t)

−
λ

2

∫

dr̄

∫ t

0

ds∂sh(r̄, s)
(

∇h(r̄, s)
)2

. (2)

This functional is the one we will work with. In what follows, and
in order to simplify this first approach, we will adopt F ≡ 0 for the
external field.

On the one hand, in 11, it was shown that 8[h] has a linear
dependence with time, while on the other hand, the above indicated
exact (1D) studies5,6 indicate the existence of neither a stationary
nor a steady state solution for the probability distribution function
(PDF). It is worth noting that such a PDF keeps memory of the
initial condition (a fact that arises naturally within the variational
approach11). Aspects of such a peculiar behavior were analyzed in
Ref. 29 through the study of some toy models. Those ideas are the
ones we will elaborate in the present work.

In Sec. II, and exploiting a path-integral scheme,14,18,19 we will
define expressions for the probability of entropy production (EP)
along a trajectory, and derive both, detailed and integral fluctuation
theorems. The most relevant aspect is that those relations results to
be connected with 8[h], the nonequilibrium potential (NEP) aris-
ing within the variational approach indicated before.9,11 After that,
we make connection with the Large Deviation Function (LDF)30 for
entropy production. Again, the result is expressed in terms of 8[h].
Section V is devoted to discuss the results, extract some conclusions,
and propose some future lines of work.

II. FLUCTUATION THEOREMS

In order to build up a stochastic thermodynamics for the KPZ
system by exploiting the variational formalism, we will apply the
path-integral scheme,18 somehow following Ref. 19. As a first step,
we define the probability of following a given (fixed) trajectory
from (ha(Er, ta), ta) up to (hb(Er, tb), tb) [in what follows, (ha, ta) up to
(hb, tb)] by

PF[hb, tb|ha, ta] = N
F e−SF[h(t)]. (3)

Here, NF is a normalization factor, and the forward stochastic action
SF[h] is

SF[h] =

∫ tb

ta

ds L
F(h, ḣ), (4)

with L
F(h, ḣ) being the forward stochastic Lagrangian given by

L
F(h, ḣ) =

1

4ε

∫

dr̄

[

ḣ −

[

ν∇2h(r̄, t) +
λ

2
(∇h(r̄, t))2

]]2

. (5)

As indicated in Ref. 25, we do not explicitly state an expression for
the Jacobian ensuing from the variable transformation from noises
to heights, as it turns out that such a Jacobian does not contribute to
the entropy relations.

For the inverse or backward trajectories, we have

PB[hb, tb|ha, ta] = N
B e−SB[h(t)], (6)

with N
B being a normalization factor (in general, N

F = N
B = N);

the backward stochastic action

SB[h] =

∫ tb

ta

dsLB(h, ḣ) (7)

and its backward stochastic Lagrangian

L
B(h, ḣ) =

1

4ε

∫

dr̄

[

ḣ +

[

ν∇2h(r̄) +
λ

2

(

∇h(r̄, t)
)2

]]2

. (8)

As is usual in stochastic thermodynamics, and following
Ref. 16, the increase of entropy of the medium (interchange entropy)
associated with a trajectory from (ha, ta) up to (hb, tb) is defined as

RF[h] = ln
PF[hb, tb|ha, ta]

PB[hb, tb|ha, ta]
,

where PF,B[hb, tb|ha, ta], as indicated before, is the probability of the
indicated trajectory. Hence, as the interchange entropy RF along the
referred trajectory is given by the logarithm of the ratio between
the forward and backward probabilities, we will need the difference
between the stochastic actions 4S = SF[h] − SB[h] that, from the
previous expressions, results as

SF[h] − SB[h] = −
1

ε

∫

dr̄

∫ tb

ta

dt(∂th)

[

ν∇2h(r̄) +
λ

2

(

∇h(r̄, t)
)2

]

,

(9)

extending a result in Ref. 20. On the one hand, the first term on the
rhs can be written as

−
ν

ε

∫

dr̄

∫ tb

ta

dt(∂th)∇2h(r̄) =
ν

ε

∫

dr̄

∫ tb

ta

dt(∇∂th)(∇h)

=
ν

2ε

∫

dr̄

∫ tb

ta

dt∂t(∇h)
2 =

ν

2ε

∫

dr̄
[

(∇hb)
2 − (∇ha)

2
]

,

(10)

while on the other hand, the time integral in the second term, going
from ta up to tb, could be separated into two parts: an integral from
t0 up to tb minus another that goes from t0 up to ta, as follows:

∫

dr̄

∫ tb

ta

dt ∂th
(

∇h(r̄, t)
)2

=

∫

dr̄

∫ tb

to

dt ∂th
(

∇h(r̄, t)
)2

−

∫

dr̄

∫ ta

to

dt ∂th
(

∇h(r̄, t)
)2

.
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Putting everything together, we obtain

SF[h] − SB[h] =
ν

2ε

∫

dr̄
[

(∇hb)
2 − (∇ha)

2
]

−
λ

2ε

∫

dr̄

∫ tb

ta

dt∂th
(

∇h(r̄, t)
)2

=
1

ε
(8[hb] − 8[ha]). (11)

When λ = 0 [i.e., Edwards–Wilkinson (EW) case], it agrees with the
result in Ref. 20, but for λ 6= 0, it clearly differs, as includes a KPZ
contribution which is not only valid for any dimension but is also not
restricted to periodic boundary conditions.

Hence, we have the following relation [see Eq. (32) in Ref. 19]:

PF[hb, tb|ha, ta]

PB[ha, ta|hb, tb]
= e−(8[hb]−8[ha])/ε = eRF[ha ,hb], (12)

where

RF[ha, hb] = −
1

ε
(8[hb] − 8[ha]), (13)

with RF being the above defined interchange entropy, as in Refs. 16
and 24. The result in Eq. (12) offers further support to our argument
that the functional 8[h] is the “NEP” for KPZ.

For reasons that will be apparent in a while, and calling
P1(ha, ta) and P2(hb, tb) to the PDFs at times ta and tb, respectively,
we introduce the quantity

R0 = − ln

(

P1(ha, ta)

P2(hb, tb)

)

,

corresponding to the entropy increment associated with the for-
mation of the states ha and hb. Note that the definition of
state entropy in stochastic thermodynamics is s(h, t) = − ln P(h, t).

We also define the joint probabilities P̂F(hb, tb|ha, ta) = P1(ha, ta)

PF(hb, tb|ha, ta) and P̂B(ha, ta|hb, tb) = P2(hb, tb) PB(ha, ta|hb, tb), with
PF and PB being the forward and backward propagator, respectively,
that in terms of path integrals are given by

PF,B(hb, tb|ha, ta) =

∫ hb

ha

D[h]PF,B[hb, tb|ha, ta].

For the following steps, it will be necessary to explicitly intro-
duce the form of P1(ha, ta) and P2(hb, tb). Clearly, the direct way to

get it is to consider the (non-steady state) probability distribution
function (PDF) given by

P1(ha, ta) =

∫

�

dr̄ P(ha, ta|ĥ, t = 0) Po(ĥ(r̄)), (14)

with � indicating the d-dimensional space (d = 1, 2, . . .) where

we are working and Po(ĥ(r̄)) is the (completely arbitrary, usually

assumed to be plane) initial condition at t0 = 0. P(ha, ta|ĥ, t = 0) is
the propagator. It could be convenient to choose ta > t∗, where t∗

is the time at which we reach the maximum of 8[h] as function of
t, as shown in Figs. 1 and 5 of Ref. 11. As for t < t∗, we will essen-
tially be within the Edwards–Wilkinson (EW) regime (clearly, the
crossover EW-KPZ has been extensively studied and a few exam-
ples are Refs. 26–28). Anyway, times ta,b can be chosen in a complete
arbitrary way.

From Eq. (14), it follows that

P2(hb, tb) =

∫

�

dr̄ P(hb, tb|ha(r̄), ta)P1(ha(r̄), ta)

=

∫

�

dr̄

∫

�

dr̄′ P(hb, tb|ha(r̄), ta)

P̃(ha(r̄), ta|ĥ(r̄′), t = 0)Po(ĥ(r̄′)) (15)

and (hb, tb), (ha, ta) are fixed. However, due to the enormous dif-
ficulties of obtaining even a simple approximate histogram for
P1(ha, ta) or P2(hb, tb), it results more adequate to make and “edu-
cated guess” about their form and work with—the so far—arbitrary
(approximate) choices for those PDFs.

In order to obtain other useful theorems and/or relations, as
in Eq. (40) of Ref. 19, we will consider a beam of trajectories, with
R, a fixed value of the total EP, that originates at the initial condi-
tion (ha, ta) chosen from a fixed P1(ha, ta) and trajectories ending at
(hb, tb); while for the backward process, we consider as initial condi-
tion (hb, tb) chosen from a fixed P2(hb, tb), with trajectories that ends
at (ha, ta). However, P2(hb, tb) does not necessarily result from the
evolution of P1(ha, ta) and vice versa, P1(ha, ta) does not result from
the backward evolution starting at P2(hb, tb), i.e., they are completely
arbitrary.

We use the previous results (as well as the properties of the
Dirac’s δ) to get the trajectory’s beam as

%F(R, ha, hb) = P1(ha, ta)

∫ hb

ha

D[h]PF[hb, tb|ha, ta]δ(R
F[ha, hb] + R0 − R)

= P1(ha, ta)

∫ hb

ha

D[h] eRF[ha ,hb]PB[ha, ta|hb, tb]δ(R
F[ha, hb] − (R − R0))

= P1(ha, ta)

∫ hb

ha

D[h] eR−R0PB[ha, ta|hb, tb]δ(R
F[ha, hb] − (R − R0))

= P2(hb, tb)e
R

∫ hb

ha

D[h] PB[ha, ta|hb, tb]δ(R
F[ha, hb] − (R − R0))
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= eR P2(hb, tb)

∫ hb

ha

D[h] PB[ha, ta|hb, tb]δ(R
B[hb, ha] + (R − R0))

= eR %B(−R, ha, hb), (16)

where R = RF + R0 is the total entropy or entropy production (EP),
and the normalization is implicit and included in the measure D[h].
Hence, we have

%F(R, ha, hb)

%B(−R, ha, hb)
= eR, (17)

where for R, we have a fixed unique value and, as indicated before,
P1(ha, ta) and P2(hb, tb) are also fixed PDFs. It is worth remembering
that RF = − 1

ε
(8[hb] − 8[ha]) is evaluated along the forward trajec-

tory and, due to the odd symmetry under time reversal, also fulfills
a relation with RB (the backward EP): RB[hb, ha] = −RF[ha, hb] [as
indicated in Eq. (39) in Ref. 19].

Now, operating similarly as in the case before, we can also
define the probability P(R) of having a value R for the total EP as
(remember R is fixed)

P(R) =

∫

dha

∫

dhbP1[ha, ta]

∫ hb

ha

D[h]PF[hb, tb|ha, ta]δ(R
F

+ R0 − R) =

∫

dha

∫

dhb%
F(R, ha, hb), (18)

resulting in the detailed fluctuation relation21

P(R) = eRP(−R), (19)

which is tightly related to the Crook theorem.15 It is worth remarking
here that P1 and P2 are arbitrary.

Exploiting Eq. (18), we define the mean value

〈e−R̂[ha ,hb]〉 =

∫

ha

dhaP1[ha, ta]

∫

hb

dhb

×

∫

D[h]PF[hb, tb|ha, ta] e−RF[ha ,hb]+ln[P2(hb ,tb)/P1(xa ,ta)],

(20)

with R̂F[ha, hb] = RF[ha, hb] + R0 (and obviously, R̂B[ha, hb]
= RB[ha, hb] − R0). Using Eq. (12), the last expression transforms
into

〈e−R̂[ha ,hb]〉 =

∫

ha

dhaP1[ha, ta]

∫

hb

dhb

∫

D[h]PF[hb, tb|ha, ta] e−R̂F[ha ,hb]

=

∫

ha

dha

∫

hb

dhbP2(hb, tb)

∫

D[h]PB[hb, tb|ha, ta] ≡ 1.

(21)

Hence, we have

〈e−R̂[ha ,hb]〉 ≡ 1, (22)

which agrees with the standard form of the integral theorem.

III. LARGE DEVIATION FUNCTION

In this section, we will look for information on the Large Devi-
ation Function (LDF)30 for the PDF of the entropy production. There
are several recent papers related to the LDF for KPZ (to indicate just
a few, see Refs. 31–35). However, in general, most of them (if not all)
consider such a LDF for the maximum height at a given point and
only in the one-dimensional case.

Here, we will exploit a simple approach in order to obtain the
indicated information on the LDF for the PDF of the EP. We start
with an idea that was used in Ref. 11 and giving further support
to the scaling found in Ref. 24, indicating that the LDF, in any
dimension, behaves as ζ(R) ∼ λ2.

As is known, the definition of the LDF is30

ζ(R) = − lim
t→∞

1

t
ln[P].

We start remembering Eq. (19) and also taking into account that
the position of the mean value of P1(h, ta) and P2(h, tb) should typi-
cally evolve as 〈h(ta,b)〉 ∼ v∞ta,b (and v∞ ∼ λ), those PDFs will have
widths that depend on the chosen forms.

It is useful to rewrite Eq. (19) as

ln[P(R)] = ln[P(−R)] + R. (23)

Now, as was observed in Ref. 24, P(R) slightly departs from a Gaus-
sian (in Ref. 24, it was analyzed by considering a Gaussian plus an
higher order approximation), particularly showing some degree of
skewness. It is a solidly grounded argument based on the result indi-
cated above as well as on the behavior of 〈8[hb]〉 vs t, as shown in
Ref. 11, that such a quasi-Gaussian character, slightly corrected for
skewness, could be extended to higher dimensions (and valid for any
value of λ). Hence, we can write

P(R) ≈ exp{−(R − Rmt)2/4Rmt},

with a fast decaying skewness correction.
From Eq. (23), we readily have

ζ(R) = − lim
tb→∞

1

tb

(

R + ln[P(−R)]
)

= − lim
tb→∞

1

tb

ln[P(−R)]

= − lim
tb→∞

−1

tb

(R + Rmtb)
2

4Rmtb

=
Rm

4
=

〈R〉

4tb

(24)
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and the indicated average results

〈R〉 ' 〈RF[ha, hb] + R0〉

'
−1

ε

(

〈8[hb]〉 − 〈8[ha]〉
)

− λ (3btb − 3ata) , (25)

with 3a,b being some constant that will depend on the choice
adopted for Pi (i = 1, 2).

Hence, results from Ref. 11 [see Sec. 4, Eqs. (16) and (17)], the
analysis of the rhs of Eq. (23) leads, up to the dominant order in t, to

1

ε

(

〈8[hb]〉 − 〈8[ha]〉
)

∼ −
2

ε
λ2(2btb − 2ata), (26)

where 2a,b indicate the remaining contributions besides the λ2

dependence. Clearly, we have here used the observed linear depen-
dence of 〈8[h]〉 with time. In a “general” sense, we can guess
that

2a,b ≈ 〈

∫

ha,b

dr̄
(

∇ha,b

)2
〉 = 〈

(

∇ha,b

)2
〉,

with 〈 〉 implying an ensemble average and the overline indicating
space averaging.

If we use the above indicated definition of ζ(R), we find that
on the lhs of Eq. (26), the second term is much smaller than the first
one,15 while on the rhs of Eq. (25), the fourth term goes as ta/tb that,
for tb � ta, goes to zero. Finally, we have

ζ(R) = − lim
tb→∞

〈R〉

tb

∼ λ22b + λ3b (27)

and, as indicated before, the result is valid for any value of λ; hence,
the influence of the second term will become apparent only for
λ � 1.

IV. LIMITATIONS TO THE USUAL SCALING

It is tempting to exploit a very well known assumption, valid for
one dimensional systems,3 to higher dimensions. For the moment,
we left out the R0 contribution. Such an assumption corresponds to
the scaling

h(x, t) ≈ v∞t + (0t)β χ(x′),

where x′ = Ax/2(0t)1/z, A = ν/2D, 0 = A2λ/2, and in d = 1,
the exponents are α = 1/2, β = 1/3, and z = 3/2. In addition,
v∞ = Dλ/4νl, with l being the lattice cut-off. We can make the “rea-
sonable” (even natural) proposal that, for higher dimensions, we
could generalize the indicated asymptotic form as

h(r̄, t) ≈ v∞t + (Bt)aχ(r̄′), (28)

with r̄′ = Ar̄/2(Bt)b and the coefficients A and B as well as the expo-
nents a and b to be determined. However, it also results obviously
reasonable to assume a = β and b = 1/z.

Keeping in mind that we still have the contribution coming
from R0 (that we are not considering here), as indicated in Eq. (25),
we are interested in the behavior of 8[h], as indicated in Eq. (2) or,

alternatively, in

∂t8[h] = −

∫

dr̄

(

ν∇2h +
λ

2

(

∇h
)2

)

∂th,

whose study is clearer, simpler, and more direct. In order to extract
the time dependence, we need to transform the diverse contributions
from the old (r̄) to the new (r̄′) variables. The details are shown in the
Appendix. The relevant time dependence that we find is

(1) = 91t
a−bd + 92t

2a−bd,

(2) = 93t
2a−1−bd + 94t

3a−1−bd,

(3) = 95t
2a−1−b−bd + 96t

−1−b−bd,

(29)

and it is worth indicating that 92 ∼ ν2λ2

D2 l
.

In order to have a term that is both independent of time and
having a λ2 dependence, in Eq. (29), we should have that

2a − bd ≡ 0, ⇒ β = d/2z,

but such a relation leads immediately to α = d/2 that for d = 2 leads
to α = 1. Hence, the extension of the above indicated scaling to
higher dimensions, even looking reasonable, leads to wrong results.
Besides, in Ref. 36, exploiting this kind of scaling, a two dimensional
case was analyzed. However, the system’s symmetry is such that it is
reduced to an effective one-dimensional situation.

V. CONCLUSIONS

We have shown that, based on a path-integral approach, it is
possible to prove several fluctuation theorems for the KPZ system, a
paradigmatic nonequilibrium extended model. The analysis exploits
the knowledge and properties of 8[h], the NEP for KPZ, as studied
in Ref. 11. It is worth remarking that when proving both the detailed
theorem Eq. (19) and the integral theorem Eq. (22) and due to the
tremendous difficulties (for not saying the impossibility) for obtain-
ing even an approximate histogram for P1(ha; ta) and P2(hb; tb), we
have to consider arbitrary forms for those initial and final PDFs.

In addition to the fluctuation theorems, and using a kind of
phenomenological approach, we have shown the form of the LDF
for EP that results in also being related to 8[h] and indicates that it
should, essentially, scale as λ2 in all dimensions.

The numerical analysis of the detailed theorem Eq. (19) (by
considering arbitrary, however reasonable, forms of P1 and P2)
as well as the LDF scaling, together with the analysis of possible
relations allowing us to determine—or at least to give a range to
bound—the critical exponents (for instance, as numerically eval-
uated in Refs. 37–39) or to determine general thermodynamic
uncertainty relations25 will be the subject of forthcoming work.
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APPENDIX: CHANGE OF VARIABLES

As indicated above, in order to extract the time dependence,
we need to transform the diverse contributions from the old (r̄)
to the new (r̄′) variables. The Jacobian associated with such a
transformation r̄ → r̄′, in dimension d, is

J =
(

∂ r̄′/∂ r̄
)

=

(

A

2(Bt)b

)d

.

The different contributions to be transformed are (i) ∂th(r̄, t),

(ii) ∇2h(r̄, t), and (iii)
(

∇h(r̄, t)
)2

. Hence, we have

(i) ∂th(r̄, t) = v∞ + aB(Bt)a−1χ(r̄′)

− (Bt)a
J

ABb

2(Bt)b+1
[r̄′ · ∇ ′χ(r̄′)],

(ii)
(

∇h(r̄, t)
)2

= (Bt)2a
J

2
(

∇χ(r̄′)
)2

,

(iii) ∇2h(r̄, t) = (Bt)a
J

2∇2χ(r̄′) = (Bt)a
J

24′χ(r̄′),

where 4 = ∇2, and the symbol ’ indicates that the differential oper-
ator acts on the variable r̄′. Now, replacing this expressions into the
one for ∂t8[h], we get the following contributions:

(1) −

∫

dr̄′v∞

Ad

2(Bt)db
(Bt)a

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= −v∞

Ad

2Bdb
Ba ta−bd

∫

dr̄′

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= 91t
a−bd + 92t

2a−bd,

(2) −

∫

dr̄′aB
Ad

2(Bt)bd
(Bt)a−1χ

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= −aB2a Ad

2Bbd
t2a−1−bd

∫

dr̄′

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= 93t
2a−1−bd + 94t

3a−1−bd,

(3)

∫

dr̄′(Bt)2a Ad

2(Bt)db

ABb

2
(Bt)−b−1(r̄′ · ∇ ′χ)

×

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= B2a−b−bd

(

A

2

)d
Ab

2
t2a−1−bd−b

×

∫

dr̄′

(

ν4′χ +
λ

2
(Bt)a (∇χ)2

)

= 95t
2a−1−b−bd

+ 96t
3a−1−b−bd,

where we have explicitly indicated the time dependence, and the
dependence on the rest of parameters is absorbed into 9i.
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