
Natural Computing manuscript No.
(will be inserted by the editor)

Combining hyper-heuristics to evolve ensembles of
priority rules for on-line scheduling

Francisco J. Gil-Gala · Maŕıa R. Sierra ·
Carlos Menćıa · Ramiro Varela

Received: date / Accepted: date

Abstract Combining metaheuristics is a common technique that may produce
high quality solutions to complex problems. In this paper, we propose a combi-
nation of Genetic Programming (GP) and Genetic Algorithm (GA) to obtain en-
sembles of priority rules to solve a scheduling problem, denoted (1, Cap(t)||

∑
Ti),

online. In this problem, a set of jobs must be scheduled on a single machine whose
capacity varies over time. The proposed approach interleaves GP and GA so that
a GP is in charge of evolving single priority rules and a GA evolves ensembles from
the rules produced by the GP in each iteration. Therefore, the ensembles are pro-
duced in an anytime fashion. In the experimental study, we compare the proposed
approach to a previous one in which the GP was firstly run to evolve a large pool
of candidate priority rules, and then the GA was run to obtain ensembles from
that pool of rules. The results of this study revealed that the ensembles produced
by the interleaved combination of GP and GA are better than those obtained by
the sequential combination of GP and GA. So, these results, together with the fact
that the ensembles being available earlier, make this approach more appropriate
to the online requirements of the scheduling problem. earlier.

Keywords One machine scheduling · hyper-heuristic · priority rules · ensemble
learning · evolutionary algorithms

1 Introduction

This paper tackles the one machine scheduling problem with variable capacity,
denoted (1, Cap(t)||

∑
Ti). In this problem, a number of jobs must be sched-

uled on a single machine, whose capacity varies over time, with the objective
of minimizing the total tardiness objective function. This problem arose from the
Electric Vehicle Charging Scheduling (EVCS) problem confronted in Hernández-
Arauzo et al. (2015). Indeed, solving this problem requires solving many instances

Corresponding author: giljavier@uniovi.es

Department of Computer Science,
University of Oviedo, Campus de Viesques s/n, Gijón, 33271, Spain

2 Francisco J. Gil-Gala et al.

of the (1, Cap(t)||
∑
Ti) problem on-line. In Hernández-Arauzo et al. (2015), the

(1, Cap(t)||
∑
Ti) problem is solved by means of the Apparent Tardiness Cost

(ATC) priority rule.

Priority rules are of common use in on-line scheduling. They can be defined
manually by experts on the problem domain, as it is the case of the ATC rule
proposed by Koulamas (1994), although it is clear that automatic methods could
capture some characteristics of the scheduling problem that are not clear to human
experts. Under this assumption, in recent years, some hyper-heuristics as Genetic
Programming (GP) was proposed to evolve priority rules for scheduling problems
such as job shop (Park et al., 2015; Hart and Sim, 2016; Ingimundardottir and
Runarsson, 2018; Nguyen et al., 2019), unrelated parallel machines (Durasević
et al., 2016), bin packing (Burke et al., 2012), resource constrained project (Chand
et al., 2018; Dumić et al., 2018), or the (1, Cap(t)||

∑
Ti) problem considered in

Gil-Gala and Varela (2019).

As it may be expected, a single rule, even being very good in average for a
large set of instances, may not be good for a number of them individually. For this
reason, some researchers focused on calculating sets of rules that collaboratively
solve the problem. This may be done in different ways. For example, in Hart and
Sim (2016) the authors propose GP to obtain a set of rules that are applied in
turn to schedule a single operation. Similar approaches were developed in Park
et al. (2018) and Durasević and Jakobović (2018, 2019).

In Gil-Gala and Varela (2019), we took an alternative approach. Given the
low time required to compute a solution to the instances of the (1, Cap(t)||

∑
Ti)

problem generated when solving the EVSC in Hernández-Arauzo et al. (2015), we
proposed to use a set of priority rules in parallel to obtain a number of solutions.
The rationale of this is that if these rules are trained to solve instances with
different characteristics, any of the rules will produce a good solution for each
particular instance. The approach proposed in Gil-Gala and Varela (2019) consists
of two steps. Firstly, a large pool of candidate priority rules is obtained by means
of GP. Then, from this pool, a GA is used to evolve good ensembles of a given
maximum size. This method produced very good ensembles, but the time taken
to obtain them is too large due to the time required by GP to evolve the pool of
candidate rules.

In this work we propose combining the GP and the GA in a different way.
Given the long time required by GP to evolving from one generation, said T , to
the next one T + 1, we propose to exploit the GA to evolve ensembles from the
rules produced by the GP in generation T in parallel to the GP evolving generation
T+1. In this way, we obtain a sort of anytime algorithm. As we will see, the evolved
ensembles are similar to those obtained in Gil-Gala and Varela (2019), but they
start to be available from much earlier.

The remainder of the paper is organized as follows. In the next section we
introduce the (1, Cap(t)||

∑
Ti) problem and review the proposed solving methods.

Then, in section 3 we describe the combined approach of the GP and the GA
proposed to evolve rules and ensembles. In section 4 we report the results of the
experimental study. Finally, in section 5, we summarize the main conclusions and
outline some ideas for future work.

Hyper-heuristics to evolve ensembles of priority rules 3

2 Background

In this section we review the state-of-the-art in the (1, Cap(t)||
∑
Ti) problem. We

start from the formal definition of the problem and then describe the proposed
methods to solve this problem on-line, i.e., schedule builders guided by priority
rules. We also review the proposed methods to obtain good priority rules(Gil-Gala
et al., 2019) and ensembles (Gil-Gala and Varela, 2019).

2.1 Definition of the (1, Cap(t)||
∑
Ti) problem

We are given a number of n jobs {1, . . . , n}, available at time t = 0, which have
to be scheduled on a machine whose capacity varies over time. Job i has duration
pi and due date di. The goal is to allocate starting times sti, 1 ≤ i ≤ n to the
jobs on the machine such that the number of jobs that are processed in parallel
on the machine at any time t, X(t), cannot exceed the capacity of the machine;
i.e., X(t) ≤ Cap(t), where Cap(t) ≥ 0, t ≥ 0, is the capacity of the machine in the
interval [t, t+ 1); and the processing of jobs on the machine cannot be preempted,
i.e., Ci = sti +pi, where Ci is the completion time of job i. The goal is minimizing
the total tardiness, defined as: ∑

i=1,...,n

max(0, Ci − di) (1)

2.2 Building schedules on-line

A schedule builder, or schedule generation schema, is a non-deterministic algorithm
that allows to enumerate schedules in a certain space. In Menćıa et al. (2019), a
schedule builder was proposed to the (1, Cap(t)||

∑
Ti) problem, which produce

left-shifted schedules, a subspace of feasible schedules that contains at least one
optimal schedule (see Algorithm 1). The algorithm maintains a set US with the
unscheduled jobs, as well as the consumed capacity X(t) due to the jobs scheduled
so far. In each iteration, the algorithm builds the subset US∗ containing the jobs
in US that can be scheduled at the earliest possible starting time, denoted γ(α),
and selects one of these jobs non-deterministically. This choice may be done either
at random or by means of some priority rule so that the job having the highest
priority in US∗ is the one chosen to be scheduled next.

2.3 Priority rules for the (1, Cap(t)||
∑
Ti)

In the literature there are a number of rules that could be adapted to the
(1, Cap(t)||

∑
Ti) problem. Among them, we may consider the Apparent Tardi-

ness Cost (ATC) rule, which was used with success to solve some scheduling
problems with tardiness objectives (Sang-Oh Shim and Kim, 2007; Kaplan and
Rabadi, 2012); with this rule, the priority of each unscheduled jobs is given by

πj =
1

pj
exp

[
−max(0, dj − γ(α)− pj)

gp̄

]
(2)

4 Francisco J. Gil-Gala et al.

Algorithm 1 Schedule Builder

Data: A (1, Cap(t)||
∑

Ti) problem instance P.
Result: A feasible schedule S for P.
US ← {1, 2, ..., n};
X(t)← 0;∀t ≥ 0;
while US 6= ∅ do

γ(α) = min{t′|∃u ∈ US;X(t) < Cap(t), t′ ≤ t < t′ + pu};
US∗ = {u ∈ US|X(t) < Cap(t), γ(α) ≤ t < γ(α) + pu};
Non-deterministically pick job u ∈ US∗;
Assign stu = γ(α);
Update X(t)← X(t) + 1; ∀t with stu ≤ t < stu + pu;
US ← US − {u};

end
return The schedule S = (st1, st2, ..., stn);

Functionals
Binary - + / * max min

Unitary - pow2 sqrt exp ln

Terminals
Data pi di γ(α) p̄

Constants 0.0 0.1 . . . 0.9 1.0

Table 1: Functional and terminal symbols used to build expression trees.

where p̄ is the average processing time of the jobs in US and g is a look-ahead
parameter to be introduced by the user.

We may consider other priority rules simpler than ATC, for example Earliest
Due Date (EDD) or Shortest Processing Time (SPT) rules, which calculate pri-
orities for an eligible job j as πj = 1/dj and πj = 1/pj respectively. However, as
these rules do not take into account some of the relevant attributes of the problem,
it is expected that they perform worse than ATC. This fact was confirmed in some
experiments reported in Gil-Gala et al. (2019), where both of them, specially SPT,
produced much worse results than ATC with different values of g on a large set of
instances of the (1, Cap(t)||

∑
Ti) problem.

2.4 Genetic programming to evolve priority rules

As pointed, a Genetic Programming (GP) approach was proposed in Gil-Gala et al.
(2019) to evolve priority rules for the the (1, Cap(t)||

∑
Ti) problem. The objective

is to come upon relations among attributes of the problem that are not evident to
the human eye; and so to adapt the priority rules to the particular characteristics
of the problem, or even to sets of instances having particular structure.

Table 1 shows the sets of terminals and symbols considered to build up ex-
pression trees representing priority rules. Figure 1 shows the expression tree corre-
sponding to the ATC rule; in this figure, g should be substituted by some parameter
in 0.1, . . . , 1.0.

The GP follows the design principles proposed in Koza (1992), but it was
enhanced with some features to improve its efficiency and the rationality of the
produced rules. The genetic operators are the same, although the search was re-

Hyper-heuristics to evolve ensembles of priority rules 5

Fig. 1: Expression tree representing the ATC rule.

stricted to dimensionaly aware rules, which are more rational and easy to under-
stand. Therefore, only expressions having the same dimension can be exchanged.
Hence, the size and depth of the evolved trees are limited by two parameters, S
and D respectively. To create initial chromosomes, we have used the ramped-half-
and-half method proposed in Koza (1992).

Along the evolutionary process, each candidate rule is evaluated on a number
of instances of the (1, Cap(t)||

∑
Ti) problem (the training set) and the inverse of

the average tardiness taken as fitness value. In this way, it is expected that the GP
is able to evolve rules that are good to the instances of the training set and others
having similar structure. To assess that, the evolved rules must then be evaluated
on a number of unseen instances (the test set).

As it may be expected, the evaluation of candidate rules is the most time
consuming component of the GP; for this reason, we opted to keep stored the
evaluated rules together with their results on the training set. This prevents GP
for evaluating duplicate rules and at the same time makes available all evaluated
rules when GP finishes, which will be useful in some variants of the proposed
hybrid algorithm.

The experimental study reported in Gil-Gala et al. (2019) shows that the GP
is able to obtain rules that are much more efficient than ATC, with any value of
parameter g. For further details, we refer the reader to Gil-Gala et al. (2019).

2.5 Solving (1, Cap(t)||
∑
Ti) problem by ensembles of rules

Even though the rules obtained by GP are certainly good and may be specialized
to sets or even particular instances of the (1, Cap(t)||

∑
Ti) problem, it is difficult

to obtain a rule that is good in all instances of a given set, this is not surprising due
to no free lunch theorem implications (Wolpert and Macready, 1997). From this
reason, and taking into account the real-time requirements of the EVCS problem
proposed in Hernández-Arauzo et al. (2015), we have considered in Gil-Gala and
Varela (2019) the possibility of using ensembles of rules instead of just a single
rule. As pointed, our proposal is to exploit in parallel a number of rules, i.e., an
ensemble, to solve a given instance and select the best of the solutions as the
solution produced by the ensemble. The rationale of this approach is that if these

6 Francisco J. Gil-Gala et al.

rules are well selected then there will be likely that at least one of them produce
a good solution for any instance.

From the above assumption, in Gil-Gala and Varela (2019) we proposed a
Genetic Algorithm (GA) to evolve ensembles from a large pool of rules obtained
previously. This problem was formalized as a generalization of the maximum cov-
erage problem. The main inconvenience of this approach is the time required to
obtain the pool of rules, which are evolved from a number of runs of the GP. To
solve this inconvenience, we propose herein an alternative way in which the GP
and the GA are interleaved.

2.6 Solving (1, Cap(t)||
∑
Ti) problem by off-line algorithms

In Menćıa et al. (2019) a memetic algorithm (MA) is proposed that, as far as we
know, is the best method to solve the (1, Cap(t)||

∑
Ti) problem off-line. Thus, its

solutions can be used as a reference in order to assess the quality of the on-line
methods. The MA combines a generational genetic algorithm and a local search
algorithm based on hill climbing. The evolutionary strategy is based on random
selection and replacement by tournament among parents and offsprings, which
confers its an implicit form of elitism. In this case, chromosomes are defined by
permutations of the jobs. As in other works (González et al., 2012; Menćıa et al.,
2014), this encoding allows the MA to use the well-known Order Crossover (OX)
or simple mutation operators. The decoder builds a schedule using Algorithm 1,
scheduling the jobs in the order they appear in the chromosome. For further details,
we refer the reader to Menćıa et al. (2019).

3 The hybrid algorithm

In this paper, we propose interleaving the GP and the GA so that the GA calculates
ensembles from the rules in the current generation of the GP at the same time as
the GP evolves the next generation of rules from the current one. This method
requires running the GA for a number of generations after each generation of the
GP. In practice, this is not an inconvenience as one generation of the GP takes
much more time than running the GA for, said, 100 generations or more.

In order to implement this method, the rules calculated by the GP in a gen-
eration are stored in a set, denoted R, whose elements are tuples of the form
< Rule, Solutions >. For a given rule Rule, Solutions is in turn another set with
elements of the form < Instance, Solution >, where Instance is one of the in-
stances of the training set and Solution is the schedule produced by Rule to that
instance. Both sets may be efficiently implemented as hash tables.

The interleaved execution of the GP and the GA is shown in Figure 2. This
schema expresses that the rules obtained in a generation of the GP can only be
stored in the set R if the previous execution of the GA has finished, and that
just after these rules are stored in R the generation of the initial population of
the next execution of the GA can be done in parallel to the checking for the GP
termination. Therefore, the next generation of the GP can be build at the same
time as the GA evolves ensembles from the current one.

Hyper-heuristics to evolve ensembles of priority rules 7

Fig. 2: Flow chart of the combined GP and GA algorithm.

Of course, different evolution schemas to that in Figure 2 could be considered.
For example, we could take into account the ensembles evolved by the GA to
identify the rules that most contribute to the best ensembles and maintain some
of these rules in the next generation of the GP, what would be some kind of
elitism; but this will require more detailed analysis to avoid other inconveniences
as premature convergence. Besides, we could allow the GA to build ensembles
from all different rules evolved by the GP in previous generations, but this schema
would be more costly in both space and time. Therefore, we opted herein to keep
the mentioned schema.

4 Experimental study

We have conducted an experimental study aimed at analyzing the behaviour of the
proposed algorithm combining the GP and the GA. To this end, we implemented
these algorithms from scratch in Java language and ran a series of experiments on
a Linux cluster (Intel Xeon 2.26 GHz. 128 GB RAM). This cluster distributes the
workload into 28 processing nodes, so the cluster is capable of executing up to 28
jobs in parallel. Making use of this feature and considering the stochastic nature
of GP and GA, 28 independent runs were done for each input data. Then, best,
average and standard deviation (SD) of the 28 solutions were recorded.

4.1 Test bed

We propose a new benchmark set that consists of instances more realistic than
those considered in Gil-Gala et al. (2019) as they are much more similar to the in-
stances that are expected to be generated from the system proposed in Hernández-
Arauzo et al. (2015). The generation procedure works as follows, where MC de-
notes the maximum capacity of the machine, U(a, b) refers to a random integer
sampled from a uniform distribution in the interval [a, b], and N(µ, σ) denotes a

8 Francisco J. Gil-Gala et al.

random integer from a normal distribution with mean µ and standard deviation
σ:

1. For each operation i, its processing time is set as pi = U(20, 100). Based on

these values, we define min pi = min{pi|i = 1, ..., n} and sum pi =
n∑

i=1

pi.

2. The initial capacity of the machine is set as IC = U(1,MC), whereas its final
capacity is FC = 2. Then, the capacity of the machine is defined by different
intervals, firstly increasing the capacity one by one from IC to MC, and then
decreasing it one by one until FC.

3. The duration of each capacity interval is set as max{min pi/4, N(R, 0.2×R)},

where R = sum pi/S and S =
MC−1∑
j=IC

j +
MC∑

j=FC

j. This aims at enforcing the

operations to be distributed over all the capacity intervals.
4. Finally, for each operation i, its due date is set as di = U(pi, B), where B =
R× (2×MC−IC−1) approximates the completion time of all the operations.

With this procedure, we generated a total of 2, 000 instances with 60 jobs
each. In order to avoid trivial instances, in this process we discarded instances for
which at least one the rules EDD or ATC with g ∈ {0.25, 0.5, 0.75, 1.0} produced
schedules with total tardiness 0. Then these 2,000 instances were sorted by the
total tardiness produced by the ATC rule with g = 0.5 and splited into two subsets
of the same size: training and test. In order for these subsets to have instances
with similar characteristics, the training set includes the 1,000 instances with odd
indexes and the test set those with even indexes in the above ordering. In turn, the
instances of the training set were numbered 0, . . . , 999 in the order they appear
and the whole training set was divided into 20 subsets (0 . . . 19) of 50 instances
each. Again for all of them being similar, the 20 subsets were defined so as the
subset i ∈ {0, . . . , 19} includes the instances j ∈ {0, . . . , 999} such that j%i = 0.
In the following experiments we only used the subset i = 10 for training.

4.1.1 Results from classic rules and memetic algorithm on the test bed

Table 2 summarizes some preliminary results on the training set (50 instances)
and the test set (1,000 instances) obtained by different methods, namely the EDD
rule, the ATC rule with 10 values of parameter g, an ensemble composed by the
10 ATC rules and finally the best and average results from the memetic algorithm
(MA) proposed by Menćıa et al. (2019). As expected, the MA obtains the best
results, but taking much more time (several orders of magnitude) than the single
rules or the ensemble of 10 rules, which in turn obtains much better results that
any of the single rules, at the cost of taking just one order of magnitude more
time.

4.2 Analysis of the hybrid approach

We consider here the same parameters used in Gil-Gala et al. (2019) and Gil-Gala
and Varela (2019) for the GA and the GP respectively. These values are shown
in Table 3. The solution sizes in the GA and the GP are the cardinality of the

Hyper-heuristics to evolve ensembles of priority rules 9

Method Training Test

EDD 1922.44 1938.55
ATC(0.1) 1655.18 1675.26
ATC(0.2) 1654.54 1654.31
ATC(0.3) 1611.72 1644.26
ATC(0.4) 1644.64 1651.88
ATC(0.5) 1661.52 1666.33
ATC(0.6) 1682.68 1680.85
ATC(0.7) 1703.52 1701.58
ATC(0.8) 1714.30 1729.25
ATC(0.9) 1753.98 1761.33
ATC(1.0) 1780.26 1796.13
ATC(avg) 1686.23 1696.12

Ensemble ATC 1569.24 1578.69

Best Avg. Best Avg.

MA 1399.90 1410.90 1408.80 1418.65

Table 2: Summary of results obtained by the rules ATC (with different values of
the parameter g), EDD and MA.

Crossover Mutation Population Chromosome
Algorithm rate rate size length

GP 1.0 0.02 200 26 − 1
GA 0.8 0.2 100 10

Table 3: Parameter values for the GP and the GA taken from Gil-Gala et al.
(2019) and Gil-Gala and Varela (2019) respectively.

ensembles (P) and the maximum size of the rules (S), respectively. The maximum
depth of the rules (D) is calculated as S = 2D − 1.

As pointed in Section 3, the GA and the GP may be combined in different ways
to obtain ensembles. We have analysed the following three different hybridizations:

1. The GA is executed after the GP finishes and so it evolves ensembles from the
whole of different rules evaluated by the GP. In this case, there are a large
variety of rules available for the GA.

2. The GA is interspersed with the GP and, after each generation of the GP,
the GA evolves ensembles from only the rules in the current generation of the
GP. In this case, the GA has much less rules available to be combined into
ensembles.

3. A combination of both approaches. The GA is run after each generation of
the GP, taking rules from the current population of the GP, and when the GP
ends, the GA is executed once more using all the calculated rules.

Table 4 summarizes the results obtained by the ensembles calculated in the
three ways considered. We can observe that the results are better when the GA
and the GP are interleaved and that a final run of the GA from all rules evaluated
by the GP may improve the results. The time taken is similar in the three cases
and the small differences are due to the high stochastic nature of the GP. In any
case, the time taken by the GA is negligible w.r.t. the time taken by the GP.

10 Francisco J. Gil-Gala et al.

Avg. Training Test

Hybrid. Time Best Avg. SD Best Avg. SD

1 172.83 1535.50 1574.84 41.50 1566.72 1622.58 46.00
2 174.01 1527.98 1562.97 39.73 1566.62 1613.52 28.40
3 173.48 1523.84 1559.63 34.64 1565.68 1601.02 36.96

Table 4: Summary of results obtained by the three hybridizations considered. The
average time is given in minutes. The parameters are set as given in Table 3.

Size Training Test

D P Avg. Best Avg. SD Best Avg. SD

4 3 12.86 1624.14 1723.35 48.21 1641.53 1744.36 52.99
4 5 12.93 1627.40 1736.79 57.12 1641.53 1759.67 63.73
4 10 12.71 1621.66 1722.20 57.23 1641.53 1745.08 62.45
4 20 12.79 1644.76 1742.25 45.72 1650.10 1763.91 54.49
4 50 12.89 1624.60 1735.53 52.70 1642.03 1761.78 59.51
6 3 29.18 1603.90 1637.35 32.65 1630.02 1669.09 37.62
6 5 29.36 1603.96 1637.80 39.04 1636.56 1667.48 42.74
6 10 30.39 1600.30 1644.61 40.42 1638.16 1679.03 45.57
6 20 28.68 1600.10 1652.36 42.34 1636.28 1686.71 48.29
6 50 29.64 1605.24 1640.04 42.70 1632.08 1671.55 46.99
8 3 43.36 1592.60 1641.96 49.42 1634.43 1682.69 54.88
8 5 43.89 1591.58 1626.11 31.37 1636.13 1665.60 33.91
8 10 48.00 1587.38 1625.98 27.20 1633.07 1664.65 31.05
8 20 44.96 1597.28 1627.01 32.06 1632.95 1669.53 41.77
8 50 45.79 1592.98 1625.99 31.71 1630.30 1665.51 36.30
10 3 51.00 1596.60 1629.23 34.41 1635.71 1671.23 43.69
10 5 54.46 1589.98 1619.02 25.25 1635.31 1661.04 30.54
10 10 53.93 1591.34 1639.84 43.80 1628.28 1684.76 47.54
10 20 55.25 1591.74 1632.06 40.85 1637.07 1675.87 42.88
10 50 54.75 1595.86 1628.66 29.93 1636.86 1671.57 34.97

Table 5: Detailed results obtained by the rules evolved by the GP from different
combinations of D and P .

4.3 Detailed results from rules and ensembles evolved by the hybrid algorithm

In this section we report detailed results from the hybrid algorithm considering dif-
ferent depth limits (D) of the rules evolved by the GP and also different maximum
sizes of the ensembles (P) calculated by the GA. In accordance with the results in
Table 4, we considered version 3 of the hybrid algorithm in these experiments.

Table 5 shows the results of the evolved rules on the training and test sets.
Each row summarizes the results obtained by the hybrid algorithm for a pair
(D,P). Here is important to be aware that the value of P would not have any
influence on the results (as we are not considering ensembles, but only individual
rules). However, there are some differences between experiments with the same
value of D and different P , which are due to the highly stochastic nature of the
GP. In spite of that, we can observe that the quality of the solutions and the
average size of the rules are in direct ratio with the value of D, with the exception
of the last two values, 8 and 10, which show similar quality of solutions. This may
be better observed in Table 6 where the average results are in turn averaged for

Hyper-heuristics to evolve ensembles of priority rules 11

Avg. Time Average tardiness

D size (m) Training Test

4 12.84 24.80 1732.02 1754.96
6 29.45 90.38 1642.43 1674.77
8 45.20 179.69 1629.41 1669.59
10 53.88 230.64 1629.76 1672.89

Table 6: Summary of results from the rules evolved by the GP for different values
of D on the training and test sets.

Training Test

D P Best Avg. SD Best Avg. SD

4 3 1581.34 1675.31 50.27 1604.24 1698.11 52.35
6 3 1563.06 1590.34 31.55 1591.30 1624.98 34.44
8 3 1552.80 1595.47 46.81 1593.44 1634.11 48.33
10 3 1555.34 1585.43 31.55 1593.62 1624.22 35.79
4 5 1570.96 1670.78 52.80 1592.03 1695.37 56.25
6 5 1539.32 1571.81 34.22 1582.42 1607.63 37.74
8 5 1538.16 1563.55 24.86 1581.95 1604.02 28.62
10 5 1537.54 1558.17 22.37 1575.86 1599.17 26.26
4 10 1543.60 1642.16 52.99 1571.83 1668.48 56.73
6 10 1523.84 1559.63 34.64 1565.68 1601.02 36.96
8 10 1517.28 1543.89 23.35 1562.12 1586.52 24.11
10 10 1518.66 1558.99 39.93 1561.23 1605.02 42.03
4 20 1566.20 1652.31 39.33 1579.27 1677.24 42.85
6 20 1511.16 1553.80 38.76 1550.71 1594.34 42.44
8 20 1506.48 1532.95 29.86 1551.74 1576.96 31.19
10 20 1510.92 1540.73 37.11 1552.39 1584.71 37.41
4 50 1548.68 1640.51 45.27 1560.23 1666.75 49.49
6 50 1501.88 1535.23 38.70 1543.75 1573.52 39.85
8 50 1497.18 1521.76 27.27 1537.47 1564.57 29.49
10 50 1491.98 1521.03 23.84 1538.90 1567.06 28.83

Table 7: Detailed results obtained by the ensembles from different combinations
of D and P .

each value of D. Besides, we can see that D = 8 produces the best rules in these
experiments.

Table 7 shows detailed results from the ensembles produced in the same exper-
iments. As it may be expected, in this case both D and P have strong influence
on the results. This fact may be better observed in Table 8 and in Table 9 where
the average results are also averaged for values of P and D respectively. From
these results we can see that the quality of the solutions grows with the size of the
ensemble as well as with the maximum depth of the rules, however in the last case
the rate of improvement is lower, even it decreases from 8 to 10, maybe due to the
fact that with D = 10 the search space of rules is so huge that the GP can only
visit a small portion of it. From all the above, and taking into account the cost of
applying ensembles to solve the (1, Cap(t)||

∑
Ti) problem, we may consider that

P = 10 and D = 8 is a reasonable choice.

12 Francisco J. Gil-Gala et al.

Time Average tardiness

P (m) Training Test

3 118.50 1611.64 1645.35
5 126.09 1591.08 1626.55
10 132.29 1576.17 1615.26
20 126.49 1569.95 1608.31
50 141.03 1554.63 1592.98

Table 8: Summary of results from the ensembles generated by the hybrid algorithm
averaged for values of P .

Time Average tardiness

D (m) Training Test

4 24.80 1656.22 1681.19
6 90.38 1562.16 1600.30
8 179.69 1551.52 1593.24
10 230.64 1552.87 1596.04

Table 9: Summary of results from the ensembles generated by the hybrid algorithm
averaged for values of D.

4.4 Analysis of the convergence of the hybrid algorithm

In order to gain insights into the hybrid algorithm that may help to improve its
performance, it would be interesting to analyse its convergence along the gener-
ations. Due to the characteristics of our hybrid algorithm, we have to take into
account how both the GP and the GA converge. As the second one is executed
once for each generation of the first, in order to have a clear view about how they
evolve together, we will visualize the best and average fitness for each generation
of the GP, as it is usual, but for the GA we will just visualize the best and average
fitness in the final generation for the execution issued from each generation of the
GP. Figure 3 shows the results averaged for the 28 executions of the hybrid algo-
rithm; for the sake of clarity, we show the first 50 generations of the GP, on the
left, in different scale that the remaining 450, on the right. To strengthen the com-
parison, we include in both graphics the fitness value produced by the ensemble
composed by the best P rules (Best Rules) evolved by the GP so far.

As we can observe, both the GP and the GA present proper convergence pat-
terns these produce better and better rules or ensembles respectively along the
generations. The performance of the best solution of the GP tends to be quite
similar to that of the ensemble of the best P rules; this is due to the fact that the
best rules get more and more similar, not only semantically but even in some cases
syntactically as well. Regarding the GA, the evolved ensembles are much better
(both the best and in average) than the ensemble of the best P rules. The im-
provement of the ensembles produced by the GA over the generations is a natural
consequence of the GP evolution, which maintains a diversity of rules at the same
time that the best and average of these rules improve.

It could also be worth to analyse the time taken by the GP and the GA, and
whether or not the GP generates duplicated rules, these issues can be observed in
Figure 4. In the left side, we can see that the difference between the total time and

Hyper-heuristics to evolve ensembles of priority rules 13

Evolucion_tardinessReglas_c.pdf Evolucion_tardinessReglas2_c.pdf

Evolucion_tardinessEnsembles_c.pdf Evolucion_tardinessEnsembles2_c.pdf

Fig. 3: Evolution of the GP and the GA average for the 28 executions of the hybrid
algorithm with D=8 and P=10. For GA, only the values of the final population
corresponding to each execution after a generation of the GP are considered.

the time taken by the GP, which corresponds to the time taken by the GA, is very
small showing that we could leave the GA running for more time between each
two consecutive generations of the GP. On the right side, we can observe that the
number of rules generated after crossover and mutation by the GP grows linearly
with the number of generations. Besides, a large portion of these rules are feasible,
but only about half of these feasible rules are non-duplicated. These last results
make it clear the utility of duplicate detection.

4.5 Comparison to other methods

Maybe, ATC rules and ensembles of them are the actual competitors of the rules
and ensembles evolved by the hybrid algorithm. At the same time, the MA provides
a realistic bound limit on the quality of the solutions that could be obtained by

14 Francisco J. Gil-Gala et al.

Evolucion_tiempo_c.pdf Evolucion_reglasGeneradas_c.pdf

Fig. 4: Time taken and rules produced along the generations averaged for the 28
executions of the hybrid algorithm with D=8 and P=10.

Resultados_entrenamiento_c.pdf

Fig. 5: The average tardiness is reported when solving the training set with the
best rule and ensemble, and the ensemble formed by the P best rules. The average
tardiness obtained by the ATC rule and the ensemble formed by the ATC rules
are also reported.

the evolved ensembles. So, in this section we will try to establish a fair comparison
with these methods. We will restrict the comparison to D=8 and P=10.

Hyper-heuristics to evolve ensembles of priority rules 15

Resultados_test_c.pdf

Fig. 6: The average tardiness is reported when solving the test set with the best
rule and ensemble, and the ensemble formed by the P best rules. The average
tardiness obtained by the ATC rule and the ensemble formed by the ATC rules
are also reported.

Figures 5 and 6 summarize the results from rules and ensembles on the training
and test set, respectively. Looking at Figure 5, we can see that there is an evident
correlation between the best rule and the best evolved ensemble, showing that
this rule is dominant in the construction of ensembles. Besides, the best rule and
the ensemble of the best P rules is quite similar, which is due to the fact that
the best evolved rules tend to be semantically similar. In average, they produce
similar results to the best ATC rule, but in general they are clearly worse that
the ensemble of ATC rules. On the other hand, the best ensemble evolved by the
hybrid algorithm is better to the ensemble of ATC rules, not only in average but
also in 22 out of the 28 independent runs of the hybrid algorithm.

Regarding the experiments on the test set (Figure 6), things are rather similar,
but there are two exceptions. The first one is that the best rule and the ensemble
of the P best rules is sometimes worse than the average ATC rule. But the most
remarkable difference is that the evolved ensembles are better than the ensemble
of ATC rules in 16 of the 28 runs and in a good number of the remaining 12 runs
the evolved ensemble is clearly worse than the ATC ensemble. Therefore showing
a certain over-fitting degree and so limited generalization capability, which may
be due to the fact that the size of the training set is much lower than that of the
test set.

Finally, we summarize in Table 10 the results from the above methods together
with the results of the MA. We have to be aware of the differences in the time

16 Francisco J. Gil-Gala et al.

Training Test

Method Best Avg. Best Avg.

ATC rule 1611.72 1686.23 1644.26 1696.12
Rule GP 1587.38 1625.98 1633.07 1664.65

Ensemble ATC 1569.24 1578.69
Ensemble best rules 1568.64 1622.43 1590.81 1660.31

Ensemble GA 1517.28 1543.89 1562.12 1586.52
MA 1399.90 1410.90 1408.80 1418.65

Table 10: Summary of results obtained by the rules ATC, rules evolved (D=8),
ensemble ATC, ensembles evolved (P=10) and MA.

taken: an ensemble takes P times that of a single rule and the MA takes the same
time of a single rule to evaluate each chromosome plus the time taken by the
local searches. All in all, we can see that the ensembles calculated by the proposed
hybrid algorithm are better than those obtained from conventional rules, but at
the same time, there is still room to improve given the difference between the
solutions produced by the ensembles and the solutions provided by the MA.

5 Conclusions and future work

In this work we have proposed a hybrid algorithm that combines genetic algo-
rithms (GA) and genetic programming (GP) to obtain on-line solvers for the
(1, Cap(t)||

∑
Ti) problem. The GP is able to evolve priority rules showing supe-

rior performance that classic rules as ATC. In turn, the GA calculates ensembles
from the rules in each generation of the GP. All these rules are exploited in par-
allel and the best solution from all rules taken as the solution produced by the
ensemble. This schema may produce much better solutions than exploiting a sin-
gle rule, provided that the rules in the ensemble have enough semantic diversity.
Of course, this improvement comes at the cost of increasing the time taken in a
factor proportional to the number of rules. Furthermore, the calculated ensembles
outperform ensembles formed by classical rules, but their performance is still far
from that of off-line algorithms such as memetic algorithms.

According to the taxonomy proposed in Burke et al. (2019), our approach can
be classified as hyper-heuristic based on heuristic generation, due the fact that the
ensembles do not use the rules in a coordinated way to build a single solution, as
traditional hyper-heuristic based on heuristic selection do.

As future lines of research we will consider alternative schemas to exploit en-
sembles to build a single solution, as done in Hart and Sim (2016), Park et al.
(2018) and Durasević and Jakobović (2018, 2019), and mechanisms for local im-
provement of the solutions reached by the GA and the GP. Furthermore, in order
to dealing with some issues as the size of the rules or semantically duplicated rules,
we plan to study alternative evolution methods and postprocessing mechanisms
to simplify the structure of the evolved expression trees.

Acknowledgements This research has been supported by the Spanish Government un-
der research project TIN2016-79190-R and by the Principality of Asturias under grant

Hyper-heuristics to evolve ensembles of priority rules 17

IDI/2018/000176. Francisco J. Gil-Gala is supported by the scholarship FPI17 / BES-2017-
08203.

References

Burke EK, Hyde MR, Kendall G, Woodward J (2012) Automating the packing
heuristic design process with genetic programming. Evolutionary Computation
20(1):63–89

Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2019) A Clas-
sification of Hyper-Heuristic Approaches: Revisited. In: Gendreau M., Potvin
JY. (eds) Handbook of Metaheuristics. International Series in Operations Re-
search & Management Science 272:453–477.

Chand S, Huynh Q, Singh H, Ray T, Wagner M (2018) On the use of genetic
programming to evolve priority rules for resource constrained project scheduling
problems. Information Sciences 432:146–163

Dumić M, Šǐsejkovic D, Čorić R, Jakobović D (2018) Evolving priority rules for
resource constrained project scheduling problem with genetic programming. Fu-
ture Generation Computer Systems 86:211–221

Durasević M, Jakobović D (2018) Comparison of ensemble learning methods for
creating ensembles of dispatching rules for the unrelated machines environment.
Genetic Programming and Evolvable Machines 19(1):53–92

Durasević M, Jakobović D (2019) Creating dispatching rules by simple ensemble
combination. Journal of Heuristics 25:959–1013

Durasević M, Jakobović D, Knežević K (2016) Adaptive scheduling on unrelated
machines with genetic programming. Applied Soft Computing 48:419–430

Gil-Gala FJ, Varela R (2019) Genetic algorithm to evolve ensembles of rules for on-
line scheduling on single machine with variable capacity. In: Ferrández Vicente
J.M. et al. (eds) Bioinspired Systems and Biomedical Applications to Machine
Learning. Proceedings of IWINAC 2019.Lecture Notes in Computer Science
11487:223–233.

Gil-Gala FJ, Menćıa C, Sierra MR, Varela R (2019) Evolving priority rules for
on-line scheduling of jobs on a single machine with variable capacity over time.
Applied Soft Computing 85: 105782.

González MA, Vela CR, Varela R (2012) A competent memetic algorithm for
complex scheduling. Natural Computing 11:151–160

Hart E, Sim K (2016) A hyper-heuristic ensemble method for static job-shop
scheduling. Evolutionary Computation 24(4):609–635

Hernández-Arauzo A, Puente J, Varela R, Sedano J (2015) Electric vehicle charg-
ing under power and balance constraints as dynamic scheduling. Computers &
Industrial Engineering 85:306–315

Ingimundardottir H, Runarsson TP (2018) Discovering dispatching rules from data
using imitation learning: A case study for the job-shop problem. Journal of
Scheduling 21(4):413–428

Kaplan S, Rabadi G (2012) Exact and heuristic algorithms for the aerial refuel-
ing parallel machine scheduling problem with due date-to-deadline window and
ready times. Computers & Industrial Engineering 62(1):276–285

Koulamas C (1994) The total tardiness problem: Review and extensions. Opera-
tions Research 42:1025–1041

18 Francisco J. Gil-Gala et al.

Koza JR (1992) Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press

Menćıa C, Sierra MR, Menćıa R, Varela R (2019) Evolutionary one-machine
scheduling in the context of electric vehicles charging. Integrated Computer-
Aided Engineering 26(1):1–15

Menćıa R, Sierra MR, Menćıa C, Varela R (2014) A genetic algorithm for job-shop
scheduling with operators enhanced by weak lamarckian evolution and search
space narrowing. Natural Computing 13:179–192

Nguyen S, Mei Y, Xue B, Zhang M (2019) A hybrid genetic programming al-
gorithm for automated design of dispatching rules. Evolutionary Computation
27(3):467–496

Park J, Nguyen S, Zhang M, Johnston M (2015) Evolving ensembles of dispatching
rules using genetic programming for job shop scheduling. In: Machado P. et al.
(eds) Genetic Programming. Proceedings of EuroGP 2015. Lecture Notes in
Computer Science 9025:92–104

Park J, Mei Y, Nguyen S, Chen G, Zhang M (2018) An investigation of ensemble
combination schemes for genetic programming based hyper-heuristic approaches
to dynamic job shop scheduling. Applied Soft Computing 63:72–86

Sang-Oh Shim SO, Kim YD (2007) Scheduling on parallel identical machines to
minimize total tardiness. European Journal of Operational Research 177(1):135–
146

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1):67–82

