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José Luis Dı́az, Joaquı́n Entrialgo, Javier Garcı́a, Manuel Garcı́a, Daniel F. Garcı́a, Member, IEEE

Abstract—For a long time, the common billing time slot used by cloud providers was the hour, but recently they have changed it to one
second with a minimum charge of one minute. In this paper, the impact of this change on virtual machine allocation strategies is
analyzed. With the minimum one-minute charge, the state-of-the-art allocation strategies are no longer optimal. This paper proposes a
new analytic model to obtain the optimal allocation that minimizes the total cost considering this new billing scheme. However, the
optimization problem using this model is unmanageable due to its computational complexity. Therefore, other sub-optimal allocations
strategies are proposed. The performance of these strategies (in terms of total allocation cost and computational effort) is analyzed in
order to assess the influence of the time slot length. Allocation time slots of one hour, one minute and one second are compared. The
experimental work is carried out using synthetic workloads based on two real public traces. The study concludes that the time slot of
one minute offers the best trade-off between allocation cost and computational effort. The experimentation shows that the proposed
strategy can save up to 14% over using the time slot of one hour.
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1 INTRODUCTION

Cloud computing has become a mainstream technology of
the IT industry. Among the different service models offered
by cloud computing providers, in this paper we consider In-
frastructure as a Service (IaaS), a model in which providers
basically offer Virtual Machines (VM).

A transactional service in the cloud (such as a web
service) requires the allocation of a set of VMs to support
its workload. Transactional services represent one of the
most important cloud workloads [1]. These workloads are
given as requests per time unit. Recent studies [2] show
a significant waste of resources in service deployments,
highlighting the importance of cost optimization in VM
allocations. Therefore significant research efforts have been
carried out in this field.

An allocation strategy produces successive VM alloca-
tions to support a varying workload. A VM allocation is
a set of VMs, indicating their types, the number of each
type, and the pricing categories (on-demand or reserved) to
which the VMs belong. In order to determine the instants at
which an allocation strategy is applied, the time is usually
divided in regular time slots. There are allocation strategies
focused on the short and on the long term. The former
produces VM allocations for the next time slot, while the
latter generates allocations for all the time slots within a long
period. The aim of long-term strategies is to take advantage
of reserved VMs. Although in the past reserved VMs were
only offered by Amazon [3], nowadays other major public
providers (e.g., Microsoft, Google and Alibaba Cloud) also
provide this category of VM [4], [5], [6]. Except for Alibaba
Cloud, which offers a reservation period of one month, all
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these providers offer a minimum reservation period of one
year.

The length of the time slots managed by allocation
strategies is usually matched with the billing time slot. In the
past, the billing time slot used by major cloud providers was
the hour. However, on 2 October 2017, Amazon announced
a major change in its billing policy: the new billing time
slot became the second, with a minimum charge of one
minute [7]. This means that once a VM is put in a running
state, a minimum charge of one minute is applied, even
when the VM remains in this state for less than one minute.
Once the first minute has elapsed, the total number of
seconds in the running state is charged. Microsoft Azure
has recently changed from one hour to one minute (seconds
are discarded), and Google and Alibaba Cloud also started
billing by seconds in their IaaS service [8], [9].

Per-second billing with a minimum charge of one minute
raises three important issues: 1) the impact on the size and
complexity of the VM allocation problem, 2) the interde-
pendence among successive time slots in relation with the
calculation of the optimal allocation for each time slot, and
3) the necessity of workload traces with a resolution of one
second and a length of one year (in order to deal with
reserved VMs properly), for testing allocation algorithms.

With regard to issue 1), the reduction of the billing time
slot to one second, in principle, also implies the reduction
of the time slot used by the allocation strategy to one
second. When reserved VMs are considered and the period
of analysis is extended to one year, the number of time slots
to be managed by the allocation strategy is extremely large.
Thus the feasibility and the convenience of calculating a VM
allocation for each second of a year must be analysed.

In relation to issue 2), the interdependence among suc-
cessive time slots is caused by the minimum charge of
one minute for each VM launched. To take this minimum
charge into account, the allocation strategy should keep



IEEE TRANSACTIONS ON SERVICES COMPUTING 2

track of allocation decisions in previous time slots, as well
as the workload in future time slots. This interdependence
among time slots may make the VM allocation problem
extraordinarily complex, so it must be studied carefully.

Regarding issue 3), workload traces are a very useful
tool in the research of VM allocation strategies. To this end,
the availability of public traces is very important. However,
the requirement of a per-second resolution with a length
of one year raises important questions: are there public
traces corresponding to transactional services with a per-
second resolution and a length of one year? In the case of
a trace with a resolution lower than one second, can it be
transformed into a trace with a per-second resolution? What
techniques can be used to this end? These questions must be
analyzed.

In the research presented here, a new analytic model for
an allocation strategy that considers per-second billing with
a minimum charge of one minute is proposed. This model
uses the same input parameters as a previous model, called
Malloovia [10], but introduces a new problem formulation
to take into account the restrictions imposed by the new per-
second billing procedure. The analysis of the VM allocation
problem using the proposed formulation reveals that the
interdependence among successive time slots generates a
huge number of variables, making the VM allocation prob-
lem unmanageable. Therefore, several approximated solu-
tions using variations of the standard Malloovia algorithm
are proposed and analyzed.

The research presented here provides the following main
contributions:

1) A model of a VM allocation strategy with a time
slot of one second and a minimum charge of one
minute, called TWOS (Time-Window based Optimal
Solver). The analysis of this model shows that the
VM allocation problem with the minimum charge
of one minute is unmanageable.

2) A comparative analysis of the calculation of VM
allocations employing three different time slots: one
hour, one minute and one second. The comparative
analysis shows that the best choice is using a time
slot of one minute, because it offers the best trade-off
between the allocation cost and the computational
effort required to find the allocation. In addition,
the analysis reveals significant differences in cost
among the VM allocations produced with the three
time slot alternatives, depending on the shape of the
workload to be managed. This comparative analysis
was carried out using Malloovia, as well as a modi-
fied version of Malloovia called Malloovia Guided,
but the insights obtained are general.

3) A set of traces with a resolution of one second and
a length of one year. These traces were obtained
applying diverse processing techniques to traces of
real publicly available workloads. The traces ob-
tained have been made available in a public reposi-
tory, thus they can be used in future research works.

To the best of our knowledge, the research presented
in this paper is the first to analyze the influence of the
billing time slot length on the cost of allocation strategies,

comparing the traditional per-hour billing with the new per-
second billing.

The rest of this paper is organized as follows. Section 2
discusses the related work. In section 3, an analytic model
to obtain the optimal cost, as well as other alternative
approximations, are developed. Section 4 presents a set of
experimental case studies that compare the performance of
the different allocation strategies. Section 5 discusses several
relevant results obtained in this research, as well as the
limitations of the techniques developed. Finally, Section 6
provides the main conclusions of the paper.

2 RELATED WORK

The latest reports from RightScale about the state of the
cloud [2] emphasize the significant amount of wasted cloud
spend, estimated between 27% and 35%. This has made
users focus on cost and how it can be reduced.

In the literature, several papers study the improvement
of VM allocation on IaaS, and the way to reduce the allo-
cation cost. They can be divided in two groups according
to how the workload of the cloud system is represented. A
classification of the related work can be seen in Table 1. In
this table, the main characteristics of each work in relation
with our work are highlighted.

In the first group of papers [11], [12], [13], [14], [15], [16],
[17], [18] and [19] the workload is represented as the number
of VMs requested in each period. They obtain an optimal
allocation, but they only solve part of the problem because
the issue of determining the appropriate type and number
of VMs required to serve the workload is not solved. This
last aspect is itself another optimization problem. In order

TABLE 1
Comparison of this research with the related papers. The black circle
means that the characteristic is supported, a white circle that it is not

supported and a half-filled circle that it is partially supported.
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Chaisiri 2009 [11]   G# G#  G# N/A N/A VMs
Mark 2011 [12]   G# G#  G# 5 mos. N/A VMs
Orbegozo 2011 [13] # # # #   3 yrs. N/A VMs
Chaisiri 2012 [14]   G# G#  G# N/A N/A VMs
Yousefyan 2013 [15]   G# G#  # — — VMs
Hwang 2014 [16] # #  #   2 mos. 5 min VMs
Khatua 2014 [17]  # # #   6 mos. sec VMs
Nodari 2016 [18] # # G# #  G# 1 mo. hour VMs
Reddy 2017 [19]  # # #  # — — VMs

Nan 2012 [20]    #  # — — Req
Hu 2012 [21] # # G# #  # — — Req
Bellur 2014 [22]  # # #   1 yr. hour Req
Wang 2015 [23] # # # #   1 mo. µsec Jobs
Li 2015 [24] G# # #    1 mo. sec Req
Cao 2016 [25] # G#  #  # — — Req
Delimitrou 2016 [26] #   #  # 2 hrs. sec Req
Lloovia 2017 [27]  #     1 yr. hour Req
Malloovia 2017 [10]      # 1 yr. hour Req

This work       1 yr. sec Req
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to obtain the minimum cost it is necessary to obtain the
right type, minimum number of VMs and the best allocation
simultaneously. If both optimization problems are solved
separately, the final solution might not be globally optimal;
therefore the papers in this group are not described in detail.

The second group of papers [20], [21], [22], [23], [24], [25],
[26], [27] and [10] analyzes the cost optimization problem
considering the workload as an arrival rate of requests that
must be served using the allocated VMs. These papers will
be discussed following three aspects, which correspond to
the three groups of columns in Table 1.

The first aspect analyzed is whether the papers consider
one or multiple clouds. Only [20], [22], [27] and [10] consider
the allocation of VMs over several cloud providers, which is
a more general solution. In [24] the authors take into account
a solution based on a hybrid cloud.

Secondly, attending to the number of the applications
to deploy and the properties of VMs in the problem, the
analyzed papers follow different approaches:

• Number of applications supported. Most of the
works consider a single application which is de-
ployed on the VMs. This makes the analysis simpler.
However in [20], [26] and [10] the authors consider
multiple applications deployed on the set of VMs,
providing a more complete resolution methodology.
An intermediate case is [25] where three applications
are considered.

• Types of VM and cloud provider constraints. Sev-
eral works consider only one type of VM and no
restrictions on the number of VM that can be leased,
making the problem easier to solve. On the other
hand, in [20], [25], [26], [27] and [10] the authors
take into account different types of VM, making
the study closer to real conditions. An intermediate
case is studied in [21], where the authors consider
a small set of VM types. Real cloud providers limit
the number and types of VM that can be leased
simultaneously. Only [24], [27] and [10] consider this
constraint, although in the case of [24] it is only
applied to one type of VM.

Finally, considering the characteristics of the test work-
load, less than half of the analyzed works are tested with
real workloads: [22], [23], [24] and [27]. Among them, only
two, [22] and [27], consider a workload length of one year
and neither of these uses a resolution of seconds.

All the previously cited papers use a billing period of
one hour in order to obtain the final cost. That is, if an on-
demand VM is used for less than an hour, the user will be
charged for the price of one hour. This paper studies how to
obtain an optimal allocation working with actual conditions
and the new one-second billing period.

3 SYSTEM MODEL AND RESOLUTION

3.1 Introduction
The goal of the techniques presented here is to solve an
optimization problem that takes as input the level of perfor-
mance to be reached at each time slot by a set of applica-
tions, and generates as output a VM allocation to support
the performance requirements of all the applications. The

generated allocation minimizes the deployment costs of
the applications, guaranteeing the required performance for
each one of them. This is a problem similar to the one solved
by Malloovia [10], which is an evolution of Lloovia [27].

The Malloovia model is independent of the length of the
time slot. As long as the price, workload and performance
(in requests per time slot) use the same time units, the
model and implementation will find the optimal allocation
for each time slot. This suggests that using one second as
the time slot length (instead of one hour as in [10]) the same
algorithm should provide the optimal allocation per second.
However, the minimum charge of 60 seconds (applied by
the providers using the per-second billing) invalidates the
resolution approach of Malloovia. To overcome this limita-
tion, a new model must be developed.

The purpose of this section is to present a VM allocation
model for the case of one-second time slots with a minimum
charge of 60 seconds. We refer to this model as TWOS (Time-
Window based Optimal Solver). The complexity of the VM
allocation problem dealt by TWOS is also investigated.
In addition, other approximations for the VM allocation
problem based on modifications of the standard Malloovia
algorithm are analyzed and discussed.

3.2 Problem description

The inputs used by the TWOS model are the same as the
ones used in Malloovia, which are detailed in [10]. We
provide here a short summary of the notation, in which,
to simplify the exposition and without loss of generality,
we assume that a single application is being considered, so
we omit the application sub-index. Table 2 summarizes this
notation.

The set of all possible VMs is modelled using the concept
of ”instance class” (ICi), which represents a family of VMs
of the same price (pi) per time unit, performance (perfi),
and features, which are deployed in the same ”limiting set”
(LSi). The limiting set is a generalization of regions and
availability zones and imposes a limit on the total number
of running instances (of any instance class) in that set. All
VMs of the same instance class are considered reserved or
on-demand depending on the Boolean rsvi. An example of
instance class in Amazon EC2 is an on-demand m4.xlarge
instance in region us-east-1. The total number of instances
of the same instance class which can run simultaneously is
limited to maxi, regardless of the limiting set to which they
belong. There are a total of M different instance classes.
Note that this model requires that the price per time unit
of the instance class does not depend on the number of
time slots the instance is used; therefore it is not applicable
to providers that apply discounts based on the time the
instance is running, such as Google Cloud Engine [5].

The planning period (usually a year) is divided in N
time slots tk, and the expected workload for each time slot
(lk) is assumed to be known in advance. The problem to
solve is, given a prediction for the workload, to find a mix of
VMs of different types, for each time slot, that can provide
enough performance to satisfy the workload for that time
slot, while minimising the total cost in the planning period.

The allocation problem is solved in two phases. Phase I
requires a ”Long Term Workload Prediction” (LTWP) which
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Fig. 1. Phases and workload prediction in the model

contains the expected workload for each time slot in the
planning period (see upper graph of Fig. 1). The solution
of Phase I provides the optimal allocation for each time
slot, which includes the optimal number of on-demand and
reserved instances to be active in each time slot (for the
reserved instances, the number will be the same for all time
slots, since reserved instances are kept running at all times,
because they are paid for, whether or not they are used). If
the LTWP were a perfect prediction, the complete planning
for the whole period would result from Phase I. However
it is unrealistic to assume a perfect prediction for such a
long period, so a second phase is required. In Phase II, the
number of reserved instances from Phase I is used, but the
number of on-demand instances is recomputed at each time
slot for a sliding window of NW time slots (see bottom
graph of Fig. 1), using a ”Short Term Workload Prediction”
(STWP), which is the expected workload for the next NW

time slots. The STWP is assumed to be much shorter and
more accurate than the LTWP, since it is focused on the short
term.

Despite the independence from the time slot size, Mal-
loovia assumes that on-demand instances are not charged
for the time slots in which the instance is not active.
However, currently all providers which use seconds as a
billing unit impose a minimum charge of 60 seconds, which

TABLE 2
Notation for the model inputs

Cloud infrastructure

M Number of different instance classes
ICi Instance class i
rsvi Boolean: is the instance class reserved?
pi Price of the instance class i

perfi Performance of the instance class i
LSi Limiting set for instance class i

maxi Maximum allowed running instances for instance class i

Time and workload

N Number of time slots in the planning period of Phase I
NW Number of time slots in the planning window of Phase II
tk k-th time slot
lk Expected workload for time slot tk

LTWP Long-term workload prediction (N values, for Phase I)
STWP Short-term workload prediction (NW values, for Phase II)

invalidates the assumption of Malloovia.

3.3 Time-Window based Optimal Solver (TWOS)
To find the allocation with the minimum cost, it is important
to realize that shutting down one VM when it is not being
used does not always decrease the cost of the allocation. If
the machine is required again in a few seconds, it may be
cheaper to leave it running and pay for the extra seconds
than to shut it down and pay for a minimum of 60 seconds
when it is activated again. This means that the formulation
of the problem must take into account the extra cost of
running a machine for less than 60 seconds. The strategy
used here is to include restrictions in the model which
ensure that each VM is running for at least 60 seconds.

To ease the notation and the formulation, we initially
make the following simplifications:

1) No reserved instances are used. All VM types are
on-demand.

2) No global limits per region or availability zone are
enforced (so no limiting sets are considered). Only
the limits per instance class, maxi, are considered.

3) No multi-application is considered. A single appli-
cation is run, the same in all VMs.

We will see that, even with this extremely simplified
model, the size of the associated integer problem is very
large, rendering it unsolvable in practice.

3.3.1 TWOS problem model
Table 3 provides a summary of the notation used in this
section. Each instance that could be potentially activated
will have a binary variable associated to it for each time
slot tk. We denote this variable by Xijk, with i = 1, . . . ,M ,
j = 1, . . . ,maxi, k = 1, . . . , N , and it represents the state of
the machine at that time slot (Xijk = 1 means that instance
j of instance class ICi is active in time slot tk, while Xijk = 0
means it is not active).

In order to take into account the cost of the first minute
in a general way, the parameter Tmin is introduced. It
represents the number of time slots which are paid for as
a minimum once the machine starts. In current practice
Tmin = 60 when the time slot is one second.

The special consideration of a minimum price for ma-
chines which run fewer than Tmin time slots could be
introduced in the function that computes the deployment
cost, but this would make the function non-linear. It is

TABLE 3
Notation in the TWOS formulation

Xijk Boolean variable: is the j-th instance of instance class i
active during time slot tk?

Aijk Boolean variable: was the j-th instance of instance class i
started up at time slot tk?

Tmin Integer value: minimum number of time slots which are
charged once an instance is activated.

X
prev
ij Boolean value: state (active or inactive) of instance j of

instance class i at the time slot previous to the planning
period

X init
ij Integer value: number of time slots to keep active in-

stance j of instance class i at the beginning of the
planning period
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Fig. 2. Illustration of the meaning of some problem variables. (a) Sce-
nario in which machine Xij was not active in previous window. (b)
Scenario in which machine Xij was active in previous window and still
has 4 time units remaining. Both scenarios use Tmin = 6 for simplicity.

preferable to express this case as additional restrictions for
the problem, to be explained later. This simplifies the cost
function, which can be expressed linearly as:

Cost =
M∑
i=1

maxi∑
j=1

N∑
k=1

Xijk · pi (1)

Eq. (1) is the objective function to be minimized, with the
following restrictions:
Performance. In each time slot tk, the total performance
given by allocation {Xijk} must be at least equal to the
expected workload, lk, for that time slot.

M∑
i=1

maxi∑
j=1

Xijk · perfi ≥ lk k = 1 . . . N (2)

Minimum execution time of Tmin time slots. Once a VM
instance is started, it must remain active for the following
Tmin time slots (because it will be charged anyway).

To capture this in the formulation it is necessary to
introduce new variables in the problem. Aijk is a binary
variable which will be 1 if instance j of instance class ICi

was started up at tk, i.e., when (Xijk = 1) ∧ (Xij,k−1 = 0)
(or, equivalently, when Xijk−Xij,k−1 = 1) and 0 otherwise.
This behaviour for Aijk is enforced by adding the following
restrictions to the problem:

Xijk −Xij,k−1 < 1 +Aijk k = 1 . . . N,

i = 1 . . .M

j = 1 . . .maxi

(3)

Xijk −Xij,k−1 > 2(Aijk − 1) k = 1 . . . N,

i = 1 . . .M

j = 1 . . .maxi

(4)

Aijk is therefore a Boolean which detects the tk at which
instance j of instance class ICi is started. If Aijk = 1, then
from this tk on, and for the next Tmin time slots, the machine
should remain active (i.e., Xijk = 1). This implication can
be modelled with the following set of restrictions:

Xijk′ + 1−Aijk ≥ 1 k′ ∈ [k, k + Tmin ]

k = 1 . . . N

i = 1 . . .M

j = 1 . . .maxi

(5)

The rationale behind this equation is that, when Aijk =
1, the inequality Xijk′ +1−1 ≥ 1 can only be true if Xijk′ =
1, so the value of this variable is forced to 1 by the solver
(and thus the machine is forced to be active) for the different
values of k′ which represent the next Tmin slots.
Previous state. The problem must include information
about the state of each VM in the time slot previous to the
first one, because restrictions (3) and (4) require the value for
Xij,k−1. We assume that the previous state of all machines
is given in the input values {Xprev

ij }. This allows us to set
the values for all Xijk for k = 0 (note that k starts at 1 for
the remaining formulae).

Xij,0 = X
prev
ij i = 1 . . .M

j = 1 . . .maxi
(6)

As an example, Fig. 2 shows two scenarios, one (a) in
which the machine Xij was not active at the end of the
previous period, and another one (b) in which it was.
Therefore, the value of Aij at the first time slot is different
in each scenario. To simplify the figure, a value of Tmin = 6
instead of 60 was used.
Forced state. Finally, the problem can also include infor-
mation to set some instances as active at the beginning of
the period to solve. For example, referring to the second
scenario in Fig. 2, which used Tmin = 6, suppose that
the instance was started 2 time slots before the end of the
previous planning period. Since this machine is charged for
6 time slots, we can keep it active for the first 4 time slots of
the current period, to leverage its performance which will
be paid for regardless. The input values {X init

ij } contain, for
each instance j of each instance class ICi, the number of time
slots in which this instance is kept active from the beginning
of the current period. For the given example, X init

ij = 4.
Given this information as input, the state of the appro-

priate machines is set in the following restriction:

Xijk = 1 k = 1 . . . X init
ij

j = 1 . . .M

i = 1 . . .maxi

(7)

In summary, the allocation problem can be formu-
lated as an integer programming problem, whose variables
(Xijk, Aijk) are restricted to [0, 1], with (1) as the objective
function to be minimized, and restrictions (2), (3), (4), (5), (6)
and (7).

3.3.2 Phase I (TWOS1)
The above formulation can provide the optimal allocation
for the whole year, but the size of the problem makes it
intractable for practical purposes. For example, using one-
second time slots, Phase I would use N = 60 × 60 × 24 ×
365 = 31 536 000 time slots. Each time slot k uses 2Q
variables (Q for each Xijk and another Q for each Aijk),
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Q being the total number of possible running instances,
which can be computed as Q =

∑M
i=1 maxi. For example,

considering M = 6 instance classes and a limit of maxi = 20
for all i, this would mean Q = 6 × 20 = 120, and therefore
the number of variables per time slot would be 2Q = 240.
The total number of variables in this example would be in
the order of 7.5× 109.

Techniques to reduce the size of the problem, such as the
histogram grouping used in Malloovia, cannot be used in
this new formulation because the Tmin restriction introduces
dependencies between time slots, as well as the need to track
the state of each instance in each instance class separately.
For this reason, the TWOS formulation cannot be used in
practice to solve Phase I, even for the simplified model that
does not include reserved instances nor global limits per
region and considers a single application.

3.3.3 Phase II (TWOS2)
For Phase II, it seems that the size of the problem is reduced,
because the number of time slots to consider is only NW

(not the whole year). In addition, the use of {Xprev
ij } and

{X ini
ij } as initial conditions for the problem allows us to

take into account the solutions (allocations) of previous
time slots as additional restrictions for the current time
slot, hence accounting for the Tmin restriction. However,
an important question remains: how many time slots (NW )
must be considered in the STWP in order to find an optimal
allocation for the next time slot?

Malloovia uses a single time slot STWP (NW = 1), but
this is clearly not optimal when considering Tmin billing.
Consider for example that the workload for the next time
slot decreases, and that the performance requirements could
be met using fewer instances than in the previous time
slot. In this case, the solver of the integer problem will
“decide” to deactivate some of the running instances for the
next time slot. However, if a few time slots later the work-
load increases, the deactivated instances could be necessary
again. If they were still in their first minute, reactivating
these instances would incur a greater cost than leaving
them running. Without knowing the workload prediction
for some future time slots, it is not possible to decide the
optimal solution for the current time slot, that is, a sliding
window of some size NW > 1 must be used as STWP.

Determining the appropriate size of this window, NW ,
is not a trivial question. A value of NW = Tmin may seem
reasonable at first, but the decision to stop a machine or
leave it running in the next time slot could still depend on
the workload after the end of that window. In fact, it can be
shown that for any value of NW , the optimal allocation for
the next time slot tk could depend on the workload in time
slots after tk+NW

.
This result means that no optimal allocation can be found

in Phase II unless the STWP is as long as the LTWP (i.e.,
NW = N ). In practice, Phase II can still be carried out
using a small window (for example NW = 2Tmin ), but
the allocation found by the solver would generally be sub-
optimal. Depending on the workload characteristics, the
difference with the optimal cost could be negligible.

Nevertheless, even for small windows such as NW =
2Tmin , this formulation still incurs in a prohibitive number
of variables, 2QNW . For example, when Q = 120 as in the

example for Phase I, and using a window size of 2Tmin with
Tmin = 60, the number of variables of the integer problem
is 2×120×2×60 = 28800. This is still a very large problem,
which must be solved in under a second, every second, to
produce the allocation for the next time slot.

For the same reasons explained for Phase I, the number
of variables cannot be reduced using Malloovia techniques.
In practice, TWOS formulation cannot be used for Phase II
either, except for problems with a very small number of
instance classes and low limits, maxi.

Since the optimal solution cannot be found in practice,
the following sections explore some approximations which
use Malloovia techniques to reduce the size of the problem,
making it affordable at the expense of non-optimality (i.e.,
higher costs than the theoretical TWOS solution).

3.4 Malloovia-per-second approximation (MaPs)

The first idea is to use Malloovia with one second as the time
slot, ignoring the minimum charge for the first minute. By
removing the minimum charge, the dependencies among
different time slots are also removed. This greatly reduces
the number of variables of the problem in two ways:

1) Machines of the same instance class, ICi, are
grouped in a single problem variable, which is not
boolean, but integer. At each time slot tk, variable
Xik represents the total number of machines of
instance class ICi to be active in that time slot. Using
this technique, rather than having maxi variables
per instance class and time slot, a single variable
per instance class and time slot is used (which takes
values between 0 and maxi). This can be reduced
even further in the case of reserved instance classes,
because the number of reserved instances of the
same instance class is constant for all time slots, so
a single variable per instance class Yi is enough to
contain the number of reserved instances of instance
class ICi for any time slot.

2) Time slots with the same workload will have the
same optimal allocation, so a histogram can be
built to store the number of times each load level
appears in the LTWP, and it can be used in the
equation of the global cost. Using this technique,
the problem has an alternative formulation, which
in most cases requires a smaller number of variables,
while providing the same optimal allocation. In this
new formulation, one variable, XiL, can be used to
represent the number of active instances of instance
class ICi in any time slot in which the expected
workload is L. This reduces the number of variables,
since only the different workload levels have to be
considered, instead of the different time slots.

Using this formulation, the total number of variables in
the problem is M × |L|, M being the number of different
instance classes and |L| the number of different predicted
workload levels. Consider the same example given in Sec-
tion 3.3.2, which required approximately 7.5 × 109 vari-
ables using TWOS1 formulation. In this example, M = 6.
Considering, for example, that the workload per-second
varies between 0 and 223, the histogram would have 223
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TABLE 4
Notation in the Mallovia formulation

Xik Integer variable: number of instances of on-demand in-
stance class i which are active at time slot tk

XiL Integer variable: number of instances of on-demand in-
stance class i which are active at any time slot whose
workload is L

Yi Integer variable: number of instances of reserved in-
stance class i which are active at any time slot

values at maximum, and the problem would require only
6×223 = 1138 variables using Malloovia (Phase I) formula-
tion. Table 4 provides a short summary of the notation used
in this subsection.

3.4.1 Phase I (MaPs1)
Thanks to the above techniques, Phase I of the problem can
have a manageable size and can be solved in a reasonable
time. However, the cost function used in this formulation is
not correct, since it does not consider the minimum charge
of one minute. The solution found by the linear program-
ming solver could include activations and deactivations of
instances within the same minute, instead of keeping them
active for at least one minute. This means that the optimal
cost found by the solver is not realistic, so we will refer
to it as C∗(MaPs1), to distinguish it from the actual cost,
C(MaPs1), that the provider would charge for deploying
such an allocation. Both costs would be the same only
when the cloud providers do not charge for the one minute
minimum. Nevertheless C∗ can be used as a lower bound
on the optimal cost, which could theoretically be found by
the TWOS formulation, but cannot be known in practice.

The actual cost of the solution found by Malloovia can be
computed by simulating the activations and deactivations
of the instances, and performing the correct computation
of the one-minute charge each time they are activated. This
actual cost is generally much higher than the optimum. The
optimal cost, denoted by C(TWOS1), will be bounded by
these costs: C∗(MaPs1) ≤ C(TWOS1) ≤ C(MaPs1).

Note that even if the MaPs1 solution is not optimal, part
of the solution can still be useful, in particular the values
of Yi, which represent the number of reserved instances of
each instance class to be purchased.

3.4.2 Phase II (MaPs2 and MaPs2Guided)
Malloovia uses NW = 1, i.e., the STWP contains the ex-
pected workload for the next time slot only. As was seen
in Section 3.3.3, this inability to know the future makes it
impossible to decide whether to keep the running instances
active when they are no longer necessary in the next time
slot but might be needed again soon.

However, the Malloovia solver for Phase II (MaPs2)
can be “guided” to some extent by an external algorithm
that tries to minimize the number of unnecessary reactiva-
tions (see Algorithm 1). We will refer to this approach as
MaPs2Guided, or simply ”Malloovia Guided”.

The goal of this algorithm is to ensure that once a new
instance is started, it remains active for at least the next
Tmin time slots. The algorithm keeps a set of active vms,
which stores the number of instances of each instance class

Algorithm 1 MaPs2Guided algorithm
1: active vms← ∅
2: for all timeslots do
3: prealloc← get prealloc(active vms)
4: l← get next workload prediction()
5: alloc← malloovia solve timeslot(l, prealloc)
6: active vms← update active(active vms, alloc)

which was activated in the previous Tmin time slots, and
the uptime of each one (i.e., the number of time slots each
instance has been running since it was started up for the
last time). Using this information, the function get prealloc()
builds the preallocation, prealloc, as the minimum number
of instances of each instance class that must be kept active
in the next time slot (because their uptime is still ≤ Tmin ).
This preallocation is used by malloovia solve timeslot(),
which is the implementation of the solver for the integer
problem in the Malloovia model, modified to include addi-
tional restrictions to obey the preallocation. For example, to
ensure that at least 3 instances of the class IC2 are active
in the next time slot k, the restriction X2,k ≥ 3 can be
used as part of the restrictions for that time slot. Once the
solver returns the optimal allocation for the next time slot
(alloc), the method update active() examines this allocation
and compares it with the active vms set. If new instances
are started, new entries with uptime = 0 are added to
the set active vms. The uptime of all elements in the set
active vms is increased, and the elements with an uptime
greater than Tmin not used as part of the optimal alloc are
removed.

MaPs2Guided ensures that the solver will leverage the
performance given for the pre-allocated instances as part
of the solution for the next Tmin time slots. This reduces
the number of unnecessary re-activations in Tmin . However,
since NW is still 1, it cannot see the future; therefore, if an
instance has aged Tmin slots and is not required for the next
time slot, it will not be part of alloc, and thus it will be
removed from the active vms set and shut down, although
it could still be cheaper to keep it running to avoid the
cost of an upcoming reactivation. Nevertheless, in general
MaPs2Guided would improve the MaPs1 allocation: even
if the LTWP were a perfect prediction, the MaPs1 solution
could include the shut down and reactivation of instances
in their first Tmin slots, which MaPs2Guided would avoid.
Hence C∗(MaPs1) ≤ C(TWOS1) ≤ C(MaPs2Guided) ≤
C(MaPs1)

3.5 Malloovia-per-minute approximation (MaPm)
When a one-minute time slot is used in Malloovia, all
instances in the solution run for at least one minute, or not
at all. Thus, there is no need to take the Tmin restriction into
account, and two main advantages are gained:

1) In Phase I (MaPm1), there is no need to introduce
artificial constraints to ensure that all instances run
for at least one minute.

2) In Phase II (MaPm2), no ”guiding” algorithm is
needed.

This approach is therefore very simple to implement,
since no modifications to the Malloovia implementation are
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required. In addition, it is more realistic from a practical
point of view, because a new allocation is computed and
deployed every minute instead of every second.

The only drawback to this approach is that the cost of
the solution may not be optimal. For example, if an instance
is required only 70 seconds a year, TWOS1 would keep it
active for exactly 70 seconds, while MaPm1 would keep it
active for 120 seconds. Therefore, C(TWOS1) ≤ C(MaPm1).
In general, how C(MaPm2) compares to C(MaPs2Guided)
depends on how the workload varies within the minute, as
will be explored in the experimentation section.

4 EXPERIMENTATION

4.1 Methodology
In this section, we test how the allocation strategies pro-
posed in the previous section work in terms of the cost of
the best allocation obtained and the time required to find it.
The goals of the experimentation are:

1) Assessing the practical feasibility of dealing with
very large workloads when using one-second res-
olution traces.

2) Comparing the cost and the computation time of the
different allocation strategies for these workloads.

3) Analyzing how the shape of the workload affects
the performance of the allocation strategies.

To achieve these goals, realistic workloads with data of
one year with one-second resolution are needed for Phase I.
One year is required in order to take into account the peri-
odic behaviour that real workloads usually have, including
daily, weekly and seasonal cycles. One-second resolution is
required to take into account the influence of the one-minute
minimum charge and the workload size challenge.

Our literature review has not revealed any workload
trace which fulfills both requirements for transactional sys-
tems. Typically, when workloads have one-second resolu-
tion, they are short (only hours, months at most). On the
other hand, when they are one year long, they have less
resolution. Thus, we have followed this methodology:

1) Analyze real workloads.
2) Synthesize traces that fulfill the requirements above

from the real workloads analyzed.
3) Test the performance of the allocation strategies

with the synthetic traces obtained.

Section 4.2 describes how the workload traces were
synthesized, Section 4.3 details the experimental setup, Sec-
tion 4.4 presents the experimental design used and Sec-
tion 4.5 describes the results of the experiments.

4.2 Workload traces
The most interesting publicly available traces for the exper-
imentation in this paper are:

1) Wikipedia [28]: it gives the total number of requests
per hour to the Wikipedia for several years. This
allows us to study intra-year cyclic behaviour.

2) FIFA World Cup [29]: it gives a log with each access
to the website of the World Cup 98 for three months.
From this, the number of requests per second can be

Fig. 3. Twelve hours of the original and the resynthesized Wikipedia
trace with and without noise

Fig. 4. Twelve hours of the FIFA World Cup trace

obtained. This allows us to study how variations of
requests per second, per minute and per hour affect
the different allocation strategies.

In order to have one-year long traces with one-second
resolution, the following methodology was used:

• Wikipedia: a Fourier analysis for the data of 2014 was
carried out. This provided the frequential compo-
nents that represent the cyclic behaviour captured by
the trace. From this Fourier series, a new trace with
one-second resolution was generated, expanding it
with zeros and carrying out an inverse Fourier trans-
form. Fig. 3 shows 12 hours of the original trace with
a thick blue line and the resynthesized trace with a
dashed red line (the thin orange line, which includes
synthetic noise, will be considered later). As can be
seen, the number of requests per second within each
minute is considered constant in the original trace,
but changes smoothly in the resynthesized one.

• FIFA World Cup: as the trace was only three months
long, a one-year trace was created by repeating the
original trace four times. Fig. 4 shows a fragment of
twelve hours of the trace. It can be seen that there is
significant variance per second and per minute.

In order to study how the level of workload variation
within the second and within the minute influences the
results of the allocation strategies, pink noise [30] with
different sizes and frequencies was added to the synthesized
Wikipedia trace. Each element x in the trace is modified
following this expression:

y = (1 +KmPm/3 +KsPs/3)x (8)

where y is the new value, x is the original value, Pm is pink
noise sampled per minute and resynthesized by second, Km
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TABLE 5
Allocation strategies tested. The first character, M, indicates use of

Malloovia variations. The next two characters indicate the units used for
Phase I and the remaining characters indicate the strategy for Phase II

Name Phase I Phase II

Mh1h2 Hours (Malloovia) Hours (Malloovia)
Mh1m2 Hours (Malloovia) Minutes (MaPm2)
Mh1s2g Hours (Malloovia) Seconds (MaPs2Guided)
Mm1m2 Minutes (MaPm1) Minutes (MaPm2)
Mm1s2g Minutes (MaPm1) Seconds (MaPs2Guided)
Ms1s2 Seconds (MaPs1) Seconds (MaPs2)
Ms1s2g Seconds (MaPs1) Seconds (MaPs2Guided)

TABLE 6
Performance and price of different VM types

on demand reserved perf
VM type ($/h) ($/h) (rph)

c4.large 0.124 0.079338 32800
c4.xlarge 0.249 0.159703 65600
m4.large 0.117 0.079338 26650
m4.xlarge 0.234 0.158790 53300

is a coefficient for the noise amplitude per minute, Ps is
pink noise sampled per second and Ks is a coefficient for
the noise amplitude per second. The standard pink noise
generator produces values roughly between -3 and 3; thus,
it is divided by 3 so that the peaks are adjusted to be
between -1 and 1. The thin orange line in Fig. 3 shows the
resynthesized Wikipedia trace with noise when Km = 0.01
and Ks = 0.10. As can be seen, it is similar to the one shown
in Fig. 4, which comes from a real trace.

4.3 Experimental setup
A set of experiments was carried out to evaluate the differ-
ent allocation strategies summarized in Table 5. The strategy
that gives the optimal solution following the TWOS model
presented in Section 3.3.1 was not tested because even with
short traces of two minutes it did not finish in a reasonable
time (two days), so it cannot be used in practice with one
year traces.

A mix of VM types in one Amazon region with three
availability zones was selected as an example to test the
allocation strategies. The performances for each instance
class are shown in Table 6. They were generated taking
into account the relative ECUs (Amazon’s performance met-
ric [31]) of each instance class. The traces had to be scaled
down so that there were feasible allocations, taking into
account the limits in this region, i.e., 20 reserved instances in
each availability zone and 20 on-demand instances for the
region.

All the experiments were run on an Intel Core i7-4790
with 32 GBytes of RAM running Ubuntu Server 16.04 with
Python 3.6.3, CBC 2.8.12 and Malloovia 1.1.0 [32], which is a
new version including modifications to allow the Malloovia
Guided strategy.

4.4 Experimental design
The cost obtained with strategies taking into account dif-
ferent time units is influenced by the shape of the trace, i.e.,

TABLE 7
Experimental design for the Wikipedia trace

Factor Values

Km 0.01, 0.10
Ks 0.01, 0.10
Load level 0.01, 0.05, 0.1

the average workload level and the workload variability. For
instance, if the number of requests per second were constant
during each hour, it would make no difference computing
an allocation per hour, per minute or per second.

In order to test how the attributes of the trace influence
the performance of each allocation strategy, an experimental
design for the Wikipedia trace with the parameters shown
in Table 7 was carried out. The noise coefficients were used
to resynthesize the Wikipedia trace four times with different
noise levels (0.10 as a value similar to the one observed in
the real trace of the FIFA World Cup and 0.01 as an order of
magnitude smaller value). Then, 12 traces were obtained by
multiplying each of these four resynthesized traces by the
three scaling factors for the load level indicated in the table:
0.1 is used as the highest value because it takes the workload
close to the maximum performance that can be achieved by
the selected instances taking into account the region limits;
0.01 is selected as an order of magnitude smaller value;
and an intermediate value of 0.05 is added because the
preliminary experiments showed that the results depended
significantly on the workload level.

The twelve combinations of factors in Table 7 were used
to generate resynthesized traces per second. In order to
obtain traces per hour and per minute for the strategies that
need them, the per-second traces were resampled taking the
maximum number of requests per second within each hour
or minute, respectively. The maximum was selected instead
of the average to guarantee that the solution meets the per-
second performance requirements.

For the FIFA World Cup trace, as the noise is not synthet-
ically generated, the only factor studied was the workload
level, using scaling factors of 0.02, 0.10 and 0.20, selected
using the same rationale as in the Wikipedia trace.

These traces have been made public1 so that the research
community can use them in future endeavours.

For Phase I, a whole-year prediction is required (LTWP).
Phase II only requires the prediction for one time slot
(STWP). However, in order to compare the annual cost of
different strategies in Phase II, the values of the STWP for
each time slot of the whole year are also required. This is
simulated in the experiments by using the same trace for
Phase II as the one used for Phase I. Note that this would be
the same as having a perfect prediction as LTWP. In [27] the
implications of a non-perfect prediction are studied.

4.5 Experimental results

4.5.1 Wikipedia trace

To compare the performance of the different strategies with
regard to cost, the allocation for the experiments in Table 7

1. https://github.com/asi-uniovi/malloovia-data-seconds
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Fig. 5. For the Wikipedia trace, percentage of cost with respect to the
cost obtained by Mh1h2

was obtained for each strategy in Table 5. These allocations
are not shown here for the sake of brevity.

The cost of each allocation as a percentage of the cost
for the allocation obtained with Mh1h2 was computed. This
makes it possible to assess the savings that can be obtained
by each strategy with respect to previous state-of-the-art
strategies that use hours as time slots in both phases.

Fig. 5 shows that, in most cases, all proposed strategies
are better than Mh1h2. This shows the importance of using
strategies that take advantage of smaller time slots. How-
ever, the next worst strategy after Mh1h2 in most cases is
Ms1s2, which uses seconds as time slots for both phases, but
does not take into account the one-minute minimum charge
during the optimization process. When this minimum is
taken into account to compute the actual cost, this is higher
than the cost obtained by other strategies. This shows the
importance of taking the minimum one-minute charge into
account during the optimization.

The best strategies in terms of cost are the ones that use
minutes or seconds for Phase I and use seconds with Mal-
loovia guided in Phase II, i.e., Mm1s2g and Ms1s2g. They
can provide up to 17% savings over Mh1h2. The next best
strategy is Mm1m2, which uses minutes in Phases I and II
and can obtain up to 14% saving over Mh1h2. However,
as shown in Fig. 6, strategies Mm1s2g and Ms1s2g have
a much higher computational cost than Mm1m2 because
they have to compute the allocation for many more time
slots. In the best case, this increase in computation time
only results in approximately 3% extra savings over the
allocation obtained by Mm1m2.

The previous analysis has shown that all the strategies
using the new version of Malloovia can deal with one-year
long traces, although the ones that use seconds in Phase II
take a significantly longer time.

Regarding the influence of the parameters of the trace,
Fig. 5 shows that there is a very significant influence of
the workload scaling factor, but only at the maximum level,
i.e., when it is 0.10. In this case, all strategies obtain similar
costs because all allocation strategies have to select a large
number of reserved instances in order to handle the maxi-
mum workload without going over the limits of on-demand

Fig. 6. For the Wikipedia trace, time to compute Phase II for all the time
slots in the whole period (one year) using different allocation strategies

Fig. 7. For the FIFA World Cup trace, percentage of cost with respect to
the cost obtained by Mh1h2 (left) and time to compute Phase II for all the
time slots in the whole period (right) using different allocation strategies

instances. These reserved instances are also able to handle
the noise without requiring on-demand instances when the
workload is low. Thus, using on-demand instances is rarely
needed and all strategies obtain a similar cost.

When the performance required is not close to the limits,
i.e., for scaling factors 0.01 and 0.05, Fig. 5 shows that when
both the variability per second and per minute is low (top
left graph), the difference between all the strategies is small.
The other graphs show that when the variability per minute
or per second increases, the savings obtained with strategies
that use time slots smaller than the hour can be increased.

4.5.2 FIFA World Cup trace
In order to study the strategies with real noise instead of
synthesized noise, they were tested with the the FIFA World
Cup trace, repeated four times to extend to one year and
scaled with factors of 0.02, 0.10 and 0.20. Fig. 7 (left) shows
the costs obtained with the different strategies. As with
the Wikipedia trace, all strategies except for Ms1s2 always
obtain savings over Mh1h2. Except for the highest scaling
factor, the savings are around 10%. Finally, as before, the
closer the workload to the limits of the provider, the closer
the results of all strategies.

Fig. 7 (right) shows the computation time for solving the
whole period with the FIFA World Cup trace. The results
are similar to those obtained with the Wikipedia trace: the
strategies using seconds in Phase II have an enormously
higher computation time. These results reinforce the conclu-
sions obtained with the Wikipedia trace.
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5 DISCUSSION AND LIMITATIONS

The previous section shows important results about the
impact on costs of using different time slots to compute the
allocation. They do not depend on the particular solving
technique used (such as Malloovia Guided), but are general
insights into the allocation problem.

These results show, first, that the savings when con-
sidering time slots smaller than the hour are significant.
In addition, they demonstrate that strategies that do not
take the minimum billing time into account incur in higher
costs. Finally, they indicate that, from a practical point of
view, cloud customers with a workload close to the limits
of the regions they are using should negotiate an increase in
the limits with the provider or should consider distributing
their workload over more regions, so that they can use more
on-demand instances and take advantage of the reduction in
cost that per-second billing can provide.

The techniques presented in this paper have some limita-
tions. First, a forecast of the workload is required. Although
this concern is out of the scope of this work, there are
many works that propose techniques for forecasting the
workload in cloud computing ([33], [34], [35]). Moreover,
[27] studied the influence of errors on the LTWP, by using
naive predictors, and found that costs were not much higher
than when using a perfect predictor, and were much smaller
than not using a predictor and serving the workload using
only on-demand instances. Using two phases allows the
scheduler to reduce the extra costs when the prediction for
Phase I is not perfect.

Another problem is that the performance of an instance
type, which the models consider constant, may vary de-
pending on the load of the underlying physical machine.
This variability is much more significant for IO-bound than
for CPU-bound applications [36]. Our allocation techniques
are more suitable for the latter, and therefore, less affected
by performance variability.

Another apparent limitation is that the techniques as-
sume that VMs can be started up instantaneously, which
is not realistic. However, this could be taken into account
simply by computing the scheduling ahead of time.

The techniques introduced in this work have not been
tested in a real environment. This is part of the future work.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have analyzed several allocation strategies
considering per-second billing with a one-minute minimum
charge. To the best of our knowledge, this is the first scien-
tific work addressing this problem.

We have developed and implemented the formulation
for the optimal allocation (TWOS) algorithm. Since this
algorithm is impractical due to its high computational com-
plexity, we have proposed alternative strategies based on
a state-of-the-art technique, Malloovia, with different time
slots. We have also proposed a new way of using Malloovia,
guiding the optimization process so that the costs generated
by the one-minute minimum charge are reduced.

There is a lack of year-long traces with per-second reso-
lution, so we have synthesized and released a set of traces
for the research community to use. We have tested seven
allocation strategies with these traces and found that the

guided strategies using seconds for Phase II could save
up to 17% over allocations that use hours, as previous
state-of-the-art strategies did. However, as the computation
time of guided strategies is very large and it is not cur-
rently practical to deploy a new allocation each second,
we propose using one-minute time slots (Mm1m2), which
obtains similar savings with much less computation time.
Furthermore, this allocation strategy is more in line with the
time currently required to deploy a VM.

The influence of the workload variability and average
level on the performance of each allocation strategy was also
analyzed. We have found that the cost is highly influenced
by the relationship between the average workload and the
available capacity due to the limits of the provider.

As future work we plan to test the proposed techniques
in a real environment. In addition, the model will be ex-
tended to consider the cost of network traffic and storage.
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