
This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

RETORCH: An Approach for Resource-aware

Orchestration of End-to-End Test Cases

Cristian Augusto [0000-0001-6140-1375] 1 (✉) ,Jesús Morán [0000-0002-7544-3901] 1, Antonia Berto-

lino [0000-0001-8749-1356] 2, Claudio de la Riva [0000-0001-5592-9683] 1, Javier Tuya [0000-0002-1091-

934X] 1

1 Computer Science Department, University of Oviedo, Gijón,
2 ISTI-CNR, Consiglio Nazionale delle Ricerche, Pisa, Italy

1{augustocristian, moranjesus, claudio, tuya}@uniovi.es

2 antonia.bertolino@isti.cnr.it

Abstract. Continuous integration practice mandates to continuously introduce

incremental changes into code, but doing so may introduce new faults too. These

faults could be detected automatically through regression testing, but this practice

becomes prohibitive as the cost of executing the tests grows. This problem is

preponderant in End-to-End testing where the whole system is requested for test

execution. However, some of these test cases could be executed with fewer re-

sources (e.g. memory, web services, computation, Cloud instances, among oth-

ers), by deploying only the subsystems needed by each test. This paper is focused

on the optimization of the resources employed in End-to-End testing by means

of a resource-aware test orchestration technique in the context of continuous in-

tegration practices in the Cloud. The RETORCH approach proposes a novel way

to identify the resources required by End-to-End test cases and to use this infor-

mation to group together those tests requiring equivalent resources. Besides, the

approach proposes to deploy the grouped tests in isolated and elastic environ-

ments, so that their execution can be scheduled in parallel on several machines.

RETORCH is exemplified with a real-world application and its performance

evaluation shows promising savings in terms of resource usage and time.

Keywords: Software testing, Continuous integration, Continuous testing, Test-

ing in the cloud, End-to-End testing, Test orchestration.

Acknowledgements

This work was supported in part by the Spanish Ministry of Economy and Competi-

tiveness under TestEAMoS (TIN2016-76956-C3-1-R) project and ERDF funds, and by

the European Project ElasTest in the Horizon 2020 research and innovation program

(GA No. 731535).

2

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

1 Introduction

Continuous integration practices are based on incremental changes in the code to im-

prove quality or add new functionalities (Meyer, 2014). However, while introducing

new features in the code, new faults can be introduced as well. Detect these failures

early in the code may reduce between 25-40% the amount of time and cost in fixing

them compared to fix them in production (Shull et al., 2002). To ensure that the modi-

fications and the new code do not endanger the existing functionality, regression testing

(Yoo & Harman, 2012) is standard practice. In modern agile processes, though, in

which new versions of software are continuously and frequently delivered within very

short cycles, regression testing may face many challenges as the efficient execution of

the test cases, the reliability improvement of the tested system or the reduction of time

between different releases.

One emerging practice to shorten the validation of newly released versions is con-

tinuous testing (Fitzgerald & Stol, 2017). Continuous testing consists of automating the

test cases and re-executing them before any new release in the source code repository.

However, a well-known problem is that as the number of tests increases, re-executing

all of them at each change may not be possible due to the extent of resources that should

be employed, such as the computational execution cost, the time required, or the num-

ber of instances needed. As a solution to partially address this problem, many test min-

imization and prioritization techniques (Yoo & Harman, 2012) have been proposed, to

identify a minimal subset of test cases or optimize their order of execution, respectively.

The objective of these techniques is to look for a tradeoff between the probability of

discovering the faults potentially added with modifications and the resources employed

for regression testing. The prioritization techniques permute the execution order of the

test cases aimed to firstly execute the most relevant test cases, but the whole execution

of the test suite remains expensive unless the tester decides to execute only a subset of

the more relevant test cases through a minimization technique. The latter techniques

reduce the execution time by not re-executing all test cases, but they neither optimize

the resources of the test executed nor alleviate the thoroughly use of resources in the

whole test suite.

One of the testing levels that require a large amount of physical-logical-computa-

tional resources is End-to-End testing (from now onwards referred to as E2E). E2E

testing includes the interaction between system components, from the user interaction

with the system to low-level layers like databases. The execution of the E2E test cases

requires large amounts of resources due to the high execution time, the cost of replicat-

ing resources, or the set-up of the system, among others. Therefore, the application of

techniques such as prioritization minimization or reduction may not be effective enough

for cost reduction in E2E testing.

During the execution of E2E test cases, the resources are usually oversubscribed

because the test cases tend to deploy more resources than they need for execution. For

example, suppose a User Interface test case that requires a web and database server, but

the set-up of this test case deploys the whole system including an email server. As a

consequence, the test case oversubscribes resources because the deployment of the

whole system also includes an email server that this test will not use.

3

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

A proper set-up of the whole system is relevant not only to optimize the resources

deployed during E2E testing but also to decrease the execution time. Thus, if this set-

up requires a large amount of time compared with that employed in test execution, par-

allelizing the test cases in separate instances without a proper strategy would not solve

the problem: for the test cases that share the usage of heavy resources, parallelization

would be inefficient and the best solution would be to set-up the test environment once

and execute them in a sequential way. Therefore, to optimize the cost of E2E testing,

the detection of the dependencies between the test cases and the resources is a crucial

aspect which may achieve cost savings (Herzig, Greiler, Czerwonka, & Murphy, 2015).

Moving testing to the Cloud (Bertolino et al., 2019) is commonly acknowledged as

a solution to reduce the cost of testing, especially to exploit the potential of unlimited

resources and scalability delivered on demand. One open-source platform to support

Cloud testing and simplify the E2E testing process has been developed within the Eu-

ropean Project ElasTest (Bertolino et al., 2018) The solution avoids several testing de-

pendence problems by providing dependency isolation through the containerized exe-

cution of the tests. This is done through the TJobs that are the tests together with the

Docker containerized system under test (SUT) customized to provide not only the pro-

duction environment but also utilities to execute, monitor and collect testing infor-

mation.

Containerization has provided new advantages in the virtualization field, reducing

the amount of both resources and time required to deploy a service in an isolated envi-

ronment. The SUT instantiation can take advantage of the containerization in order to

be deployed several times in the same machine, avoiding common problems like de-

pendencies. However, in the current version, the ElasTest containerized execution pre-

sents the problem that it needs the instantiation of the resources required for each con-

tainer causing oversubscribing (under usage) of those resources.

Our proposal is intended to reduce the number of resources used in the containerized

execution of the test during E2E testing and it may be integrated into the ElasTest plat-

form to support resource-aware Cloud testing orchestration: we call the approach

RETORCH (Resource-aware E2E Test ORCHestration). RETORCH aims at decreas-

ing the execution time and optimizing the resources used in E2E testing through the

identification of the resources used during testing, groups the tests based on the re-

sources they need to avoid unnecessary re-deployments and running of the identified

test groups in parallel to reduce the execution time.

This article extends an earlier work (Augusto, Morán, Bertolino, de la Riva, & Tuya,

2019) by introducing a number of new concepts that are useful to identify the resources

used by the test cases, a complete reorganization and extension of the state-of-the-art,

and the application and evaluation of the approach on an Elastest demonstrator. More

precisely, this article includes the following contributions:

1. Definition of the RETORCH framework to perform the E2E resource identification,

the test grouping and scheduling.

2. An illustrative application scenario of RETORCH usage.

3. An evaluation of the RETORCH approach in a real-world application.

4

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

The remainder of the article is organized as follows. The related work is described in

Section 2. The orchestration approach proposed in this article is defined in Section 3.

Section 4 describes a working example related to a teaching online service (FullTeach-

ing application using the OpenVidu Streaming Engine). Section 5 contains the evalua-

tion of the approach proposed using a real-world application. Finally, the conclusions

and future work are in Section 6.

2 Related work

An inspiring work to RETORCH is the Multi-Objective Regression Test Optimization

approach (Harman, 2011). In his work, Harman discussed several cost and value-based

objectives for testing, supporting the point of view that testing optimization should be

performed by considering a combination of the several different types of resources

needed. Our work is also focused on the same problem and proposes a specific solution

for the case of End to End testing, considering a number of resources and the time spent

during the testing. This section discusses different lines of orthogonal works that are

related to RETORCH: (1) the reduction, prioritization and minimization techniques, (2)

test dependency detection, (3) the resource optimization techniques and finally (4) the

orchestration approaches.

2.1 Test Reduction, Prioritization and Minimization Techniques

Despite the recent advances in both efficiency and effective usage of resources during

the testing, there are several open challenges (Bertolino, 2007) to be addressed when

performing test prioritization, selection, and minimization. Test reduction, prioritiza-

tion and minimization have been widely discussed in the literature. Yoo and Harman

(Yoo and Harman 2012) have surveyed some works about minimization, prioritization

and selection, comparing the results of these techniques in terms of failure detection

effectiveness and discussing open problems and future directions of them. Several au-

thors have studied approaches to optimize these techniques considering both cost and

rate of fault detection (Engström, Skoglund, & Runeson, 2008; Rothermel, Harrold,

Von Ronne, & Hong, 2002; Wong, Morgan, London, & Mathur, 1998). These tech-

niques are also used in big companies like Google (Memon et al., 2017) that executes

a subset of the test cases according to both the failure rate and the historical number of

modifications. Another line of research combines these approaches with other tech-

niques, such as Machine Learning (Lachmann, Nieke, Seidl, Schaefer, & Schulze,

2017), prioritizing the test cases according to the requirements coverage, execution cost

and the historical number of failures detected by the test cases. (Yoo & Harman, 2012)

Our proposal has some aspects in common with the arrangement of the test cases of

prioritization techniques (Yoo & Harman, 2012).

5

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

2.2 Test Dependency detection

During the test prioritization, one relevant issue to consider is the test dependencies.

Some authors have proposed techniques and tools to detect these dependencies between

test cases. Bell et al. (Bell, Kaiser, Melski, & Dattatreya, 2015) provide a tool to detect

dependencies (Electrictest), and compare it with other state-of-the-art tool achieving

similar fault detection rate but with lower slowdown. The Electrictest tool was evolved

by Gambi et al. (Gambi, Bell, & Zeller, 2018) and tested empirically achieving good

results: they discover several dependencies previously known and also another one

never discovered by the previous tests and tools. Gyori et al. (Gyori, Shi, Hariri, &

Marinov, 2015) have introduced the concept of the test pollution problem and present

a technique (called POLDET) which was implemented into a tool that detects in exe-

cution time the “polluting” tests.

Our article proposes a framework to optimize the resources of the test executions

avoiding unnecessary system re-deployments by grouping those test cases that have no

dependencies between them. The test dependencies play a key role to discover the re-

lationships between the test cases and their resources. Our approach is intended to in-

troduce a dependence detection mechanism to improve the test efficiency though the

aggrupation of those test cases that they do not interfere with their execution.

2.3 Test Resource Optimization

The optimization of the test resources has been widely covered in the literature. Several

works attempt to choose between different objectives as optimize the time, cost or a

mix of both (Gambi, Gorla, & Zeller, 2017), or optimize the resources in testing at the

same time that they comply with time constraints (Liu, Chen, & Chen, 2017). Other

authors (Chakraborty & Shah, 2011) have focused on the cost optimization, via differ-

ent processes that partition, group and redistribute the test cases in order to parallelize

them. This aggrupation or partition of test cases are also present in clustering techniques

applied to the test optimization problem (Yu, Su, & Wang, 2009), on which the re-

sources are linked with the test cases in order to discover the underlying dependencies

and execute them.

Unlike the previous works, our article proposes to optimize the resources not only

focused on time or cost but also on other resources used during the testing based on

both the test dependencies and resource usage. García et al. (Garcia et al., 2018) also

propose to orchestrate the test cases through a proper selection and sequencing based

on the outcome of test execution (verdict-driven) or on the produced output (data-

driven).

In the field of Cloud services, several approaches have been proposed to face similar

issues related to resource optimization. The Microsoft CloudBuild (Esfahani et al.,

2016) faces dependences issues extracting dependency graphs and deriving the depend-

encies on them automatically. Based on these dependency analyses, Microsoft

CloudBuild optimizes the testing execution through the deployment and execution of

only the test cases that change the code. We propose a future line of work that aims at

a similar automated detection of the test resources into the containers.

6

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

2.4 Orchestration

Depending on the field, the term orchestration has different meaning and usage. In gen-

eral, orchestration is a jargon term that refers to the action of coordinating and sched-

uling several components improving their execution. In Network field, Giotis et al.

(Giotis, Kryftis, & Maglaris, 2015) propose to orchestrate the Network Functions Vir-

tualization (NFV) with the goal of managing a policy-based traffic engineering. In the

cloud field there are a number of orchestration systems, as for example Kubernetes

(Burns, Grant, Oppenheimer, Brewer, & Wilkes, 2016), Borg (Burns et al., 2016),

Swarm (Docker Inc., 2019), Fuxi (Zhang et al., 2014), System Center–Orchestrator

(Microsoft, n.d.). These previous orchestration systems are focused on Cloud following

different architecture like TOSCA (Cloudify and Kubernetes) (Draft, 2014).

The orchestration in Cloud is performed via an orchestrator (e.g. Docker Compose

(Docker Inc., 2017)) that monitors and deploys the Jobs focused on optimizing the us-

age of the instances (Casalicchio, 2017) or providing a determined QoS (Singh &

Chana, 2015).

Closely related to Cloud services, Fog and Edge Computing also address several

new open challenges related to resource optimization (Velasquez et al., 2018). These

challenges are usually addressed via different architectures that present an orchestrator

acting as both allocator and scheduler of the resources available (De Brito et al., 2017;

Velasquez et al., 2017). Several of these works were analyzed according to the resource

scheduling, allocation, sharing, or optimization by Tozé et al. (Toczé & Nadjm-Tehrani,

2018) proposing a Taxonomy of resource management in the Edge.

These works propose orchestration techniques to optimize the resources according

to their specific domain. Instead, our approach aims to optimize the resources employed

in the execution of the E2E testing thus decreasing the execution time while achieving

savings in the usage of resources.

3 RETORCH Overview

The RETORCH framework aims at optimizing the cost/usage of resources orchestrat-

ing the E2E test cases in different machines based on the resources needed to execute

each test. Fig.1 depicts the core concept of the orchestration starting from the E2E test

cases to their execution in several machines/instances grouping those tests that use ho-

mogeneous resources in order to optimize both resources and execution time.

7

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

 As the first step, resources used by each test case are identified to detect which test

cases require the same resources (Resource identification). According to the resources

identified, some tests can be executed together while others cannot because of incom-

patibilities in their allocated resources or in the way in which these tests access the

resources. Then, those test cases that can be executed together are grouped to arrange

their execution and reuse their resources to optimize their cost (Grouping). These

groups of tests are called TGroups. Test cases that belong to different TGroups can be

executed independently because the resources they employ are different. Finally, each

TGroup may be split and allocated in several instances (Scheduling) to optimize both

the cost/usage of resources and the test execution time. The test cases of these TGroups

are split into several disjoint subsets, which are smaller than the previous TGroups,

which are called TJobs. Each TJob contains not only the code of a subset of test cases

but also the environment with the dependencies isolated in a container that allows easy

deployment of the test cases in a Cloud instance.

In the following subsections, the above key concepts are detailed. Subsection 3.1

details the resources and their attributes. These resources can be characterized accord-

ing to their category (Subsection 3.1.1), the static attributes (Subsection 3.1.2), and the

dynamic attributes that change during test execution (Subsection 3.1.3). Finally, the

processes that orchestrate the E2E test cases are defined in Subsection 3.2.

3.1 Main concepts of RETORCH

The core of RETORCH is based on four main concepts defined below: the resources

required by the test cases, the groups of these test cases that can re-use the same re-

sources (TGroups), the disjoint subsets of these TGroups in which each subset can be

allocated independently in parallel to decrease the execution time (TJobs), and an

Fig. 1. Key concepts of RETORCH

Test Case

TGroup

TJob

Resource

Environment

1
N

N 1

N
1

N M

8

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

environment to isolate the dependencies to allow the scheduling in elastic Cloud in-

stances.

• Resources are physical, logical and/or computational entities required by the exe-

cution of one or more test cases. Examples of resources are databases with their

tables, web Servers, mobile phones, services such as a payment gateway or a pool

of containers provided by a Cloud carrier.

• TGroup (Test Group): is a set of test cases that use homogeneous resources and

can be deployed together in the same environment. For example, a TGroup can

contain the test cases that query the same database with the same initial load and

without modifying the information. These test cases can use the same database set-

up in the same instance. In contrast, if two test cases modify the database causing

side effects like flakiness or other issues related to dependencies, then these two

test cases must be on different TGroups and therefore deployed in different envi-

ronments. Each TGroup settles the environments needed by the test execution in

the whole system or also considering scaffolding and test harness through the

mocks, stubs or other simulators that can alleviate the cost of resources that are not

mainly needed for the tests of the TGroup. The test cases of the TGroup can be

also divided to not only optimize the cost/usage of resources but also the execution

time through a distributed scheduling.

• TJob (Test Job): is a subset of a TGroup containing several test cases inside a

Docker container that also deploys the environment composed by the system under

test isolating the dependencies and customized to provide utilities to execute, mon-

itor and collect testing information. The TGroup are split into several TJobs which

are scheduled into different Cloud instances to reduce the execution time due to

the parallel execution. Each TJob contains a subset of test cases that also re-use the

same resources to optimize the resource usage avoiding unneeded re-deployments

of the environment.

• Environment is the set of resources requested and which they interact with a test

case during testing. Examples of environments are a web application composed by

a web server and a database or several mobile phones required to test an Android

application.

The following subsections define the categories of the resources (Subsection 3.1.1),

their static attributes (Section 3.1.2) and the attributes relative to the usage of the re-

sources during E2E testing (Subsection 3.1.3).

3.1.1 Resource Categories

Resources are classified according to three different categories described below:

1) Physical: the tangible resources that are used during E2E testing. For example, the

smartphones used to test a mobile application, the router that allows us to configure

a virtual network into a system test, or other peripherals like printers, sensors,

among others.

9

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

2) Logical: the non-tangible resources used during E2E testing that are provided in

the traditional way. For example, a web server on which the application under test

is deployed, the operative system on which the test is performed or one flight em-

ulator that simulates a plane in ATM.

3) Computational: the logical resources that are provided or consumed as a service.

This category consists of those resources served on-demand in Cloud models like

IAAS (Infrastructure as a Service), PAAS (Platform as a service) or SAAS (Soft-

ware as a service), on which the computation, software, network or storage, may

be provided as needed by the tester.

3.1.2 Static Attributes

Regardless of the category, the resources are also characterized according to certain

static attributes. These static attributes do not change during the E2E execution and

provide additional information about the resource and how it can be used during the

testing. We consider the following static attributes:

• Elasticity: A resource is elastic when it can be instantiated and made available for

the tests cases on the fly (e.g. a database running in a container, a software simula-

tor). Conversely, a resource is not elastic when only a fixed maximum number of

instances are available (e.g. a sensor, a camera, a hardware emulator).

• Hierarchy/partitioning: A resource may contain sub-resources or partitions that are

also resources (e.g. a database may be partitioned into several tables or sets, of ta-

bles). These sub-resources and partitions characterize the resources.

• Sharing: Shared resources may be used simultaneously by more than one test case

without interfering into the test result.

• Replaceable: One resource is replaceable if may be interchangeable by a new in-

stance (or another equivalent resource) with no penalty for a given test case. For

example, one service that only provides tokens is replaceable if we can replace it by

a simple mock that also provides continuously the same token for all requests in a

similar way than the original resource.

• Lifecycle: All resources have a lifecycle composed of different phases like the set-

up of resource, test execution using the resource and disposal of the resource. In the

set-up phase, the resources are deployed and initialized according to the test data

(e.g. initial load of the database or configuration data). Once the resources are ready,

the test cases use them during the test execution. Finally, after the test execution has

finished, the resources are disposed and released, making them available for other

test cases into a disposal phase.

For example, suppose the E2E testing of an Air Traffic Management (ATM). When

testing the operations that an air traffic controller makes to manage their assigned

flights, we need a resource that is the Control Working Position (CWP), which is itself

a complex non-elastic physical system. The CWP may become a shared resource if we

partition the flight area (a logical resource) into hierarchical clusters of sectors, pro-

vided that each test case will manage only flights belonging to a cluster. Moreover,

when testing a transfer of flights between controllers will need two CWP, either

10

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

exclusive or shared. The CWP is a not replaceable resource because is a highly coupled-

complex system that makes even more complicated deploy partially its functionalities

or change it by a mock. This resource also has his own lifecycle, with a set-up (prepare

all the CWP and flight plans), a test phase and finally a release and disposal.

3.1.3 Access Mode and Dynamic Attributes

The resources can also be characterized according to their usage during the E2E testing

considering how each test case accesses the resource (access mode) and how the re-

source changes due to the test execution.

Each test case uses the resources through different operations characterized by two

properties: safety and idempotency. Safe operations are those whose execution does

not modify the resource, for example, a SELECT or a JOIN operation in a database

query because it does not change the information of the database and does not introduce

dependencies between test cases. Idempotent operations are those that can be performed

several times consecutively producing the same result.

Different test cases may have different usage patterns when using the same resource.

Each pair of test case and resource is associated according to an access mode that de-

termines if the operations performed during the test execution modify the resource or

not, and how. The access modes are enumerated below:

• Read-only: the test case performs both safe and idempotent operations allowing

other test cases to read the resource at the same time (e.g. a test case that queries the

master tables of a database without any change, allows that other test cases query the

same resource).

• Read-write: the test case performs operations that are neither safe nor idempotent.

Then, other test cases may not use this resource simultaneously to avoid unexpected

erroneous executions (e.g. all half-duplex communication channel, on which two

devices can emit or receive, but not at the same time in the same channel)

• Write-only: the test case performs operations that are neither safe nor idempotent

similar to those “read-write”, but allows that more than one test case update the re-

source simultaneously, restricting reads to only assertions that check the expected

results (e.g., a centralized log system that acts as a sink for several test cases, pro-

vided that, if we need to check the logs, there is a mechanism that allows identifying

the logs produced by each test case).

• Dynamic: the test case performs operations that are safe but not idempotent. The

resource is partitioned on the fly allowing that each test case create and access each

partition independently from other test cases (e.g., when testing several test cases

that issue orders, more than one test can place an order at the same time, but in dy-

namic access each test case must only use the orders that it has created).

• No access: This access mode is banally safe because the operations of the test case

do not make use of the resource (e.g., when using a simple mock that does not require

any resource).

11

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

The previous characterization provides insights about how the E2E tests use the re-

sources. During the test execution, other attributes may change dynamically due to the

usage of the resource. These attributes are called dynamic and are the following:

• Allocated: Location of each resource must be known to make possible their identi-

fication (e.g., the environment over where is deployed). Allocation is crucial when

an effective use and measure of the resource performance during testing is consid-

ered.

• Measurable: Each resource must have indicators to allow measuring how many of

them are deployed and their performance (e.g. RAM, processor usage or heartbeat

latency received by a sensor network).

• Elasticity Cost: The elasticity cost measures the expenses incurred during the re-

source lifecycle. This cost may be a combination of money, time, processing power,

memory, energy, among others.

• Traceability: Each resource must be always traceable, allowing to know its state at

every time of the test execution according to the lifecycle (e.g. ready, running, dis-

posing of, or testing over it).

• Test Instance: The resources and test cases must be deployed in an instance that

isolates the dependencies and avoids wrong executions/accesses with a properly set-

up.

• Availability: According to the number of instances available, resources are classi-

fied into renewable and non-renewable. Resources are renewable if can be re-instan-

tiated without any kind of limitations. On the other hand, a resource is non-renewable

when only may be instantiated a fixed amount of times.

• Granularity: Each resource has its own granularity depending on how the scope is

focused over it and its underlying sub-resources. For example, one mobile phone

that is used as a physical device for the testing may be considered with more granu-

larity as a set of sub-resources (camera, microphone, screens, among others).

For example, in the previous scenario (ATM), the Flight plans in an Air Traffic simu-

lator are usually shared and renewable resources, because they are created on the fly as

needed when the test is performed. On the other hand, the operation logs that are kept

for legal requirements, are a write-only resource because they do not use it for anything

other than saving the different usage traceback.

3.2 Processes

RETORCH has three different processes, namely Resource Identification, Grouping

and Scheduling. The resource identification provides insights about the resources re-

quired by the test cases and their dependencies. Next, the grouping is performed to

group together those test cases that can be executed together to re-use resources. Fi-

nally, the scheduling optimizes the execution of the test cases providing a parallel

schedule that reduces the test execution time. These processes are represented in Fig. 2

and described below:

12

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

Fig. 2. Scheme of the main RETORCH processes

Resource Identification: This process identifies the resources that each test case

needs to be executed properly. To determine how the test case uses the resource, each

association of a resource and test case is labelled with an access mode and the attrib-

utes (Subsection 3.1). With all this information, the test cases are characterized obtain-

ing all the resources and their attributes, which will be the basis for grouping and sched-

uling the test cases.

Grouping: This process aims at optimizing the usage of resources through an ag-

grupation of those test cases that can re-use the same resources to avoid unneeded re-

deployments. The test cases are arranged together into TGroups (Subsection 3.1) based

on the compatibility of the attributes of the resources employed by these tests. The re-

sult of this grouping is a set of test cases together with all scaffolding required for the

execution. The main goal of the grouping process is to avoid the oversubscription of

the resources when one test case requests more resources than needed. For example, if

two tests perform an operation with a safe access mode they can be grouped together.

However, if two test cases perform a non-safe operation on the same resource, they are

candidate to be placed in the same or separate groups depending on the access mode.

Scheduling: Although the grouping process achieves some optimization on resource

usage, the whole test process may be further optimized by ordering and splitting the

TGroups into a TJobs (Subsection 3.1). For instance, TJobs may be distributed in

parallel to achieve better use of the test infrastructure and reduce the execution time.

Not all schedules are aimed to minimize both execution time and the resource usage

(one possible objective may be to maximize the usage of several instances, minimizing

the idle time or another possible objective may be minimizing the execution time using

more resources).

RESOURCE
IDENTIFICATION

SCHEDULING

GROUPING

Resource-aware End-to-end Test ORCHestration

TEST
CASES

TEST
CASES

SCHEDULE

13

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

4 Working example

To illustrate RETORCH, we present an example of its application on a real-world open-

source application called FullTeaching (Pérez, 2017). FullTeaching is an educational

platform that provides many features for organizing the teaching material, courses, and

structuring classes; it provides also means for interacting with students, e.g., calendars,

dashboards, forums.

Resource identification. The FullTeaching system is a resource that can be parti-

tioned in hierarchical way by several sub-resources, including the OpenVidu videocon-

ference server (University, 2017), the Kurento media server (Technologies, 2014), and

the MySQL DBMS (Oracle, 2019). In particular, for online teaching, FullTeaching in-

cludes features enabling real-time video conferencing that are supported by OpenVidu

via W3C Web-RTC (Uberti & Thatcher, 2018) open-source API. For testing the E2E

functionality, the testers should consider the underlying infrastructure and the usage of

resources, especially for the most expensive one (OpenVidu).

Deploying one instance of the OpenVidu resource per each test case that requires

this resource is too expensive due to heavy resources for storage and graphical pro-

cessing evolved in the video streaming. Despite we can group test cases to re-use the

OpenVidu deployments, the OpenVidu resource is replaceable because it can be

changed by simple mock in some test cases. For example, the test cases that only use

the OpenVidu resource to acknowledge the connection, they do not need the full Open-

Vidu resource and can replace it by mock resource to be more efficient. Considering

that the OpenVidu resource can be replaced based on how the test cases use this re-

source, we identify the following three replacements of the OpenVidu resource with

different elasticity costs:

1. Light OpenVidu resource: This resource is a mock that just provides a random

number as session-id, whenever any client requires it. Precisely, this resource has a

No-Access mode meaning that the requests from the test do not access the real Open-

Vidu resource, but a mock resource. This resource may be used by the test cases that

only require the session-id from OpenVidu.

2. Medium OpenVidu resource: This resource is a simple implementation of the real

OpenVidu resource, but with only basic functionalities and without any storage to

record the session. This resource will be employed by the test cases that only need

to check functionalities without storage like online chats between users or the navi-

gation in the classroom menu.

3. Heavy OpenVidu resource: This resource provides all the functionalities of Open-

Vidu besides several video lessons recorded. This will be used in those test cases that

require these video streaming recording functions or require all the functionality of

the engine for their execution.

Once identified the previous three resources, we proceed to arrange all the test cases

available depending on their resource usage requirements. Test cases assigned to a

Light OpenVidu are the cheapest in term of elasticity cost: they can be available for

testing on the fly and can be shared between multiple tests. The lifecycle of this resource

14

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

differs that it does not require additional set-up or disposal, getting an improvement in

terms of cost.

Test cases assigned to a Medium OpenVidu resource require the deployment of a

simple container that consumes a small number of resources in terms of elasticity cost

and it allows sharing between multiple tests (although with some performance penalty).

In this case, the set-up/dispose lifecycle phases are more expensive than the light Open-

Vidu resource, so the aggrupation of the test cases (Grouping) can reduce the usage of

resources sharing this set-up between several tests. Test on this resource has a Read-

Write access mode.

Last, test cases assigned to the Heavy OpenVidu resource should be executed in a

sequential way because they access to the resource in a read-write mode and the high

elasticity cost that does not allow the deployment of more than one instance. This re-

source has this type of access mode because the test cases use the resource to create and

modify videos at the same time. As a consequence, the test cases that use the Heavy

OpenVidu resource should be executed sequentially to avoid issues due the concurrent

access/modification of the same videos.

Grouping: Once the resources are identified and characterized, we proceed to group

these test cases into TGroups considering the test dependencies with the resources used.

Fig. 3. depicts the mapping between test cases and the groups (TGroup) that they belong

to. The test cases that use the Light OpenVidu resource are represented in blue colour,

the test cases that use the Medium OpenVidu resource in red colour, and the test cases

that use the Heavy OpenVidu resource in black colour.

Let suppose that we have nine test cases and determine three TGroups as indicated

below:

TGroup 1 (Light OpenVidu): Test case 1, 5, 8 and 9

TGroup 2 (Medium OpenVidu): Test case 2, 6 and 7

Fig. 3. Resource identification and grouping

✓Token Manager
✕Chat
✕Video Chat

✕Classrooms

✕Video Recording

✓Token Manager
✓Chat
✓Video Chat
✕Classrooms
✕Video Recording

Token
✓Token Manager
✓Chat
✓Video Chat
✓Classrooms
✓Video Recording
Token

TEST 5

TEST 1

TEST 2

TEST 7

TEST 6

TEST 9

TEST 8

TEST 3

TEST 4

Light

Medium

Heavy

Mock

15

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

TGroup 3 (Heavy OpenVidu): Test case 3 and 4

The previous aggrupations can improve resource usage deploying minimal resources

and avoiding unnecessary re-deployments. For example, the TGroup 1 instead to de-

ploy the OpenVidu resource, just deploy a mock resource (Light OpenVidu resource)

that is more efficient in terms of resource usage. However, there are test cases that

require the OpenVidu resource like Test case 3 and 4 and they deploy this whole re-

source (Heavy OpenVidu resource), but they can be executed in the same group

(TGroup 3) to deploy the resource one time and re-use again avoiding a new unneeded

re-deployment.

Scheduling: Once the grouping is done, we divide the TGroups into TJobs to sched-

ule them and optimize both objectives: the resource usage and execution time. Fig.4

represents four different schedules. The TJobs derived from TGroup 1 are represented

in blue (Light), the TJobs of TGroup 2 in red (Medium), and the TJobs of TGroup 3 in

black (Heavy):

1. Fig. 4.a) only creates one TJob from each TGroup. In this schedule, the TJobs are

executed in parallel over three instances, but the test cases of the same TJobs are

executed sequentially. This schedule provides a baseline, giving the worst execution

Fig. 4. Different proposed TJob Scheduling

2 6 7

4 3

MEDIUM

HEAVY

1 5 8 9 LIGHT

a

LIGHT

MEDIUM

HEAVY 4 3

1
5
8
9

2 6 7

b

LIGHT

MEDIUM

HEAVY 4 3

1
5
8
9

2

6

7

c

LIGHT

MEDIUM

HEAVY 4 3

2

7 6

1
5
8
9

d

TJOB 1

TJOB 2

TJOB 3

TJOB 1

TJOB 2

TJOB 3

TJOB 1

TJOB 2

TJOB 4

TJOB 5

TJOB 3

TJOB 2

TJOB 4

TJOB 1

TJOB 3

16

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

time, but using the minimal number of instances required to keep the TGroups iso-

lated. All TGroups are deployed in separate instances sharing the same set-up be-

tween them.

2. Fig. 4.b) also creates one TJob from each TGroup. However, the test cases of the

TJob 1 are deployed in parallel over the same instance because they use the Light

OpenVidu resource that allows the parallel execution of the test cases at the same

time. As consequence of the parallel execution of the test cases of TJob 1, the sched-

ule reduces the execution time in comparison with the previous one that executes

them sequentially (Fig. 4.a). Each test case of the TJob 1 employs individually more

execution time than by executing them sequentially due to the overload caused by

the concurrent access. Nonetheless, in this case, it is not relevant because the critical

execution time corresponds with the TJob 2 execution (TGroup 2).

3. Fig.4.c) as the opposite of TGroup 1, the execution time cannot be reduced executing

the test cases of the TGroup 2 in parallel inside of the same instance because they

cannot access concurrently to the same instance of the Medium OpenVidu resource.

However, the test cases can use this resource in parallel if it is deployed in several

instances. Therefore the schedule of the Fig.4.c) creates three TJobs from the

TGroup 2 that are deployed in a parallel way in three instances. This schedule re-

duces the execution time, and the critical execution time corresponds with the TJob

3 execution (TGroup 3). However, the test cases of the TGroup 3 can not be executed

in parallel at the same time neither in the same instance nor in several instances

because they use the Heavy OpenVidu resource that has high elasticity cost. This

schedule reduces the execution time but increases the use of resources because em-

ploys five instances.

4. Fig. 4.d) instead to create three TJobs from TGroup 2, it creates only two TJobs to

reduce the number of instances. This schedule maintains the same execution time

than the schedule of Fig.4.c), but also reduces the resources employed avoiding the

deployment of one more instance: the schedule of Fig 4.c) deploys five instances

(three Medium OpenVidu resources), whereas the schedule of Fig.4.d) only four in-

stances (two Medium OpenVidu resources).

As shown in this working example, there are several features and constraints considered

during the optimization of the test scheduling based on resource usage through test or-

chestration. The critical step is the proper identification of which resources are needed

by the test cases and their dependencies.

5 Evaluation

In order to assess whether RETORCH improves the execution time and saves resources

during E2E testing, we perform an empirical evaluation of the application described

before. To evaluate how the resources and time may be optimized via a better distribu-

tion, we attempt to answer the following research questions:

RQ1: Does RETORCH yield an efficient execution of the E2E tests in terms of

time?

17

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

RQ2: How do the schedules proposed by RETORCH affect to the use of other re-

sources?

Test Suite: we tested the FullTeaching application with a test suite composed of 20

tests cases available in different git repositories (Elastest Developers Team, 2017,

2018) of the Elastest/Fullteaching community. These test cases employ JUnit and Se-

lenium Web driver to emulate the user interactions checking the main functionalities of

the application: classrooms, file uploading, comment creation, among others.

Set-Up: In order to evaluate RETORCH, the test cases are executed using up to 5

HyperV virtualized instances of Ubuntu Server 18 LTS into a Ryzen 8-core, 32 giga-

bytes of RAM and solid-state drive computer. To analyze the efficiency of the test

schedules provided by RETORCH, we measure the execution time and different

memory indicators from the System Monitor: physical memory required by each in-

stance and total physical memory required.

Resource Identification: In the FullTeaching system, we identify three different

resources as indicated in Section 4: OpenVidu videoconference server (University,

2017), the Kurento media server (Technologies, 2014), and the MySQL DBMS. Ac-

cording to the Resource Identification detailed in Section 4, the OpenVidu resource can

be replaced by another three resources depending on how the test cases use the resource:

Light OpenVidu resource (mock), Medium OpenVidu resource (implementation with

basic functionalities) and Heavy OpenVidu resource (full OpenVidu functionalities).

When it is possible, it is preferable to execute the test cases in the Light OpenVidu

resource to save resources in comparison with both Medium and Heavy OpenVidu re-

sources, and also because the last two resources have more elasticity cost. All the re-

sources are allocated into a Cloud server by means of a docker orchestrator (docker-

compose) that also deploys the aggrupation of test cases according to the schedules

proposed by RETORCH.

Grouping: The test cases are grouped into TGroups based on the resources identi-

fied. As we detailed in Section 4, we create three TGroups based on the functionality

of the test cases and their usage of the OpenVidu videoconference system. The TGroup

1 is composed of the test cases that only need a session-id from the OpenVidu, then

these test cases can use the Light OpenVidu resource (mock). The TGroup 2 is com-

posed by the test cases that need OpenVidu functionality without storage, then they can

use the Medium OpenVidu resource. Finally, the TGroup 3 is composed of the test cases

that require the full functionality of the OpenVidu including the storage, then they can

use the Heavy OpenVidu resource.

All of the test cases of the TGroup 1 use the Light OpenVidu resource with read-only

access because they only request a session-id, so they should be executed sequen-

tially/parallelized either in one instance or in several instances. In contrast, the test cases

of the TGroup 2 uses the Medium OpenVidu resource with read-write access because

they modify information that other test cases can access if they are executed in the same

instance. To avoid issues between test cases due the concurrent access, the test cases of

the TGroup 2 should be executed either sequentially in the same instance or parallelized

through different instances of the Medium OpenVidu resources. However, the test cases

18

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

of the TGroup 2 should not be executed in parallel way in the same instance of the

Medium OpenVidu resource. Finally, all the test cases of TGroup 3 also use OpenVidu

with read-write access, but in contrast, they use the Heavy OpenVidu resource because

they need storage to modify and access to the data. To avoid issues between the test

cases due the concurrent access, the test cases of the TGroup 3 should be executed

sequentially in the same instance. However, the test cases of the TGroup 3 should not

be executed in several instances of the Heavy OpenVidu resources because the resource

has a high elastic cost.

Table 1 summarizes the number of test cases per each TGroup and their possible

executions. The TGroup 1 has 5 test cases, TGroup 2 has 11 test cases, and the TGroup

3 has 4 test cases. The test cases of these TGroups will be executed in TJobs according

to the scheduling.

Scheduling: We have executed the four schedules that are detailed in Section 4 and

represented in Fig. 4. The first schedule A creates one TJob per each TGroup, that

means that the TJob 1 is created with all test cases of TGroup 1 (5 test cases), the TJob

2 with all of TGroup 2 (11 test cases), and the TJob 3 with all of TGroup 3 (4 test cases).

The three TJobs of schedule A are executed in parallel each one in one instance. Despite

the TJobs are executed in parallel, the schedule A proposes that the test cases of each

TJob should be executed sequentially in the instance of the TJob. In contrast, schedule

B proposes that the test cases of the TGroup 1 should be executed in the same TJob

using one instance but the test cases in parallel. The schedule C proposes to parallelize

the execution of the TGroup 2 in 3 TJobs executing each one in one instance. Finally,

the schedule D instead to parallelize the execution of the test cases of TGroup 2 in three

instances, parallelizes them in two instances. Once these four schedules are executed,

we answer the research questions analyzing the efficiency of the test execution:

memory required by the virtualized instances and execution time of the test cases.

Nº

TGroup

Resource Name N# test

cases

Access

Mode

Execution

1 Light OpenVidu 5 Read-Only - Sequentially in one instance
- Parallel in one instance

2 Medium OpenVidu 11 Read-Write - Sequentially in one instance

- Parallel in three instances
- Parallel in two instances

3 Heavy OpenVidu 4 Read-Write - Sequentially in one instance

Table 1 FullTeaching test cases

19

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

RQ1: To evaluate how RETORCH may optimize the execution time of the test suite,

we have executed the schedules and obtained the execution time on the up to five vir-

tualized instances. Fig. 5. depicts the execution time of the E2E tests cases with the

four schedules represented in Fig.4. (A, B, C and D). The execution time is obtained

from the test log timestamps. The blue lines represent the execution time of the TGroup

1, the red about TGroup 2, the black about the TGroup 3, and the green/white the total

execution time of the test suite according to the schedule.

RETORCH reduces the execution time of the test suite by a 61.74% (from 149 seconds

in the schedule A to 57 seconds in the schedule D). The schedule A employs 149 sec-

onds because the test cases of TGroup 1 are executed sequentially during these 149

seconds. The schedule B execute these test cases in parallel inside of the same instance

reducing the execution time of the test cases of TGroup 1 to 55 seconds. However, the

execution time of schedule B is 101 seconds because the sequential execution of the

test cases of TGroup 2 takes 101 seconds. The schedule C executes the test cases of the

TGroup 2 in parallel in three instances reducing the execution time to 64 seconds. Fi-

nally, Schedule D executes the test cases of the TGroup 2 in two instances to optimize

the resource usage employing 57 seconds. According to the FullTeaching system and

the four schedules evaluated, RETORCH is able to reduce the execution time more than

half through the identification of the resources, grouping of the test cases and the se-

quential/parallel scheduling according to test dependencies.

RQ2: To evaluate the performance in terms of resource usage, we monitor the phys-

ical memory used in all the virtualized instances during the testing. This measurement

was obtained via the Hyper-V performance monitor, that provides the memory re-

quested by each instance together with the percentage of memory used at each moment.

Fig. 5. Execution time different schedules

20

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

With these two values, we obtain the memory used by the different virtualized instances

at every moment multiplying the percentage of use by the memory requested. The re-

source usage in the four schedules is represented in Fig. 6. The X-axis represents the

execution time and Y-axis the total amount of the memory used by all the instances in

gigabytes. Note that the four schedules represented in the figure employ different exe-

cution times. Schedule A takes 149 seconds, but the schedule D finishes at 57 seconds.

During these seconds the memory usage varies in different ways, sometimes with peaks

and other times flatter depending on the sequential/parallel execution of the test cases

and instances. The schedule A executes the test cases in 3 instances, the schedule B also

in 3 instances, the schedule C in 5 instances, and the schedule D in 4 instances.

RETORCH reduces the execution time executing the test cases in parallel either in

one instance or several instances. The increasing of one instance also increases the

memory usage, but RETORCH provides a schedule that at the same time that reduces

the execution time also optimizes the usage of memory. We can observe from the sched-

ule A to schedule D that RETORCH reduces the execution time by 61.74% (RQ1)

whereas the memory usage only increases a ~x2 (from ~8GB to ~15GB in the lower

values, and from ~12GB to ~26GB in the peak). Despite the memory increases,

RETORCH optimizes the memory usage at the same time that aims to reduce the exe-

cution time.

The schedule A executes in parallel three TJobs in three instances employing

~15GB. All test cases of each TJobs are executed sequentially according to the Sched-

ule A, so the memory usage is more or less flat (the lower value is ~8GB, but usually

is around ~15GB). Schedule B instead to execute the test cases of TGroup 1 sequen-

tially in one instance, proposes to execute them in parallel in the one instance. The

parallel execution of these test cases not only reduces the execution time but also in-

creases the memory achieving a peak of ~24GB when the test cases of TGroup 1 are

executed in parallel at the same time. Schedule C proposes to execute the test cases of

TGroup 2 in parallel in three instances. The parallel execution of the test cases again

Fig. 6. Memory Usage in the different Schedules

21

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

decreases the execution time but also increases the memory achieving some peaks of

~36GB. The memory has increased a lot because each instance of the three deployed

for the test cases of TGroup 2 contains the Medium Openvidu resource, Kurento media

server resource, and MySQL database resource. To optimize the resources, the schedule

D proposes to reduce one instance for the test cases of TGroup 2, that is to execute two

instances for the test cases of TGroup 2, one instance for TGroup 1 and another instance

for TGroup 3. The reduction of one instance from schedule C to D not only improves

the execution time but also reduces/optimizes the memory usage from ~18GB to

~15GB in lower values and from ~36GB to ~26GB during the peak. According to the

FullTeaching system and the four schedules evaluated, RETORCH not only reduces

the execution time of E2E testing through the sequential/parallel execution but also

optimizes the resource usage varying the number of instances considering the resources

deployed.

Threats to validity: The above evaluation shows promising results of the

RETORCH approach. However, there are several issues that may threaten the validity

of these results. Regarding the internal threats, the evaluation analyzes the memory us-

age and execution time on which it is easy to introduce noise into the measures by other

system processes. In order to mitigate this issue, we performed the experimentation into

the same dedicated computer inside virtualized instances with the same specifications.

Regarding the external threats, that may limit the ability to generalize the results, our

evaluation is related to only one case of study with a limited set of resources. Despite

this, the results provide us insights that by carefully arranging the resources used by the

test cases improve the overall efficiency of the test execution may be improved, alt-

hough more experimentation should be done with other systems and different kinds of

resources. Another issue is related to the size of the test suite. Although the test suite is

not large, it contains a variety of typical tests scenarios in E2E testing, which have been

taken from a real-world application. Finally, regarding the construct validity, we han-

dled the most representative variables (e.g. overall test execution time and memory

consumption). Other measures have not been considered (e.g. processor load). To mit-

igate this problem, we have monitored the other resources, observing that the other

resources remain with a low usage rate compared with the memory.

6 Conclusions and future work

This article proposes an approach called RETORCH to orchestrate the execution of the

End-to-End test cases (E2E) through: the identification of resources required to run an

E2E test case, the grouping of the test cases based on the minimization of the resources

to be deployed and on the parallel scheduling of the tests in several instances. We per-

formed an evaluation of RETORCH with a real-world application in a Cloud test envi-

ronment.

The results show that RETORCH improves the efficiency of the E2E test execution

optimizing their resources and execution time. The execution time is decreased through

the scheduling of the test cases in several instances considering the test dependencies

22

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

and other issues related to parallelize the test execution. Not only the execution of the

tests in several instances increases the usage of resources like memory, but RETORCH

also optimizes these resources avoiding the oversubscription that may cause re-deploy-

ments through the aggrupation of similar tests in the same instance.

As future work, we plan to integrate RETORCH in the ElasTest platform to orchestrate

efficiently the execution of the E2E test cases. This would require the automatic iden-

tification of both resources and dependencies between the tests in the cloud systems.

Another line of research pursues to thoroughly evaluate the grouping and scheduling

methods in the context of optimizing the E2E test executions.

References

Augusto, C., Morán, J., Bertolino, A., de la Riva, C., & Tuya, J. (2019). RETORCH: Resource-

aware End-to-end Test Orchestration. In M. Piattini, P. Rupino da Cunha, I. García-

Rodríguez de Guzmán, & R. Pérez-Castillo (Eds.), 12th International Conference on the

Quality of Information and Communications Technology (QUATIC 2019) (p. 14).

https://doi.org/10.1007/978-3-030-29238-6_22

Bell, J., Kaiser, G., Melski, E., & Dattatreya, M. (2015). Efficient dependency detection for safe

Java test acceleration. 2015 10th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, ESEC/FSE 2015 - Proceedings, 770–781.

https://doi.org/10.1145/2786805.2786823

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. FoSE 2007:

Future of Software Engineering, 85–103. https://doi.org/10.1109/FOSE.2007.25

Bertolino, A., Calabró, A., De Angelis, G., Gallego, M., García, B., & Gortázar, F. (2018). When

the testing gets tough, the tough get ElasTest. Proceedings - International Conference on

Software Engineering, 17–20. https://doi.org/10.1145/3183440.3183497

Bertolino, A., de Angelis, G., Gallego, M., García, B., Gortázar, F., Lonetti, F., & Marchetti, E.

(2019). A Systematic Review on Cloud Testing. ACM Computing Surveys, 52(5), 1–42.

https://doi.org/10.1145/3331447

Burns, B., Grant, B., Oppenheimer, D., Brewer, E., & Wilkes, J. (2016). Borg, omega, and

kubernetes. Communications of the ACM, 59(5), 50–57. https://doi.org/10.1145/2890784

Casalicchio, E. (2017). Autonomic orchestration of containers: Problem definition and research

challenges. ValueTools 2016 - 10th EAI International Conference on Performance

Evaluation Methodologies and Tools, 287–290. https://doi.org/10.4108/eai.25-10-

2016.2266649

Chakraborty, S. S., & Shah, V. (2011). Towards an approach and framework for test-execution

plan derivation. 2011 26th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2011, Proceedings, 488–491.

https://doi.org/10.1109/ASE.2011.6100106

De Brito, M. S., Hoque, S., Magedanz, T., Steinke, R., Willner, A., Nehls, D., … Schreiner, F.

(2017). A service orchestration architecture for Fog-enabled infrastructures. 2017 2nd

International Conference on Fog and Mobile Edge Computing, FMEC 2017, 127–132.

https://doi.org/10.1109/FMEC.2017.7946419

Docker Inc. (2017). Overview of Docker Compose | Docker Documentation. Retrieved October

23

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

14, 2019, from Docker Inc. website: https://docs.docker.com/compose/

Docker Inc. (2019). Swarm mode overview | Docker Documentation. Retrieved October 15,

2019, from https://docs.docker.com/engine/swarm/

Draft, W. (2014). TOSCA Simple Profile in YAML Version 1.0. (March), 1–83. Retrieved from

http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.1/TOSCA-Simple-

Profile-YAML-v1.1.html

Elastest Developers Team. (2017). Elastest: Full-teaching. Retrieved October 28, 2019, from

https://github.com/elastest/full-teaching

Elastest Developers Team. (2018). Elastest: FullTeaching-experiment. Retrieved October 28,

2019, from https://github.com/elastest/full-teaching-experiment

Engström, E., Skoglund, M., & Runeson, P. (2008). Empirical evaluations of regression test

selection techniques: A systematic review. ESEM’08: Proceedings of the 2008 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, 22–31.

https://doi.org/10.1145/1414004.1414011

Esfahani, H., Fietz, J., Ke, Q., Kolomiets, A., Lan, E., Mavrinac, E., … Kandula, S. (2016).

CloudBuild: Microsoft’s distributed and caching build service. Proceedings -

International Conference on Software Engineering, 11–20.

https://doi.org/10.1145/2889160.2889222

Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap and agenda.

Journal of Systems and Software, 123, 176–189. https://doi.org/10.1016/j.jss.2015.06.063

Gambi, A., Bell, J., & Zeller, A. (2018). Practical Test Dependency Detection. Proceedings -

2018 IEEE 11th International Conference on Software Testing, Verification and

Validation, ICST 2018, 1–11. https://doi.org/10.1109/ICST.2018.00011

Gambi, A., Gorla, A., & Zeller, A. (2017). O!Snap: Cost-Efficient Testing in the Cloud.

Proceedings - 10th IEEE International Conference on Software Testing, Verification and

Validation, ICST 2017, 454–459. https://doi.org/10.1109/ICST.2017.51

Garcia, B., Lonetti, F., Gallego, M., Miranda, B., Jimenez, E., De Angelis, G., … Marchetti, E.

(2018). A proposal to orchestrate test cases. Proceedings - 2018 International Conference

on the Quality of Information and Communications Technology, QUATIC 2018, 38–46.

https://doi.org/10.1109/QUATIC.2018.00016

Giotis, K., Kryftis, Y., & Maglaris, V. (2015). Policy-based orchestration of NFV services in

Software-Defined Networks. 1st IEEE Conference on Network Softwarization: Software-

Defined Infrastructures for Networks, Clouds, IoT and Services, NETSOFT 2015, 1–5.

https://doi.org/10.1109/NETSOFT.2015.7116145

Gyori, A., Shi, A., Hariri, F., & Marinov, D. (2015). Reliable testing: Detecting state-polluting

tests to prevent test dependency. 2015 International Symposium on Software Testing and

Analysis, ISSTA 2015 - Proceedings, 223–233. https://doi.org/10.1145/2771783.2771793

Harman, M. (2011). Making the case for MORTO: Multi objective regression test optimization.

Proceedings - 4th IEEE International Conference on Software Testing, Verification, and

Validation Workshops, ICSTW 2011, 111–114. https://doi.org/10.1109/ICSTW.2011.60

Herzig, K., Greiler, M., Czerwonka, J., & Murphy, B. (2015). The art of testing less without

sacrificing quality. Proceedings - International Conference on Software Engineering, 1,

483–493. https://doi.org/10.1109/ICSE.2015.66

Lachmann, R., Nieke, M., Seidl, C., Schaefer, I., & Schulze, S. (2017). System-level test case

prioritization using machine learning. Proceedings - 2016 15th IEEE International

24

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

Conference on Machine Learning and Applications, ICMLA 2016, 361–368.

https://doi.org/10.1109/ICMLA.2016.163

Liu, C. H., Chen, S. L., & Chen, W. K. (2017). Cost-benefit evaluation on parallel execution for

improving test efficiency over cloud. Proceedings of the 2017 IEEE International

Conference on Applied System Innovation: Applied System Innovation for Modern

Technology, ICASI 2017, 199–202. https://doi.org/10.1109/ICASI.2017.7988384

Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., & Micco, J. (2017).

Taming google-scale continuous testing. Proceedings - 2017 IEEE/ACM 39th

International Conference on Software Engineering: Software Engineering in Practice

Track, ICSE-SEIP 2017, 233–242. https://doi.org/10.1109/ICSE-SEIP.2017.16

Meyer, M. (2014). Continuous integration and its tools. IEEE Software, 31(3), 14–16.

https://doi.org/10.1109/MS.2014.58

Microsoft. (n.d.). Orchestrator overview | Microsoft Docs. Retrieved October 15, 2019, from

https://docs.microsoft.com/en-us/system-center/orchestrator/learn-about-

orchestrator?view=sc-orch-2019

Oracle. (2019). MySQL. Retrieved November 3, 2019, from https://www.mysql.com/

Pérez, P. F. (2017). Fullteaching: A web application to make teaching online easy. Retrieved

from https://github.com/pabloFuente/full-teaching

Rothermel, G., Harrold, M. J., Von Ronne, J., & Hong, C. (2002). Empirical studies of test-suite

reduction. Software Testing Verification and Reliability, 12(4), 219–249.

https://doi.org/10.1002/stvr.256

Shull, F., Basili, V., Boehm, B., Brown, A. W., Costa, P., Lindvall, M., … Vinter, O. (2002).

What we have learned about fighting defects. Proceedings - International Software

Metrics Symposium, 2002-Janua, 249–258.

https://doi.org/10.1109/METRIC.2002.1011343

Singh, S., & Chana, I. (2015). QoS-aware autonomic resource management in cloud computing:

A systematic review. ACM Computing Surveys, 48(3), 1–46.

https://doi.org/10.1145/2843889

Technologies, K. (2014). Kurento. Retrieved from https://www.kurento.org/

Toczé, K., & Nadjm-Tehrani, S. (2018, June 4). A Taxonomy for Management and Optimization

of Multiple Resources in Edge Computing. Wireless Communications and Mobile

Computing, Vol. 2018, pp. 1–23. https://doi.org/10.1155/2018/7476201

Uberti, J., & Thatcher, P. (2018). {WebRTC} Home {\textbar} {WebRTC}. Retrieved from

https://webrtc.org/

University, R. J. C. (2017). OpenVidu. Retrieved from https://openvidu.io/

Velasquez, K., Abreu, D. P., Assis, M. R. M., Senna, C., Aranha, D. F., Bittencourt, L. F., …

Madeira, E. (2018). Fog orchestration for the Internet of Everything: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 9(1), 14.

https://doi.org/10.1186/s13174-018-0086-3

Velasquez, K., Abreu, D. P., Goncalves, D., Bittencourt, L., Curado, M., Monteiro, E., &

Madeira, E. (2017). Service orchestration in fog environments. Proceedings - 2017 IEEE

5th International Conference on Future Internet of Things and Cloud, FiCloud 2017,

2017-Janua, 329–336. https://doi.org/10.1109/FiCloud.2017.49

Wong, W. E., Morgan, J. R., London, S., & Mathur, A. P. (1998). Effect of test set minimization

on fault detection effectiveness. Software - Practice and Experience, 28(4), 347–369.

25

This is a pre-print of an article published in Software Quality Journal. The final authenticated

version is available online at: https://doi.org/10.1007/s11219-020-09505-2

https://doi.org/10.1002/(SICI)1097-024X(19980410)28:4<347::AID-SPE145>3.0.CO;2-

L

Yoo, S., & Harman, M. (2012, March). Regression testing minimization, selection and

prioritization: A survey. Software Testing Verification and Reliability, Vol. 22, pp. 67–

120. https://doi.org/10.1002/stv.430

Yu, L., Su, Y., & Wang, Q. (2009). Scheduling test execution of WBEM applications.

Proceedings - Asia-Pacific Software Engineering Conference, APSEC, 323–330.

https://doi.org/10.1109/APSEC.2009.27

Zhang, Z., Li, C., Tao, Y., Yangy, R., Tang, H., & Xu, J. (2014). Fuxi: A fault-tolerant resource

management and job scheduling system at internet scale. Proceedings of the VLDB

Endowment, 7(13), 1393–1404. https://doi.org/10.14778/2733004.2733012

