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Numerical study on electrohydrodynamic multiple droplet interactions
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We present a numerical study of inviscid multiple droplet coalescence and break-up under the action of electric
forces. Using an embedded potential flow model for the droplet hydrodynamics, coupled with an unbounded
exterior electrostatic problem, we are able to perform computations through various singular events and analyze
the effects of the electrical field intensity on droplet interactions. Laboratory experiments on the electrodynamics
of droplet pairs show a much richer, and sometimes unexpected, behavior than that of isolated droplets. For
example, it has been found that opposite charged droplets tend to repel each other when the electric field intensity
is above a certain critical value. Although the mathematical model employed in this work incorporates very
simple flow and electric assumptions, many of the droplet coalescence patterns seen in laboratory experiments
can be reproduced. In this model, the interaction pattern of two droplets of radii R0 separated a distance D0,
depends on the ratio X0 = D0/R0 and the applied uniform electric field intensity, E∞. By performing a vast
number of numerical simulations we are able to characterize the coalescence modes before and after drop
merging as a function of these two parameters. The simulations predict that droplet repulsion occurs within
a narrow interval of E∞ values, different for each X0. Surprisingly, in this E∞ interval, a sharp transition between
two power-law precoalescence flow regimes is seen. The evolution of several flow characteristics before and
after coalescence, and the shape of the deformed droplets at coalescing time and the double cone angle, are
also addressed and analyzed in detail. Cone angles below 35◦ lead to droplet coalescence for any X0 value,
which is in accordance with previously reported studies. Finally, it is shown that the model and algorithm can
handle multiple droplet interactions. The simulations qualitatively match results from water in oil experiments
in microchannels, despite the fact that the exterior fluid is not considered in the mathematical model.

DOI: 10.1103/PhysRevE.100.063111

I. MOTIVATION AND OVERVIEW

Electric forces acting on droplet pairs or multiple drop
flows trigger richer dynamics than those provoked on iso-
lated droplets. The effectiveness of industrial processes, such
emulsion evolution, droplet-based microfluidic devices, rain
formation in clouds, industrial spray painting, etc., depends
on fully understanding these phenomena.

When a neutral and isolated droplet is exposed to a uni-
form electric field in the direction of the droplet symmetry
axis, it will oscillate with a frequency that depends on the
electric field intensity. Taylor [1] found a theoretical critical
value above which the drop will distort and elongate until tip
streaming will take place from the well-known Taylor cones.
Numerous experimental [2,3] and computational studies [4–7]
have corroborated these dynamics. Inviscid coalescence of
touching droplet pairs, of either the same or different sizes,
has also been a subject of intense research, see, for exam-
ple, Refs. [8,9] for results of laboratory experiments and
Refs. [10–12] for numerical simulations. Under this config-
uration the merging mechanism is due to surface tension
and the system seeks to minimize surface energy. A thin
connecting bridge is initially formed and its evolution seems
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to follow a self-similar power law. Capillary waves propagate
along the drop surface, causing the drop go from elongated to
capsulelike shapes until equilibrium is achieved. The coales-
cence of unequal size drops, however, leads to pinch-off of a
satellite droplet whose size depends on the relative sizes of the
parent droplets [9,12].

In some applications, e.g., removing water droplets from
crude oil, it is necessary to bring the droplets together prior
to coalescence. The use of electrical forces is a well-known
technique to make drops attract each other and merge. Most
of the existing studies start with a pair of droplets of radii R0

immersed in a dielectric medium, separated by a distance D0,
and exposed to a direct current (dc) or an alternating current
(ac). The system can be open or confined in a microchannel
and the electrical properties of the liquid droplets and sur-
rounding medium can also vary. Studies of the dynamics of
droplet pairs aligned with an electric field can be found in
Refs. [13–15] for viscous fluids and in Ref. [16] for inviscid
fluids. In these scenarios the droplet pair acts as a dipole
enhancing the action of the applied electric field at the drop
ends [17,18] and therefore the critical electric intensity to
destabilize the drops diminishes.

Recent laboratory experiments have found an unexpected
droplet pairs electrical interaction. Above a certain value of
the electric field strength, it has been observed [19] that
opposite charged water droplets dispersed in oil repel each
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FIG. 1. Physical sketch of the droplet pair geometry. Left: Two spherical droplets of radius R0 at initial time. Right: The deformed droplets
with aspect ratio a/b. Points on the right droplet, (0, zC ) the droplet center, and (0, zA) the droplet left end point, are depicted.

other after they first contact. Bird et al. [20] also observed the
same phenomena for two water drops suspended on needles.
At a low voltage difference between the needles, the facing
drop ends will deform into cone shapes with angle β and
immediately coalesce (see Fig. 1 in Ref. [20] for the angle
definition). For certain values of the voltage difference the
drops will touch but then recoil preventing coalescence. The
coalescence stability diagram for droplet pairs on microfluid
devices has been experimentally established in Ref. [21];
these authors also report interesting experimental results on
multiple drop interaction. A complete numerical study on
drop pair interactions in a microchannel has been reported in
Ref. [15]. Finally, Chabert et al. [22] assert that a dc current
cannot induce coalescence in a microchannel, and thus they
imposed an ac current and leaky dielectric assumptions for
both liquid phases. Nevertheless, despite all these important
experimental, theoretical, and numerical studies, there still
remains controversy about the mechanisms and conditions
that lead to recoil after two drops make contact under the
action of electric forces. From the above-mentioned works,
geometric features at initial contact time, such as the double
cone angle β, seem to play a definite role.

We believe that drop pair studies, under basic flow and
electric assumptions that involve few parameters, can con-
tribute to the understanding of this phenomena. Therefore,
herein we focus on the electrodynamics of a nonviscous
droplet pair inside a dynamically inactive exterior fluid, sub-
ject to a uniform electric field (dc current). Gravity forces are
considered to be negligible compared to surface tension forces
within the droplet length scales reported in experiments. A
pioneer work with these same assumptions was conducted
by Adamiak [16], but his numerical approximation give rise
to numerical instabilities for some parameter values and no
computations after coalescence were possible. However, with
the level set or extension potential methods employed herein,
the computations can go past singular events, such as drops
breaking or merging. The reliance of our model formulation
on the level set techniques enables moving boundary equa-
tions to be transformed into partial differential equations (one
dimension higher) posed on a fixed domain. The resulting sys-
tem of partial differential equations is approximated combin-
ing upwind finite differences schemes for the time-dependent
embedded equations and linear boundary elements for the
integral formulation of the Laplace equations. This approach
has been used to solve various hydrodynamical problems,
such as wave breaking [23], the Taylor-Rayleigh instability of
a fluid jet, [24], and droplet and bubble evolution in a two-fluid
system [25,26]. Regarding electrohydrodynamical processes,
droplet deformation and jetting in axisymmetric geometries

are reported in Ref. [7] and preliminary results on electroco-
alescence also appear in Ref. [12]. In fact, the present work
can be regarded as a natural continuation of Ref. [12]. Al-
though we have also developed a complete three-dimensional
(3D) algorithm for electrohydrodynamical problems (based
on the coupling of level set method with Nitche finite element
method, see Ref. [27]), the computational times needed to
carry out 3D pair-drops and multiple-drop simulations exceed
our capabilities, and the axisymmetric assumption will be
again employed.

The most important findings extracted from the wide range
of numerical simulations carried out in this work are as
follows:

(i) Droplet coalescence and droplet repulsion are captured
by this model and, consequently, these simulations can help to
understand the underlying physics of this phenomenon. Preco-
alescence flow analyses show the existence of two regimes: In
the first regime electric and surface tension forces alternate,
whereas in the second regime electric forces prevail. It is in
the transition between these regimes where droplet repulsion
takes place. It appears that droplet recoiling is not only caused
by local geometric features at the contact point but also by a
combination of local and global dynamics.

(ii) Electric postcoalescence has also been investigated.
We have identified four distinct patterns of postcoalescence
evolution in the presence of an electric field: stable oscillation,
satellite droplets formation, droplets repulsion, and droplet
destabilization with jet emission. By inspecting the compu-
tational results the possible mechanisms for each of these
postcoalescence modes have been proposed.

(iii) Multiple drop stable coalescence depends on the ini-
tial droplet separation and electric field intensity. Available
laboratory experiments on droplet trains use water droplets
dispersed in an oil phase. We are aware that our model does
not incorporate the viscosity effects on the free surface due to
the exterior fluid. Nevertheless, the numerical computations
give reasonable qualitative agreement when compared to ex-
perimental results, qualifying this model as a predictive tool
for multiphase separation studies.

This paper is organized as follows: Section II briefly
presents the mathematical model and approximation tech-
niques, and further details can be found in Ref. [12].
Section III is devoted to the numerical simulations and
analysis of droplet pairs electrohydrodynamics. We consider
droplet pairs located at different initial rescaled distance,
X0 = D0

R0
, exposed to various electric field intensities, E∞.

From this study the coalescence modes in (X0, E∞) space
and the main flow characteristics prior and post coalescence
can be established. Cone angles and droplet shapes at contact
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time are also addressed and compared to previously reported
values. A mechanism for droplet repulsion is proposed and
a comparison with laboratory experiments is also addressed.
Finally, Sec. IV considers the action of a uniform electric
field on aligned droplets of equal radii located at equal or
unequal initial distances. The numerical results are compared
with laboratory experiments.

II. ELECTROHYDRODYNAMIC MODEL AND
NUMERICAL APPROXIMATION

The physical setting to be modeled is the interaction of two
or, more generally, M droplets of a perfect conductor fluid
immersed in a perfect dielectric medium. The drop centers
are aligned parallel with the electrical far field direction. The
flow inside the drops is considered inviscid and the medium
is dynamically at rest. Each drop occupies a domain �k

1 with
boundary �k (t ), k = 1, . . . , M, whereas the infinite dielec-
tric medium fills the �2(t ) domain. The physical parameters
involved are the drops fluid density ρ, the surface tension
coefficient γ , and the insulator gas (or liquid) permittivity
constant ε.

Let be �1(t ) = ∪M
k=1�

k
1 and �(t ) = ∪M

k=1�k (t ). Taking
as characteristic length scale R0, the droplets radii, capil-
lary timescale t0 = (ρR3

0/γ )1/2, and electric field intensity
scale E0 = [2γ /(εR0)]1/2, the nondimensional fluid flow La-
grangian equations are as follows:

u = ∇φ in �1(t ), (1)

	φ = 0 in �1(t ), (2)

∂R
∂t

= u on �(t ), (3)

Dtφ = f on �(t ), (4)

where R(x, y, z, t ) is the position vector of a fluid parti-
cle on the front, u = u(x, y, z, t ) is the velocity field, φ =
φ(x, y, z, t ) the velocity potential, and Dt stands for the
convective derivative, Dtφ = ∂φ

∂t + u · ∇φ. The function f =
f (x, y, z, t ) contains the contribution of the various forces
acting on �(t ).

In the unbounded exterior domain �2(t ) we set E to be
uniform and parallel to the symmetry axis at the far field.
Under these assumptions E is solenoidal and can be expressed
as the gradient of an electric potential field U = U (x, y, z, t ):

E = −∇U in �2(t ), (5)

	U = 0 in �2(t ), (6)

U = U k
0 (t ) on �k (t ), k = 1, . . . , M, (7)

U = −E∞z at infinity. (8)

Here E∞ is the nondimensional electric field intensity at the
far field, and under these assumptions the flow is driven by
inertia, surface tension, and electric stresses. The function f
in Eq. (4) is then

f = 1
2 |u|2 − κ + E2

n , (9)

where κ is twice the mean curvature, En = n · ∇U , and n the
unit normal vector pointing from the interior to the exterior
fluid domain. We point out that the free boundary electric po-
tentials U k

0 (t ), k = 1, . . . , M are unknown, and as the M drops
interact, these potentials cannot be obtained independently.
The algorithm for obtaining the potentials, for either neutral
or charged droplets, can be found in Ref. [12].

Note that Eqs. (3) and (4), the kinematic and dynamic
boundary conditions on the moving domain boundary, �(t ),
are two surface partial differential equations (PDE’s) that
define the evolution of the free boundary and the associ-
ated velocity potential within this boundary. The numerical
approximation of these two equations is what makes this
problem very challenging, especially if �(t ) changes topol-
ogy. Equation (4) is the conservation of momentum on the
free boundary, where the continuity of the stress tensor has
been imposed and thus the coupling term between the interior
and exterior problems is set by Eq. (9). It is, in theory,
possible to approximate the coupled system of PDE’s using
a front tracking method for Eqs. (3) and (4), choosing Pk

fluid particles in each free front �k and solving a system
of 2 × Pk ordinary differential equations for each front. For
multiple droplets exhibiting merging and breaking processes
this approach is almost impossible, as it is difficult to assign
the marker particles to the appropriate volumes.

The alternative to this approach is to reformulate the
surface equations (3) and (4), posed on �(t ), as one-higher
dimension equations posed on a fixed domain �D, chosen
as a rectangular domain that should contain �(t ) for all
computational times. Other than this requirement, there is
no relation with the physical domains. The embedding of
(3) and (4) on �(t ) onto �D is accomplished with level
set techniques. Define two new functions in �D, the level
set function �(x, y, z, t ) and the extended potential function
G(x, y, z, t ), via

�(R(s, t ), t ) = 0, ∀t ∈ [0, T ], (10)

G(s, t )|�(t ) = φ(x, y, x, t ) ∀t ∈ [0, T ], (11)

where s = (s1, s2) an arc length parametrization of the free
boundary surface. Equations (3) and (4) transform into

�t + uext · ∇� = 0 in �D, (12)

Gt + uext · ∇G = fext in �D, (13)

and uext and fext denote the extended velocity and extended
function f from �(t ) onto �D. The model equations for
electrohydrodynamic problems using the level set embedding
are thus:

u = −∇φ in �1(t ), (14)

	φ = 0 in �1(t ), (15)

φ = G on �(t ), (16)

�t + uext · ∇� = 0 in �D, (17)

Gt + uext · ∇G = fext in �D, (18)
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FIG. 2. Coalescence modes on (X0, E∞) space. Each point
on the graph corresponds to a numerical simulation. For X0 =
0, 0.4, 1, 1.67 the postcoalescence sequence for increasing values of
E∞ is oscillation, satellites, and jetting. The repulsion mode appears
for X0 = 1 and X0 = 1.67 at different E∞ intervals.

E = −∇U in �2(t ), (19)

	U = 0 in �2(t ), (20)

U = U k
0 (t ) on �k (t ), k = 1, . . . , M, (21)

U = −E∞z at infinity. (22)

The boundary conditions for (17) and (18) can be set to
nD · ∇� = 0 and nD · ∇G = 0, respectively, on ∂�D, with nD

denoting the exterior normal to ∂�D. These assumptions mean
that the level sets of � and G will intersect ∂�D orthogonally.

The numerical approximation can be described in three
steps:

(i) The time discretization for Eqs. (17) and (18) is
approximated using a first-order explicit Euler scheme or
second-order Runge-Kutta (the latter requires much more

computational time and improved accuracy is only detected
on analytic test problems).

(ii) The spatial discretization of the gradient terms, ∇�n,
∇Gn, at each time step employs a first- or second-order
upwind scheme on a rectangular uniform mesh over �D.

(iii) At each discrete time, t n, the interior and exte-
rior Laplace equations are solved using a linear element
Galerkin boundary integral formulation. Details concerning
the axisymmetric Galerkin implementation can be found in
Ref. [28].

The axisymmetric assumptions lead to a problem posed
on the (r, z) plane, with z as the symmetry axis. There are
therefore two meshes involved in the algorithm: a rectangular
uniform grid over �D with mesh size 	r = 	z and a mesh
of size ds to discretize the free boundary �(t ). This length ds
can be uniform or nonuniform depending on the resolution
needed at various regions. The adaptive time step, 	t , is
chosen according to formula 31 in Ref. [12]. Further details
on the numerical approximation and algorithm can be found
in Refs. [7,12,24,26,27,29,30]. In particular, we note that an
exhaustive convergence analysis with respect discretization
parameters can be found in Ref. [24]. In this analysis the
short-time analytic solution for the Rayleigh-Taylor instability
problem was employed. Moreover, break-up similarity scaling
laws and postbreaking events were seen to be independent
of discretization parameters, and conservation of mass and
energy held through these singular events. In Ref. [25] the
analytic solution to the problem of a perturbed spherical shape
droplet also demonstrated convergence, and in Ref. [12] the
neck expansion after coalescence of two equal tangentially
touching droplets was seen to converge with diminishing
mesh sizes and time steps.

III. DROPLET PAIR ELECTROHYDRODYNAMICS

We first consider two neutral spherical droplets of ra-
dius R0 separated by a distance D0 and set in motion by
a uniform electric field of intensity E∞, see Fig. 1 for a
schematic view. The coalescence time, the shape of the end
point regions and the double cone angle at contact time all
vary with these parameters. By performing a large number of

TABLE I. Three dimensional renderings of the droplets profiles showing oscillation, satellites, repulsion, and jetting postcoalescence modes.
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numerical simulations we have been able to study not only
the flow characteristics prior to merging but also the complex
postcoalescence evolution.

In particular, two important aspects of the droplet pair
dynamics will be explored:

(1) Droplets coalescence versus droplets repulsion after
first contact.

(2) Possible mechanisms underlying the various postcoa-
lescence modes.

Figure 2 and Table I provide a useful visualization of the
droplet pair behavior depending on the (X0, E∞) space and
movies corresponding to these four patterns can be seen in
Supplemental Material [31]. In this figure, four coalescence
modes have been identified:

(i) Droplets merge and oscillate. This mode is represented
by magenta circles.

(ii) Droplets coalesce and the merged droplet elongates
sufficiently that two satellite droplets carrying opposite
charges pinch-off (represented by cyan squares).

(iii) Droplets touch each other but immediately recoil and
fail to coalesce (represented by green diamonds).

(iv) Droplets coalesce, the merged droplet elongates,
destabilizes and jet ejection occurs (represented by red
triangles).

Figure 2 represents a total of 104 simulations with a max-
imum computational elapsed time of T = 4 nondimensional
units. The fixed domain �D that contains the droplets for all
times is �D = [−3, 3] × [−1, 1]. From previous experiments
and convergence test we have found that a workable set of
discretization parameters is as follows: 	r = 	z = 0.005,
ds ∈ [0.01, 0.02], and 	t = 10−3 initially and going down to
10−5 near singular events.

To establish the domains of the different droplet evolution,
characterized by the final droplet fate after first contact, a
detailed investigation of the influence of E∞ is needed for each
X0. We have selected X0 = 0, 0.4, 1, 1.67, and E∞ is taken in
the interval [0.2, 0.7] incremented 0.02 units and, if needed,
by 0.01 units. The lower bound has been set to E∞ = 0.2,
as below this value and for X0 = 1.67 the droplets will not
coalesce in t ∈ [0, T ], whereas above 0.7 the post coalescence
leads immediately to jet ejection. Moreover, for X0 > 1.67,
the computation time needed for the droplets to contact is
excessive.

We first describe and analyze droplet geometric features
and observable kinematics considering three separate stages:
precoalescence evolution, contact characteristics, and postco-
alescence dynamics. We then close this section with a discus-
sion of the mechanism behind repulsion versus coalescence
and a comparison with existing laboratory experiments.

A. Electrodynamics of approaching drops

In order to characterize this initial stage, the evolution of
various geometric parameters is tracked. In particular, the
droplets aspect ratio, a/b, the droplet center axial coordinate,
zC , and the droplet left end point coordinate, zA, are studied,
see Fig. 1 for a depiction of these quantities. The coalescence
times, tc, are also analyzed. Figure 3 shows the aspect ratio
versus time for X0 = 0.4, 1, 1.67. It can be observed that for
low values of E∞ and X0 = 1, 1.67 the drops oscillate as

FIG. 3. Evolution of the droplets aspect ratio a/b for various
electric fields intensities E∞. From top to bottom the graphs corre-
spond to X0 = 0, 1, 1.67, respectively. For X0 = 0.4 the precoalesced
droplets do not oscillate. The repulsion mode appears between
precoalescence oscillation and precoalescence pure deformation. The
curve colors and line styles represent the corresponding postcoales-
cence modes.

they approach each other with an amplitude that increases
with the electric field intensity. For a particular E∞ the
amplitude also increases as the droplet distance diminishes,
indicating the time when the opposite charges on the facing
droplet boundaries start to affect the distortion. However, for
X0 = 0.4 there is no oscillation and the droplets deform with
aspect ratios a/b < 1.2 for all values of E∞. Note that the
assigned curve colors are consistent with those employed
to identify the postcoalescence modes in (X0, E∞) space:
This hopefully helps in the understanding of the computed
results.

For the rescaled distance X0 = 1, droplet aspect ratios be-
low 1.3 lead to the merged droplet oscillation mode, whereas
for a/b ∈ [1.4, 1.5], repulsion or jetting will occur. In the
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FIG. 4. Left: Evolution of the droplets center axial coordinate zC for various electric field intensities and indicated X0 values. Right: Same
for the evolution of the drop left point zA. The curves color and line styles represent the corresponding postcoalescence modes.

interval 1.3 < a/b < 1.4 the coalescence satellite mode will
take place. Regarding X0 = 1.67 the dynamics of the aspect
ratio is more complex: We detected oscillation, satellite, and
jetting coalescence modes for aspect ratios below 1.4, which
corresponds to values of E∞ < 0.4, whereas repulsion or
jetting mode appears for a/b > 1.4. Note that the repulsion
mode shows up in a short range of E∞ values and just in the
border of precoalescence oscillation and pure deformation.
For values of E∞ > 0.4 the drops do not oscillate but just
translate as they deform reaching aspect ratios a/b ≈ 2 at
coalescence.

On the left in Fig. 4 the evolution of the axial coordinate
of the drop center, zC , is depicted, while the right column
shows the end point, zA. While the evolution of a/b gives a
geometrical characteristic of the droplet shape, the analysis of
zC and zA reveals kinematic aspects of the movement. It can
be observed that the drop centers move steadily toward each
other for all X0 values, whereas for X0 = 1.0 and X0 = 1.67

the drop end points oscillate while approaching coalescence.
The velocity of the drop centers for each value of E∞ is
not constant but rather increases as the distance between
the droplet pair decreases; similarly, the amplitude of the
oscillations in zA increases with E∞. At first glance zC seems
to behave as quadratic functions of time but attempts to fit to a
parabola were not successful. The drop translation is therefore
not a uniform rectilinear motion.

Finally Fig. 5 (on the left) displays the coalescence time,
tc, plotted versus electrical field intensity for the three X0

values; the corresponding log-log plots are on the right.
The logarithmic graphs reveal a sharp change between two
different regimes, with both regimes following power laws
with similar exponents for all X0 values. The jump between
the regimes occurs at different E∞ values for each X0. For
X0 = 1.67 the transition occurs within E∞ ∈ [0.4, 0.5], and in
the interval E∞ ∈ [0.35, 0.4] for X0 = 1. The X0 = 0.4 plot
is mostly on the second regime, with a smother transition
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FIG. 5. Left: Coalescence times tc versus E∞. Right: Corresponding log-log plot with the exponents of the linear fittings. The log is natural
logarithm. For X0 = 1, 1.67 there is a curve jump between the two distinct flow regimes.

within E∞ ∈ [0.25, 0.29]. The Matlab linear fit has given the
following power-law exponents for the second regime: α1 =
−1.6, α2 = −1.67 and α3 = −1.7 for X0 = 0.4, 1, 1.67, re-
spectively. The exponents for the first regime are α5 = α6 =
−1.3 for X0 = 1, 1.67. There is not enough data to fit a
straight line to the first regime in the X0 = 0.4 plot.

Next we investigate the double cone angle β and other
droplet features at coalescence.

B. Contact events: Double cone angle and end-point shape

It has been observed that when a pair of droplets make
contact the near faces adopt a shape that can be inscribed into
a double cone with an opening angle β, see Fig. 8. Recent
experimental observations [19,20] show that, depending on
the angle β, opposite charged droplets repel each other after
first contact. Ristenpart et al. [19] gave a physical explanation
involving the pressure difference between the bulk of the drop
and the meniscus bridge. However, this leads to a critical
angle of β = 45◦, while their laboratory experiments show
an angle of β = 31◦. A local theoretical model in Ref. [20],
based on the minimization of an energy functional for the neck
region, gives a critical angle of β = 30.8◦. The experiments
set reported in Ref. [20] found that neither the dielectric
strength of the surrounding gas or the conductivity of the
drops liquid were responsible of the repulsion, concluding that
it is solely a consequence of the geometric shape at contact
time. For a constant electric field across two inviscid drops,

TABLE II. Electric field intensity, E∞, coalescence time, tc, and
cone angle, β, for X0 = 0.4, 1, 1.67.

X0 = 0.4 X0 = 1.0 X0 = 1.67

E∞ tc β tc β tc β

0.2 0.1838 24.0 1.3960 27.0 3.1035 27.8
0.3 0.0761 31.0 0.6624 32.6 1.8016 30.1
0.4 0.0462 30.1 0.1849 39.0 1.0955 34.8
0.5 0.0328 32.8 0.1191 41.0 0.2218 47.2
0.6 0.0254 32.9 0.0890 44.7 0.1501 51.0
0.7 0.0210 37.5 0.0709 45.3 0.1156 52.5

Ref. [18] gives the value β = 40.1◦, whereas Ref. [15] reports
β = 45◦ for droplet pairs in microchannels.

We have calculated the β angle corresponding to X0 =
0.4, 1, 1.67 and various E∞ values by performing a linear
fit to front coordinates (r, z) near the contact point (0,0).
Table II lists the cone angles β together with the coalescence
times tc. It can be seen that there is a sharp change in the
trend of tc and β within certain E∞ intervals. Figure 6 plots
β versus E∞ for the three X0 values. It is very interesting
to observe that β undergoes a trend change at same E∞
intervals as the coalescence time (Fig. 5). Not surprisingly,
inspecting Fig. 2, the recoil coalescence mode occurs pre-
cisely within these same electric intensity ranges for each
of the X0 values. According to these numerical results, the
limiting cone angle for coalescence depends on the X0 value.
For X0 = 1.67, within the interval [0.45, 0.5) the droplet pair
fail to merge and therefore β � 38.9◦ will lead to coalescence.
The recoil region for X0 = 1 occurs at E∞ ∈ [0.35, 0.40]
and the limiting angle is now β � 35◦. Therefore for cone
angles below β = 35◦ the droplets coalesce. Although these
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25
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0
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FIG. 6. Double cone angle β versus E∞, for X0 = 0.4, 1, 1.67.
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FIG. 7. Average droplet velocity VM = D0/tc versus E∞ for X0 =
0.4, 1, 1.67. For X0 = 1, 1.67 the average velocity is VM ≈ 0.5 at the
curve jumps.

values are in good agreement with local theoretical models,
previous numerical simulations, and experiments, the recoil-
ing coalescence mode seems to depend on more than just
geometric features (such as the curvature inside and across
the thin bridge formed at contact). The velocity at which the
droplets make contact should be a factor, and to investigate
this Fig. 7 shows the average velocity VM = D0/tc versus E∞.
It can be seen that at precisely the critical E∞ intervals, the
average droplet velocity is almost the same for all three X0

values.
We note that low E∞ values lead to a clear double cone

angle contact profile, and this allows a robust and consistent
calculation of β. For high E∞ values, however, the local
electrophoretic forces deform the drops tips sufficiently that
the calculation of the cone angle is subject to a variation of
one or two degrees, depending on the fitted region. Figure 8
depicts the fronts and the fitted cone angles for X0 = 1.67 and
E∞ = 0.2, 0.4, 0.6. Same procedure has been used to obtain
all reported β angles.

We now discuss the droplet facing profiles near contact
time, taking X0 = 1.67. Values in the range 0.2 � E∞ �
0.55 lead to highly distorted round ends that develop into a
cone shape before contact. The contact geometry is that of
two sharp cones facing each other, see the focused picture
corresponding to E∞ = 0.2 in Fig. 8. On the contrary, for
E∞ > 0.6 there is an overturning of the protruding drop ends
and the contact area is not sharp, and this makes the β angle
calculation more difficult. At E∞ = 0.7 the computations
show that there is air entrapment as a result of the ends
overturning, see Fig. 9. The algorithm fills the gap with the
inner fluid, as we have not included the motion of the exterior
fluid. This is obviously not physically acceptable and we have
not computed scenarios where E∞ > 0.7. The overturning and
trapped air bubble has been previously reported for experi-
mental and numerical studies for a leaky dielectric fluid in a
leaky dielectric medium model [14]. This overturning can be
attributed to the fact that the drops are about to undergo a jet
discharge.

C. Postcoalescence electrohydrodynamics

Pair-droplet evolution after coalescence exhibits complex
dynamics and a behavioral classification in terms of the
(X0, E∞) space is considered in this section. In order to have a
reference (or catalog) of possible coalesced shapes we first
examine the case X0 = 0, i.e., the droplets are tangentially
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FIG. 8. Calculated cone angles at contact points for X0 = 1.67
and E∞ = 0.2, 0.4, 0.6.
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FIG. 9. Zoomed drops facing shapes for E∞ = 0.7. The individual droplets are about to emit jets and an air bubble is trapped inside the
fluid.

touching at z = 0, β = 0, and the initial velocity potential
is zero. The droplets aspect ratio evolution corresponding
to values E∞ ∈ [0, 0.4] is shown in Fig. 10 from which
some flow characteristics can be extracted. For times t < 0.05
all the curves overlap with constant aspect ratio, a/b = 2,
meaning that right after contact all the dynamics occur solely
on the bridge region. Within times 0.05 < t < 0.125 the
curves adopt the same shape with peaks and lows occurring
at approximately the same times: The initial disturbance has
propagated and reached the droplet end points but the dy-
namics seem to be almost independent of the electric field
intensity. In the time range t > 0.15 the curve trends open
up revealing a strong influence of the electric field intensity
on the drop aspect ratio evolution. Table III shows the shapes
catalog for various E∞ values at final simulation time, t f , and
the maximum aspect ratio achieved in the time interval [0, t f ].
Inspecting the final drop shape and the maximum aspect ratio
for each of the numerical simulations, it is clear that the
X0 = 0 case study presents three distinguished regimes: The
coalesced droplet oscillates in E∞ ∈ [0, 0.26] and the aspect
ratio do not exceed the 2.5 value, 2 < a/b < 2.5; in the range
E∞ ∈ [0.28, 0.32] the unified droplet elongates enough so that
in the recoil process two satellite droplets pinch off and the
aspect ratio stays in the interval 2.5 < a/b < 3; finally, for
E∞ � 0.34 the merged droplet destabilizes and jet emission
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FIG. 10. Aspect ratio a/b evolution after contact for X0 = 0 at
indicated E∞ values. The postcoalescence sequence is oscillation,
satellites, and jetting.

takes place. In what follows, the aspect ratio evolution fig-
ures will identify the different regimes using the same color
scheme employed at the beginning of this section. Due to short
simulated times and zero impact velocities, the numerical
results are accurate and stable and thus the X0 = 0 study
provides a convenient guide for the regime classification.

Next we discuss the merged droplet aspect ratio behavior
corresponding to X0 = 0.4, X0 = 1, and X0 = 1.67, Fig. 11.
For X0 = 0.4 and X0 = 1, aspect ratios less than 3, a/b �
3 lead to postcoalescence oscillation, whereas for a/b ≈ 3
satellite pinch-off coalescence mode will occur. If a/b > 3,
then the merged droplet will undergo tip streaming. Regarding
X0 = 1.67 the same aspect ratio analysis holds but now the
cutting value is a/b = 2.5. These two cutting values, a/b = 3
and a/b = 2.5, are similar to the one corresponding to the
X0 = 0 aspect ratio behavior, in terms of the final coalescence
mode classification. We can conclude that if coalescence takes
place, then the droplet aspect ratio is a good indicator of
the postcoalescence drop evolution. Figure 11 shows the the
individual droplets aspect ratio evolution when the droplets
fail to coalesce and recoil, showing a decrease in this droplet
geometric feature.

Finally, we describe several flow characteristics for X0 =
1.67. For E∞ ∈ [0.2, 0.33], the drops coalesce forming a thin
liquid bridge that develops a tiny protruding ring that has been
observed in laboratory experiments. It originates in the colli-
sion of the two opposite flows; see, for example, Fig. 12(d).
The capillary wave induced by this disturbance propagates
through the droplet surface to the end points, leading to two
protruding cylinders that eventually stop expanding in the
axial direction. Here the competition between surface tension
forces and electric stresses determines the final droplet state.
If the aspect ratio a/b is below 2.5, then the central droplet
mass will absorb the protruding cylinders; if a/b exceeds 2.5,
then the necks near the central part of the drop shrink and
two satellite droplets pinch-off. The break-up time and the
size of the daughter droplets is a function of E∞. There is no
jet ejection for these range of values. This behavior appears
also in the X0 = 0 case for similar a/b values but different
E∞ range as can be seen in the shape catalog, Table III. Front
profiles for E∞ = 0.29 before and after coalescence are shown
in Fig. 12.

For increased electric field, E∞ ∈ [0.34, 0.425], the post-
contact neck grows, but the electric field stress at the boundary
acts in a similar way as viscosity. The capillary waves are
therefore damped and the drop elongates faster and deforms
more, reaching aspect ratios of a/b ≈ 3. For E∞ = 0.4 tip
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TABLE III. Shape catalog for X0 = 0. Column t f lists the final
simulated time, column a/b lists the maximum aspect ratio achieved
during the simulation, and column “Final shape” shows the droplet
profile at t f .

E∞ tf a/b Final Shape

0.1 0.46 2.23 −1 0 1
−0.5

0

0.5

0.2 0.36 2.36 −1 0 1
−0.5

0

0.5

0.22 0.39 2.35 −1 0 1
−0.5

0

0.5

0.24 0.39 2.40 −1 0 1
−0.5

0

0.5

0.26 0.38 2.46 −1 0 1
−0.5

0

0.5

0.28 0.35 2.53 −1 0 1
−0.5

0

0.5

0.30 0.34 2.65 −1 0 1
−0.5

0

0.5

0.32 0.33 2.91 −1 0 1
−0.5

0

0.5

0.34 0.32 5.10 −1 0 1
−0.5

0

0.5

0.36 0.26 5.54 −1 0 1
−0.5

0

0.5

0.38 0.23 6.22 −1 0 1
−0.5

0

0.5

0.40 0.22 5.00 −1 0 1
−0.5

0

0.5

streaming starts at t = 1.37464 and filaments are ejected at
frequencies which range from approximately 0.0005 to 0.002
time units. The volume lost by tip streaming is just Vl =
0.000179, and at the end of the simulation the drop continued
in this ejection mode. The aspect ratio of the merged drop
before destabilization is a/b ≈ 4. Drop volume and aspect
ratio evolution are shown in Fig. 13, where each peak shown
in the onset figure represents one jet ejection. Front profiles
corresponding to E∞ = 0.4 at various times are shown in
Fig. 14.

FIG. 11. Evolution of the postcoalesced droplets aspect ratio
a/b for various electric fields intensities. Each graph specifies the
corresponding X0 value.

For E∞ ∈ [0.45, 0.5) the drops fail to coalesce after contact
and they recoil. At contact time the unified drop mass has a
certain surface charge distribution with zero net charge. When
the drop splits in two, each drop carries opposite charges,
but they nevertheless repel each other under the effect of the
electric direction at the far field. Note that a droplet carrying
a positive charge will be moved to the right, whereas it will
be translated to the left if it is negatively charged. Individual
drops may destabilize and jets are emitted at opposite end
points. The evolution of the drop pair is depicted in Fig. 15
at some significant instants for E∞ = 0.45.

With E∞ ∈ [0.5, 0.7] and before merging the droplets are
about to burst. After they make contact the neck region has
no time to expand and the unified droplet deforms very fast,
reaching aspect ratios of a/b > 4 before a thin filament is
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FIG. 12. Front profiles at various times for X0 = 1.67 and E∞ = 0.29. At t = 2.2144 two opposite charged satellite droplets pinch-off.

ejected. These high values of the nondimensionless electric
field strength may not correspond to feasible physical values.

The postcoalescence modes and underlying physics that
have been observed for X0 = 1.67 can be summarized
as follows:

(1) No coalescence within T = 4 for E∞ < 0.2.
(2) With E∞ ∈ [0.2, 0.27] droplets oscillate and then

merge into a bigger droplet at a low average velocity VM ≈
0.1. The values of the electric field intensity are moderate and
the droplet deformation in the axial direction is restored early
on by surface tension. The alternating play of forces makes the
droplet oscillate and change from horizontal capsule shapes to
vertical ones.

(3) For E∞ ∈ [0.28, 0.33] the droplets come together os-
cillating with the impact average velocity VM ≈ 0.2, causing a
visible droplet flow upward. The generated wave will propa-
gate through the merged drop surface, not being sufficiently
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FIG. 13. Aspect ratio evolution a/b for E∞ = 0.4 before and
after coalescence time (black) and drop volume evolution (blue). Jet
ejection frequencies can be seen in the inset figure. At t = 1.0409
coalescence takes place and conservation of volume holds after
passing through the singularity.

damped by the still moderate electrical stresses, while the
electrical stress expands the droplet in the axial direction. As
a consequence of these two effects, two protruding cylinders
appear at the droplet ends. Surface tension then acts to restore
shapes that minimize surface energy, causing the necks at the
base of the cylinders to collapse. Two equal size daughter
droplets pinch-off.

(4) When E∞ ∈ [0.34, 0.425] drops oscillate and coalesce
into a bigger droplet at VM ≈ 0.25. The electric field intensity
is now big enough to damp capillary waves and to produce
droplet deformations up to aspect ratios a/b ≈ 3. Protruding
cylinders rapidly adopt Taylor cone angles at their ends from
which intermittent tip streaming occurs.

(5) With E∞ ∈ [0.45, 0.50) droplets deform significantly
as they approach each other, and the impact average velocity
rises to VM ≈ 0.5. The geometry of the contact region and
other combined processes are such that after a short coales-
cence the drops move apart. This mechanism will be explained
in more detail in the next subsection.

(6) For E∞ � 0.5 electrical stresses dominate over surface
tension forces making the droplets deform significantly as
they approach each other. Droplets are nearly about to burst
prior to make contact and the created bridge will not expand.
Very soon after contact a permanent filament is ejected from
the end points.

Similar analysis has been carried out for other X0 values.
For increasing values of E∞ the same postcoalescence se-
quence has been obtained: oscillation, satellites, and jetting.
The repulsion mode shows up whenever the transition regime
occurs. More comments on this will be given in the next
subsection.

D. Repulsion versus coalescence mechanism

The dynamics of the system are controlled by the com-
petition of inertial forces, surface tension forces, and electric
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FIG. 14. Front profiles at various times for X0 = 1.67 and E∞ = 0.4. At t = 1.3746 the protruding cylinders develop Taylor cones from
which tip streaming occurs.

stresses, all acting in the normal direction to the free surface.
Under the action of a uniform electric field an isolated and
neutral droplet will become a prolate spheroid, positively
charged on its right face and negatively charged on its left
face. The individual droplet will act as a dipole source [1]. On
a droplet pair system the dipole-dipole forces are superposed
to the far field electric forces, creating more intricate motions.
As we have shown, even prior to coalescence, two distinct
flows are present. In one regime deforming and restoring
forces sequentially switch, whereas in the other regime electri-
cal forces are clearly dominant. It is in the transition between
these patterns where droplet repulsion takes place due to
a combination of factors. The electric field intensity range
within the transition zone and the associated cone angles are
different for each X0, which indicate that recoiling is not only
caused by a pure geometric and static feature as the contact
cone angle β.

Next we analyze in more detail force interactions for the
studied X0 values.

(i) For X0 = 0.4 and all E∞ values the droplet distance is
small enough such that the dipole-dipole forces are dominant
and the droplets just translate and deform approaching each
other without oscillating. The droplet aspect ratio do not
go over 1.2 and neither zA or zC oscillates but move with
increasing velocity that seems to blow up when zA → 0;
we can also observe that zA moves faster that zC . All these
observations show that there is only one regime prior to
coalescence (electric forces dominates over surface tension
restoring forces for all E∞). This fact can also be seen on the
curve tc versus E∞, where only one scaling law is present. For
this droplet separation no repulsion is detected.

(ii) For X0 = 1 and E∞ ∈ [0.2, 0.35] dipole-dipole forces
are weak initially and droplets oscillate showing the regime
where restoring forces compete against electrical deforming
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FIG. 15. Front profiles at various times for X0 = 1.67 and E∞ = 0.45. After first contact at t = 0.3654 the droplets recoil and fail to
coalesce. The droplets carry opposite charges and at t = 0.5673 jet emission takes place.
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FIG. 16. Comparison between flow variables for repulsion, E∞ = 0.385, versus coalescence, E∞ = 0.3 at contact time. The rescaled
separation is X0 = 1. Panel (a) shows that the repulsion front profile is more deformed than the coalescence profile and panel (b) shows
velocity potentials. In panel (c) the opposite axial velocity behavior is depicted and panel (d) shows the opposite curvature signs at contact
point.

forces. When zA � 0.08 dipole forces start acting and electri-
cal deformation is enhanced, reaching aspect ratios of a/b =
1.32 for E∞ = 0.35. For E∞ ∈ [0.5, 0.7] electrical forces
dominates, zA and zC move very fast toward coalescence,
mainly because they are about to undergo tip streaming.

The transition zone, E∞ ∈ [0.36, 0.40], corresponds to the
repulsion regime. The numerical results show that combined
processes act simultaneously: (1) The local geometry near the
contact point is such that the neck curvature becomes highly
positive and the flow reverses direction. This is also possible
because the average impact velocity is still moderate. (2) At
the droplet ends the axial velocity is positive on the right end
and negative on the left end, which enhances the recoiling
process. (3) Once the droplets fall apart the deformed drop
shape in the axial direction triggers surface tension forces to
restore spherical shapes. Moreover, the calculated charges are
equal with opposite signs, but in this range of E∞ values the
electrical field overcomes the droplet attraction force pushing
the droplets further apart.

To support the above statements we show in Fig. 16 the
flow variables for E∞ = 0.30 and E∞ = 0.385, which cor-
respond to coalescence and recoil, respectively. The distinct
behavior of front shapes, velocity potentials, axial velocities,
and front curvature is clear. Front curvatures at the neck
have opposite signs in both curves, see Fig. 16(d), which in
turn makes the axial velocities direct the flow in opposite
directions, see Fig. 16(c). Note also that away from the neck,

at the droplet end regions, the axial velocities also play a
roll in the coalescence or recoiling regime: They also exhibit
opposite signs.

(iii) In the case X0 = 1.67 the same previous arguments
apply, and here the first regime corresponds to E∞ ∈ [0.2, 0.4]
as the drops come together oscillating, whereas in E∞ ∈
[0.5, 0.70] electric deformation prevails. In the transition zone
E∞ ∈ [0.45, 0.5) repulsion occurs. The fact that the repulsion
zone lays between red triangles is not an issue, as red triangles
just indicate that the merged droplet will finally undergo jet
emission, which is justified by aspect ratios getting bigger
than 3. We can compare the dynamics of the point in the
parameter space (1,0.35) and (1.67,0.35) and observe the

TABLE IV. Repulsion mode convergence analysis with respect
the time step for X0 = 1. The electric field intensity, E∞, the time
step, 	t , the coalescence time, tc, and the postcoalescence mode are
listed.

E∞ 	t tc Mode

0.375 0.001 0.2220 Repulsion
0.375 0.0001 0.2217 Repulsion
0.385 0.001 0.2049 Repulsion
0.385 0.0001 0.2044 Repulsion
0.40 0.001 0.1853 Repulsion
0.40 0.0001 0.1849 Repulsion
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different aspect ratios after coalescence which is in accor-
dance with the fact that the first point is in the satellite mode
and the second one in the jetting mode. We noticed that, for
this X0 value, the jetting behaviors in E∞ ∈ [0.35, 0.4] and
E∞ ∈ [0.5, 0.7] are very different but we refused to assign
a different color and symbol as for practical purposes tip
streaming will occur. Apart from the droplet shapes, the main
difference is that tiny droplets are sequentially ejected from
the Taylor cones in E∞ ∈ [0.35, 0.4]. Within E∞ ∈ [0.5, 0.7]
the droplets are about to destabilize prior to merging and the
unified mass will soon after emit a long jet. Recall that for
isolated droplets of radios R = 0.3 the critical electrical field
intensity for droplet destabilization is E∞ = 0.48.

Although convergence of the algorithm has been suffi-
ciently established in previous works, we want to show that
the repulsion mode is not an artifact of the numerical approx-
imation. To this aim, and because the time step controls how
the algorithm passes through singular events (see Ref. [12]),
we have run simulations for X0 = 1 taking 	t = 0.001 and
	t = 0.0001. The results are shown in Table IV where we list
the value of E∞, the time step 	t , the coalescence time tc,
and the resulting coalescence mode. We can conclude that the
repulsion mode is stable.

E. Comparison with laboratory experiments

Experimental studies reported in Ref. [21] and Ref. [20]
will be used to compare numerical and experimental results.
In Ref. [21] pairs of Milli-Q water droplets immersed in a
hexadecane oil emulsion are pumped into a microchannel
and subjected to an ac electrical current. In their work they
examine the stability diagram for stable, coalescing, and
partial merging (repulsion) with respect the rescaled droplet
separation and nondimensional electric field. Stable droplet
pairs refers to lack of merging within a certain elapsed time.
Despite the various differences between the experimental
setting and the model assumptions, we want to examine the
extent to which the numerical results agree with the experi-
mental findings. The main discrepancies should be attributed
to the fact that the model does not include the effects of
the surrounding oil flow: The oil will slow the dynamics
and mitigate the propagation of capillary waves. Figure 2
in Ref. [21] shows photographs of droplet pairs evolution
for rescaled distances X0 = 1.12, X0 = 0.80, and X0 = 0.54
when an ac electric field of E = 2739 kV/m at a frequency
of 10 kHz is applied. They found that for X0 = 0.80 the
repulsion mode occurs. To carry out the numerical simulation,
the corresponding nondimensional value has to be calculated.
Taken reported values, R0 = 20 μm and γ = 0.0055 kg/m3,
the characteristic scale is E0 = ( 2γ

εR0
)1/2 = 7538 kV/m, and

E∞ = 0.36.
A new set of simulations have been performed for X0 = 0.8

and E∞ ∈ [0.25, 0.40], taking increments of 0.01 units. The
coalescence time tc versus E∞ is plotted in Fig. 17, where
it can be observed that the curve jumps at around E∞ =
0.30. Indeed, for E∞ = 0.31 the droplets fail to coalesce and
repel each other; see the droplet profiles at selected times in
Table V. This result supports the hypothesis that the repulsion
mechanism occurs in the transition regime and that a method
to predict droplet repulsion has been provided. If we consider
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E
∞

0

1

2

3
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t c

1.67

1.0

0.4
0.8

Jump at E
∞

∈ [0.30, 0.32]

FIG. 17. Coalescence times tc versus E∞ for X0 = 0.8. The
curves corresponding to X0 = 0.4, 1, 1, 67 has been included as a
reference. The transition zone between regimes occurs in the interval
E∞ ∈ [0.3, 0.32] where recoiling takes place.

that the characteristic timescale for the experiment is 1 ms,
then the times until the droplets first touch and repel each other
are in good agreement. Due to the lack of an exterior fluid in
the mathematical model, the droplets post repulsion fall apart,
as there is no damping of the surface oscillations.

An attempt to compare numerical results with the ex-
perimental work reported in Ref. [20] has also been made.
Their experimental setting consists in two needles separated a
distance d , from which two water droplets are injected in air.
Our X0 parameter cannot be derived from their d , as droplets
are brought together by a voltage difference and the injection
speed. They mainly focus on and discuss the critical cone
angle β that separates coalescence from the recoiling regime.
They state that “the cone angle β is positively correlated

TABLE V. Three-dimensional renderings of the computed
droplets profiles for X0 = 0.8. At t = 0.27 the droplets touch and
immediately recoil. For this value of the electric field, E∞ = 0.31,
the individual droplets are stable.
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with the applied voltage and negatively correlated with the
needle separation.” The numerical results also show that the
cone angle increases with E∞ but increases as well with
X0 at least for E∞ > 0.45. For E∞ < 0.45 the sign of the
correlation is not clear, see Fig. 6. In their Fig. 4 the value of
the electrocapillary number that separates coalescence from
recoiling is

√
Ec = 0.7. Note that

√
Ec = √

2E∞, which leads
to E∞ = 0.5. For X0 = 1.67 we found recoiling in the range
E∞ ∈ [0.45, 0.5] and the cone angle β ∈ [38.5, 47.5], which
qualitatively agrees with their experimental results. Here the
main difference between experimental and numerical settings
is that the laboratory water droplets are constantly attached to
the needles, while in the numerical simulations the droplets
are freely suspended in air. This clearly makes a direct com-
parison difficult.

IV. MULTIDROPLET ELECTROHYDRODYNAMIC

In this section we present numerical results for the elec-
trohydrodynamic interaction of multiple droplets. Here the
possible number of geometric configurations is huge and thus
we focus attention on the laboratory experiments reported in
Ref. [21]. In these experiments the droplets are immersed
in an oil phase and confined in a microchannel, limiting the
droplet movement in the radial direction. Nevertheless, the
axial symmetry holds and these experiments can be used as
a reference.

Two case studies have been investigated:
(a) Six droplets of radii R0 = 0.3 uniformly placed at an

initial distance D0 = 0.5.
(b) Nine droplets of radii R0 = 0.3 in a nonuniform array.
It is important to note that in the numerical experiments

the droplets are all present at t = 0, whereas in the laboratory
experiments the droplets are fed into the microchannel at
times t > 0. This difference has to be taken into account when
comparing the results.

A. Six-droplet train

Six droplets of radii R0 = 0.3 were placed at a distance
of D0 = 0.5, and thus X0 = 1.67 for any of the droplet pairs.
The applied electric field was chosen as E∞ = 0.4. The
computational fixed domain is now �D = [−3.5, 3.5] ×
[−1, 1], mesh size is 	r = 	z = 0.005, and the time step
ranges from 	t = 0.001 initially to 	t = 10−5. The initial
node spacing on the free fronts is ds = 0.02. To study how
the presence of several drops enhance the electric field action,
Fig. 18 displays the aspect ratio, a/b, evolution for each of
the six droplets. The six droplets are numbered from left to
right, and we observe that the left and right most droplets
(drops 1 and 6) oscillate with a maximum deformation of
a/b = 1.4. This agrees with the recorded deformation for the
isolated droplet pair (X0, E∞) = (1.67, 0.40). The most inner
droplets, drops 3 and 4, oscillate with a larger deformation,
reaching values of a/b = 1.6. Symmetry with respect z = 0
is also very well preserved. All of these results are in good
agreement with theoretical analyses [17] that predict the
magnification of the electrical field due to dipole action.

The evolution of the droplet train is shown in Fig. 19.
We have chosen the three-dimensional version of the com-
puted profiles to have a better sense of reality. Although the

0 0.5 1
t

1

1.1

1.2

1.3

1.4

1.5

1.6

a/
b

drop 1
drop 2
drop 3
drop 4
drop 5
drop 6

FIG. 18. Six droplets aspect ratio a/b evolution for E∞ = 0.4
before first coalescence. Droplets 1 and 6 undergo same deformation.
Same behavior for droplets 2 and 5 and droplets 3 and 4.

maximum droplet deformation is recorded in droplets 3 and
4, coalescence is instead initiated at the outer droplets at time
t = 1.2857 and continued at t = 1.3648; see Figs. 19(d) and
19(f), respectively. This is in surprisingly good agreement
with the propagation of the coalescence front, from right
to left, reported in experiments [21] [their Fig. 5(b)]. The
simulation is finished at t = 1.4, where the merged front is
destabilized and ready to initiate tip streaming.

B. Nine-droplet train

The nine-droplet train geometrical configuration chosen
here was modeled after the experiments reported in Ref. [21]
and in particular their Fig. 5(a). Moreover, we wanted to
study the evolution of a droplet train that was not uniformly
spaced initially. The radii of the nine droplets is R0 = 0.3
and the initial distances are D1,2 = D7,8 = 0.5, D2,3 = D3,4 =
D8,9 = 0.1, D4,5 = 0.3, and D5,6 = D6,7 = 0.2, where Di, j is
the initial distance from drop i to drop j. The discretization
parameters used here are the same as above, except that the
fixed domain is taken as �D = [−5, 3.75] × [−1, 1] and the
initial time step is 	t = 10−4. The smaller time step was a
consequence of the expected faster coalescence.

In Fig. 20 the evolution of each droplet aspect ratio is
shown only until the first coalescence of droplets 2, 3, and
4 at time t = 0.0281, as the cascade of merging events com-
plicates the droplet numbering. The only droplet that can be
followed throughout is number 1, which stays isolated until
the end of the simulation. Inspecting Fig. 20, we see that
the drops that undergo maximum deformations are number 3,
followed by 4 and 2. The minimum deformation corresponds
to droplet 1 initially but it reaches a value of a/b ≈ 1.2 before
being absorbed by the main front at t = 0.1213. None of
the nine droplets exhibit oscillations before merging due to
the initial short distances between most of the droplets and
the fast coalescence events.
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FIG. 19. Three-dimensional renderings of six droplets front pro-
files for E∞ = 0.4 at the following times: (a) t = 0, (b) t = 1, (c) t =
1.2, (d) t = 1.2858, (e) t = 1.3001, (f) t = 1.3648, (g) t = 1.3985,
and (h) t = 1.4099. The horizontal axis is z ∈ [−4, 4] and the vertical
axis is r ∈ [−0.5, 0.5]. Note that the coalescence front propagates
inward.

Finally, Fig. 21 depict the train evolution and front profiles
at several times of interest. Here the coalescence cascade is
initiated at t = 0.0281 by the three droplets separated by the
shorter initial distance 0.1, followed by droplets 8 and 9,
Figs. 21(b) and 21(c), respectively. The next drops to join are
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FIG. 20. Nine droplets aspect ratio a/b evolution for E∞ = 0.4
before first coalescence. All droplets deform differently.

FIG. 21. Three-dimensional renderings of nine droplets front
profiles for E∞ = 0.4 at the following times: (a) t = 0, (b) t =
0.0281, (c) t = 0.0488, (d) t = 0.0785, (e) t = 0.0850, (f) t =
0.0910, (g) t = 0.1176, and (h) t = 0.1213. The horizontal axis
is z ∈ [−5, 4] and the vertical axis is r ∈ [−0.5, 0.5]. Coalescence
fronts start propagating where the droplets are closer.

number 5 and 6 [Fig. 21(d)]. The coalescence front propagates
until t = 0.1176 where the central fluid mass is about to emit
jets [Fig. 21(g)] that are responsible for the final droplet train
connection.

V. CONCLUSIONS

Electrohydrodynamic free boundary problems with axial
symmetry have been investigated using a coupled boundary
integral-level set algorithm. Singular flow events, namely
fluid break-up and coalescence, are easily handled, the com-
putations successfully capturing these topological changes.
For a pair of droplets, the simulations reveal four distinct
coalescence modes depending on the (X0, E∞) parameter
space. In particular, this simple model reproduces the ex-
perimentally observed droplet repulsion seen after a short
contact time. A method for predicting the parameter values
for which repulsion occurs has been proposed. The electro-
hydrodynamics of a train of water droplets has also been
analyzed and the numerical results compared with labora-
tory experiments in microchannels. Even though the math-
ematical model does not include the exterior fluid flow,
the numerical results qualitatively predict multiple droplet
behavior.
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