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Stereoselective Bioreduction of Telluro-acetophenones to 

Optically Active Hydroxy Tellurides 

Pamela Taisline Bandeira,[a],[b] Vicente Gotor-Fernández,*[b] and Leandro Piovan*[a] 

 

Abstract: Organotellurium compounds exhibit a broad range of useful 

applications in organic synthesis, materials science and medicinal 

chemistry fields. Despite their increasing applicability, the synthesis of 

enantiomerically pure organotellurium compounds remains nowadays 

scarcely reported in the literature. Herein, the chemical synthesis and 

biocatalyzed reductions of a set of telluro-acetophenones using both 

(R) and (S)-selective alcohol dehydrogenases (ADHs) is described for 

the first time, obtaining enantiomerically enriched hydroxy tellurides 

with excellent selectivities under very mild reaction conditions. On the 

one hand, enantiopure para-substiuted (S)-hydroxy tellurides were 

obtained using the Ras-ADH (77-95% conversion) and ADH-A (52-

75%), the ADH-A leading to the enantiopure (S)-hydroxy tellurides 

substituted at the meta-position (69-75%). On the other hand, the evo-

1.1.200 displayed high selectivity towards the preparation of optically 

alcohols with substitutions at the para-position of the aromatic ring 

(60-68% conversion and 92-97% ee), while the Lb-ADH led to the best 

results when reducing bulky ketones at the meta-position (79-82% 

conversion and 88-99% ee). 

Introduction 

The chemistry of tellurium (Te) has experienced great 

progress in recent decades1 presenting Te-containing 

compounds as versatile reagents and synthons for many 

synthetic purposes, including carbon-carbon bond formation 

reactions,2 and a variety of functional group interconversions.3 

Organotellurium substances also have important and useful 

applications in materials science,4 as well as displaying 

remarkable pharmacological profiles5 with a broad range of 

biological activities.6 

Despite their synthetic and biological importance, especially 

when considering their chiral versions, few efforts have been 

focused on the synthesis of enantiomerically pure organotellurium 

compounds. In contrast to the more deeply studied 

organoselenium analogues,7 robust and straightforward routes 

towards optically active organotellurium compounds remain 

nowadays scarcely reported in the literature. To the best of our 

knowledge, their asymmetric syntheses are limited to the 

enzymatic kinetic resolutions (EKR) of aliphatic-,8 vinyl-,9 and β-

hydroxy10 organotellurides successfully applied as chiral building 

blocks (Figure 1) and the development of non stereoselective 

approaches when starting from optically active precursors of the 

desired organotellurium compounds used as antioxidant agents, 

and precursors of enzymatic inhibitors and antitumor agents 

(Figure 1).11  

 

Figure 1. Representative (chiral) Te-containing compounds with 
synthetic applications and biological properties. 

Nowadays, biocatalysis is a consolidated technology in 

organic synthesis mainly due to the high level of stereoselectivity 

displayed by enzymes under mild reaction conditions and the 

wide number of existing enzymes able to catalyze multiple 

transformations.12 Among asymmetric biotransformations, the 

stereoselective reduction of carbonyl compounds catalyzed by 

alcohol dehydrogenases (ADHs, E.C.1.1.1.1, also known as 

ketoreductases or carbonyl reductases) provides an elegant 

manner to produce optically active alcohols by using purified or 

whole-cell enzyme forms.13 Interestingly, the versatility of ADHs 

has been widely demonstrated for the stereoselective reduction 

of a broad range of prochiral carbonyl compounds, including β-

nitroketones,14 β-keto amides15 or ketones containing halogens,16 

sulfur,17 boron18 and others functionalities.19 

Hence, we have focused in the chemical synthesis and later 

development of ADH-catalyzed bioreductions of a set of telluro-

acetophenones using both (R)- and (S)-selective ADHs, which 

could lead us to the development of a straightforward strategy 

towards enantiomerically enriched hydroxy tellurides under very 

mild reaction conditions in aqueous medium. 

Results and Discussion 

A series of prochiral telluro-acetophenones 3a-g bearing 

variable alkyl aliphatic chains (R= Me, Et, nPr and nBu, Scheme 

1) straight linked to the Te atom in meta and para positions was 

chemically synthetized according to adapted protocols to the ones 

described in the literature for structurally similar organotellurium 

compounds.20 Firstly, commercially available 3’- and 4’-

bromoacetophenone were converted into the corresponding 

acetals 1 using ethylene glycol with 98% (meta) and 82% (para) 

isolated yields. Subsequently, the acetals were employed as 

precursors for Grignard reagents to provide ditellurides 2 in 77% 
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(meta) and 79% (para) isolated yields after the oxidative step.20 

Finally, sodium borohydride was used for the Te-Te bond 

cleavage, followed by alkylation and deprotection sequential 

steps led to telluroketones 3a-g in yields ranging from 35% to 55%. 

By using this strategy five novel telluro-acetophenones containing 

methyl (3a), ethyl (3b and 3e) and n-propyl (3c and 3f) rests linked 

to Te atom were synthesized besides of already known TenBu 

ones (3d and 3g). For analytical purposes, racemic hydroxy 

tellurides 4a-g were prepared in 35-92% yields by chemical 

reduction of ketones 3a-g with sodium borohydride in methanol. 

Thus, efficient analytical separations were developed using the 

gas chromatography (GC) technique, before carrying out the 

stereoselective reductive biotransformations using a variety of 

made in house and commercially available ADHs. 

Scheme 1. Synthetic route for telluro-acetophenones 3a-g and the corresponding racemic hydroxy tellurides 4a-g. Reaction conditions: a) Ethylene glycol, p-TsOH, 

toluene, reflux, 24 h (82-98% yield). b) i. Mg, THF, reflux, 3 h; ii. Te, r.t., overnight; iii. H2O, atmosphere, 1 h (77-79% yield). c) i. RX (R = Me, Et, nPr, nBu; X = Br or 

I), NaBH4, MeOH, THF, 0 °C to r.t., 10 min; ii. p-TsOH, acetone, reflux, 1.5 h (35-55% yield). d) NaBH4, MeOH, 0 °C to r.t., 2 h (35-92% yield).

Next, the bioreductions of telluro-acetophenones 3a-g were 

investigated (Table 1) under previously established 

conditions.21As biocatalysts, lyophilized cells of Escherichia coli 

(E. coli) overexpressing ADH from Ralstonia species (Ras-

ADH),22 Lactobacillus brevis (Lb-ADH),23 Sphingobium 

yanoikuyae (Sy-ADH),24 Thermoanaerobacter ethanolicus (Tes-

ADH),25 Thermoanaerobacter species (ADH-T),26 Rhodococcus 

ruber (ADH-A)27 and the commercially available evo 1.1.20028 

were assayed. 

Satisfyingly five out of the seven ADHs were able to catalyze 

the enantioselective bioreduction of telluroketones 3a-g to the 

desired optically active hydroxy tellurides 4a-g, attaining 

depending on the enzyme choice moderate to excellent 

selectivities towards the production of (R)-alcohols (58->99% ee), 

while remarkably the synthesis of enantiopure (S)-alcohols 4a-g 

was possible using the appropriate enzyme (Table 1). 

Regarding bioreductive reactions of para-substituted 

telluroketones 3a-d they were achieved in good to excellent 

extension using the Ras-ADH (77-95% conversion, entry 1) and 

the ADH-A (52-75% conversion, entry 6), obtaining in all cases 

the (S)-hydroxy tellurides in enantiomerically pure form, 

meanwhile the Sy-ADH (entry 3) led to modest activity and 

selectivity values. Interestingly for the Ras-ADH, increasing the 

alkyl length chain linked to Te atom from ethyl (3b, R = p-TeEt) to 

butyl (3d, R = p-TenBu) a decrease in the conversion rates from 

95 to 77% was observed (entry 1). An interesting trend was also 

observed when changing the aromatic pattern substitution from 

para to meta position, resulting in a significant decrease in activity 

for the Ras-ADH in the bioreduction of 3e-g (40-54% conversion 

and 72-86% ee, entry 1), while the ADH-A demonstrated its 

versatility by producing the enantiopure (S)-alcohols in 69-75% 

conversion (entry 6). 

When anti-Prelog enzymes such as the Lb-ADH (entry 2) and 

the commercially available evo-1.1.200 (entry 7) were employed, 

the Lb-ADH acted with a moderate to excellent selectivity towards 

para-substituted acetophenones (57->99% ee), reaching a 

complete selectivity when the bulkier substrate 3d was 

considered obtaining the corresponding butyl derivative 4d in 

enantiopure form. A similar trend was observed with the evo-

1.1.200 (51-60% conversion and 58-84% ee), however a notable 

difference between both enzymes was noticed when facing the 

meta-substituted ketones 3e-g. In fact, a significant decrease in 

activity was observed with the Lb-ADH, while high selectivities 

and moderate conversions were reached with the evo-1.1-200 

(60-68% conversion and 92-97% ee) for the production of (R)-4e-

g. 

Finally, a semi-preparative scale ADH-catalysed reduction 

was carried out employing 100 mg of telluro-acetophenone 3b (R 

= p-TeEt) employing Ras-ADH as biocatalyst. After 24 h, the 

conversion rate reached 84%, obtaining the optically active 

hydroxy telluride (S)-(–)-4b with 42% of isolated yield and >99% 

ee ([]D20 = –10.2 (c = 2.0, CHCl3)]) after silica gel column 
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purification, demonstrating the robustness of the bioreduction 

process. 

 

a Conversion values were determined by GC. b Enantiomeric excess values were determined by GC after removed the alkyl-tellurium moiety (“TeR”) with tBuLi. 

Absolute configurations appear in brackets. n.d. not determined due to the low conversion rates. 

Conclusions 

In summary, a series of telluro-acetophenones, including five 

novels ones, has been successfully reduced to the corresponding 

optically active hydroxy tellurides employing ADH-catalyzed 

bioreduction processes. For the production of enantiopure para-

substituted (S)-hydroxy tellurides, the best results were obtained 

using the Ras-ADH and ADH-A, the latest being also capable to 

give access to the enantiopure (S)-hydroxy tellurides when the 

substitution was present at the meta-position. In a complementary 

approach, the Lb-ADH and the evo-1.1.200 allowed the 

preparation of the (R)-alcohols displaying the best selectivities 

with the Lb-ADH in the bioreduction of the most bulkier substrates, 

while the evo-1.1.200 demonstrated its potential in the 

preparation of optically alcohols with substitutions at the para-

position of the aromatic ring. 

Overall, this is the first report of ADHs-catalyzed reduction of 

Te-containing carbonyl substrates, demonstrating that the 

biocatalytic reduction of prochiral telluroketones mediated by 

ADHs is an efficient and powerful approach to produce optically 

active hydroxy tellurides, being possible the isolation of the (S)- 

or (R)-enantiomers depending on the enzyme of choice. 

Experimental Section 

Chemical reagents for the synthesis of ketones 3a-g and alcohols 4a-

g were purchased from Sigma-Aldrich. For the bioreduction experiments, 

D-glucose, NADH and NADPH were also acquired from Sigma-Aldrich, 

while glucose dehydrogenase (GDH-105) was obtained from Codexis Inc. 

and evo-1.1.200 from Evoxx Technologies GmbH. Made in house ADHs 

were overexpressed in E. coli: Ralstonia species (Ras-ADH), Sphingobium 

yanoikuyae (Sy-ADH), Thermoanaerobacter species (ADH-T), 

Lactobacillus brevis (Lb-ADH), Thermoanaerobacter ethanolicus (TeS-

ADH) and Rhodococcus ruber (ADH-A). 

Nuclear magnetic resonance (NMR) spectra (1H and 13C) were 

recorded on a Bruker AV300 MHz spectrometer. 125Te NMR spectra were 

recorded on a Bruker Avance III at 9.4 T (400.13 MHz for 1H NMR and 

126.24 for 125Te NMR) and the chemical shifts for 125Te NMR were 

registered relative to an external standard diphenyl ditelluride (Ph2Te) at 

= 422 ppm. All chemical shifts (δ) are given in parts per million (ppm). 

Gas chromatography (GC) analyses were performed on an Agilent 

HP6890 GC chromatograph equipped with FID detector. Conversion rates 

measurements were performed on non-chiral GC column DB-1701 (30 m 

Table 1. Bioreduction of telluro-acetophenones 3a-g catalyzed by alcohol dehydrogenases (ADHs) 

 

 

Entry 
Alcohol 

dehydrogenase 

4a 

(R = p-TeMe) 

4b 

(R = p-TeEt) 

4c 

(R = p-TenPr) 

4d 

(R = p-TenBu) 

4e 

(R = m-TeEt) 

4f 

(R = m-TenPr) 

4g  

(R = m-

TenBu) 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

c 

[%]a 

ee 

[%]b 

1 E. coli/Ras-ADH 92 >99 (S) 95 >99 (S) 88 >99 (S) 77 >99 (S) 54 77 (S) 48 72 (S) 40 
86 

(S) 

2 E. coli/Lb-ADH 44 57 (R) 69 84 (R) 79 88 (R) 82  >99 (R) 32 97 (R) 13 n.d. 7 n.d. 

3 E. coli/Sy-ADH 56 46 (S) 62 52 (S) 54 63 (S) 67  95 (S) 68 58 (S) 58 80 (S) 56 
71 

(S) 

4 E. coli/TeS-ADH <5 n.d. 17 n.d. 13 n.d. <5 n.d. 9 n.d. <5 n.d. <5 n.d. 

5 E. coli/ADH-T <5 n.d. 19 n.d. 22 n.d. <5 n.d. 8 n.d. <5 n.d. <5 n.d. 

6 E. coli/ADH-A 52 >99 (S) 69 >99 (S) 72 >99 (S) 75  >99 (S) 75 
>99 

(S) 
75 >99 (S) 69 

>99 

(S) 

7 evo-1.1.200 60 58 (R) 53 67 (R) 51 73 (R) 52  84 (R) 68 97 (R) 64 96 (R) 60 
92 

(R) 
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x 0.25 mm, 0.25 μm), while for the enantiomeric excess values 

determination chiral GC column Chirasil β-Dex (25 m x 0.25 mm, 0.25 μm) 

were required. Melting points were measured in a Stuart apparatus SMP3 

(Bibby Sterilin, Staffordshire, UK) introducing the samples in open capillary 

tubes and the measurements are uncorrected. Optical rotation 

measurement was performed at 590 nm on Autopol IV Automatic 

polarimeter (Rudolph Research Analytical, Hackettstown, NJ, USA). Thin-

layer chromatography (TLC) analyses were conducted with Merck Silica 

Gel 60 F254 precoated plates and visualized with UV, potassium 

permanganate and vanillin stain. Column chromatographies were 

performed using silica gel 60 (230-240 mesh). 

General procedures for the chemical synthesis of ketones 3a-g and 

alcohols 4a-g 

Acetalization of 3’- and 4’-bromoacetophenones20 

A mixture of the corresponding bromoacetophenone (5.98 g, 25.0 mmol), 

ethylene glycol (15 mL, 250.0 mmol), p-TsOH (0.25 mg, 1.50 mmol) and 

anhydrous toluene (150 mL) was stirred and heated under reflux for 24 h. 

Water formed during the reaction (about 0.5 mL) was removed using a 

Dean-Stark trap. The reaction mixture was cooled and extracted with ethyl 

acetate (3 x 50 mL), and the combined organic phase sequentially washed 

with a NaHCO3 saturated aqueous solution (30 mL), water (30 mL) and 

brine (30 mL). The resulting organic layer was dried over Na2SO4, filtered 

and concentrated under reduced pressure, affording the corresponding 

dioxolanes 1. 

2-(4-Bromophenyl)-2-methyl-1,3-dioxolane. White crystals, 82%. Rf 

(20% EtOAc/hexane): 0.64; 1H NMR (CDCl3, 300.13 MHz): = 1.63 (s, 3H), 

3.71–3.78 (m, 2H), 4.00–4.07 (m, 2H), 7.35 (dd, 2H, 3JH,H = 8.7 Hz, 4JH,H = 

1.9 Hz), 7.46 (dd, 2H, 3JH,H = 8.7 Hz and 4JH,H = 1.9 Hz) ppm. 

2-(3-Bromophenyl)-2-methyl-1,3-dioxolane. Colorless oil, 98%. Rf (20% 

EtOAc/hexane): 0.61. 1H NMR (CDCl3, 300.13 MHz): = 1.62 (s, 3H), 

3.70–3.78 (m, 2H), 3.99–4.08 (m, 2H), 7.20 (t, 1H, 3JH,H = 7.8 Hz), 7.41–

7.46 (m, 2H), 7.63–7.65 (m, 1H) ppm. 

Synthesis of diaryl ditellurides 220 

A suspension of magnesium (0.53 g, 22.0 mmol) in anhydrous THF (40 

mL) was added to a solution of the corresponding 2-(bromophenyl)-2-

methyl-1,3-dioxolane (1, 4.86 g, 20.0 mmol) in anhydrous THF (10 mL) 

under nitrogen atmosphere. The mixture was refluxed for 3 h and after this 

time, the reaction was left to warm until room temperature. At this point, 

elemental tellurium (20.0 mmol) was added in one-portion and kept under 

stirring overnight. The solution was cooled to 0 °C and water (30 mL) was 

added dropwise. The crude reaction was filtered through a celite pad and 

washed exhaustively with CH2Cl2 (3 x 50 mL). The resulting organic phase 

was finally washed with brine (50 mL), dried over Na2SO4, filtered and 

concentrated under reduced pressure, isolating the corresponding diaryl 

ditellurides 2 in satisfactory purity to be used in the next step without further 

purification. 

1,2-bis[4-(2-Methyl-1,3-dioxolan-2-yl)phenyl]ditellane. Red powder, 

77%. Mp: 139-141 °C. Rf (20% EtOAc/hexane): 0.33. 1H NMR (CDCl3, 

300.13 MHz): = 1.63 (s, 3H), 3.76–3.77 (m, 2H), 4.02–4.03 (m, 2H), 7.30 

(dd, 2H, 3JH,H = 8.4, 4JH,H = 1.8), 7.77 (dd, 2H, 3JH,H = 8.4 Hz, 4JH,H = 1.8 

Hz); 13C NMR (CDCl3, 75.5 MHz): = 27.6, 64.5, 107.2, 108.5, 125.2, 126.3, 

128.2, 137.3, 143.6 ppm; 125Te NMR (126.2 MHz):  = 408 ppm. 

1,2-bis[3-(2-Methyl-1,3-dioxolan-2-yl)phenyl]ditellane. Red powder, 

79%. Mp: 140-143 °C. Rf (20% EtOAc/hexane): 0.41. 1H NMR (CDCl3, 

300.13 MHz): = 1.64 (s, 3H), 3.72–3.82 (m, 2H), 4.00–4.10 (m, 2H), 7.18 

(t, 1H, 3JH,H = 7.6), 7.34 (t, 1H, 3JH,H = 8.0 Hz), 7.76 (d, 1H, 3JH,H = 7.6 Hz), 

7.97 (s, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz): =  27.5, 64.4, 107.8, 108.3, 

125.2, 129.1, 134.2, 137.0, 144.2 ppm; 125Te NMR (126.2 MHz): = 426 

ppm. 

Synthesis of telluroketones 3a-g 

MeOH (2 mL) was added dropwise to a suspension of the corresponding 

diacetal ditelluride 2 (0.58 mg, 1.0 mmol), the corresponding alkyl halide 

(3.0 mmol) and NaBH4 (0.11 g, 3 mmol) in anhydrous THF (5 mL) under 

nitrogen atmosphere at 0 °C. The mixture was left to warm until room 

temperature and stirred for 1 h. After this period unreacted hydride excess 

was destroyed adding an aqueous NH4Cl saturated solution (5 mL). The 

mixture was extracted with CH2Cl2 (3 x 15 mL), combining the organic 

layers that were next washed with brine (15 mL). The resulting organic 

phase was dried over Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was dissolved in acetone (15 mL) and p-

TsOH (0.15 mmol) was added. The mixture was refluxed for 4 h, and after 

this time, the solvent was removed under reduced pressure and the 

reaction crude purified by column chromatography on silica gel (20% 

EtOAc/hexane), affording the corresponding organotellurium ketones 3a-

g. 

1-[4-(Methyltellanyl)phenyl]ethanone (3a). Yellow powder, 35%. Rf 

(20% EtOAc/hexane): 0.43. IR (NaCl): = 1217, 1366, 1580, 1670, 1738, 

2971 cm- 1. H NMR (CDCl3, 300.13 MHz): = 2.25 (s, 3H), 2.56 (s, 3H), 

7.64 (dd, 2H, 3JH,H = 8.6 Hz, 4JH,H = 2.0 Hz), 7.75 (dd, 2H, 3JH,H = 8.6 Hz, 
4JH,H = 2.0 Hz) ppm; 13C NMR (CDCl3, 75.5 MHz): =): –16.3, 26.6, 121.6, 

128.6, 135.2, 135.8, 197.7 ppm; 125Te NMR (126.2 MHz): = 343 ppm. 

1-[4-(Ethyltellanyl)phenyl]ethanone (3b). Pale yellow oil, 55%. Rf (20% 

EtOAc/hexane): 0.68. IR (NaCl): = 1263, 1580, 1674, 2816, 2916, 2954 

cm-1. 1H NMR (CDCl3, 300.13 MHz): = 1.69 (t, 3H, 3JH,H = 7.6 Hz), 2.57 

(s, 3H), 2.96 (q, 2H, 3JH,H = 7.6 Hz), 7.74 (m,  4H) ppm; 13C NMR (CDCl3, 

75.5 MHz): = 0.9, 17.3, 26.6, 120.7, 128.7, 136.0, 136.0, 197.8 ppm; 125Te 

NMR (126.2 MHz): = 541 ppm. 

1-[4-(Propyltellanyl)phenyl]ethanone (3c). Yellow oil, 53%. Rf (20% 

EtOAc/hexane): 0.46. IR (NaCl): = 1262, 1589, 1675, 2867, 2925, 2956 

cm-1. 1H NMR (CDCl3, 300.13 MHz): = 0.99 (t, 3H, 3JH,H = 7.2 Hz), 1.85 

(sext, 2H, 3JH,H = 7.3 Hz), 2.55 (s, 3H), 2.94 (t, 3H, 3JH,H = 7.3 Hz), 7.71 (m, 

4H) ppm; 13C NMR (CDCl3, 75.5 MHz): = 11.5, 16.7, 25.1, 26.5, 120.9, 

128.5, 135.9, 136.8, 197.7 ppm; 125Te NMR (126.2 MHz): = 470 ppm. 

1-[4-(Butyltellanyl)phenyl]ethanone (3d). Pale yellow oil, 45%. Rf (20% 

EtOAc/hexane): 0.74. IR (NaCl): = 1261, 1580, 1676, 2869, 2925, 2954 

cm-1. 1H NMR (CDCl3, 300.13 MHz): = 0.91 (t, 3H, 3JH,H = 7.4 Hz), 1.37–

1.42 (m, 2H), 1.76–1,86 (m, 2H), 2.57 (s, 3H), 2.97 (t, 3H, 3JH,H = 7.4 Hz), 

7.72 (m, 4H) ppm; 13C NMR (CDCl3, 75.5 MHz): = 8.8, 13.5, 25.2, 26.6, 

33.8, 121.0, 128.6, 135.9, 136.7, 197.8 ppm; 125Te NMR (126.2 MHz): = 

477 ppm. 

1-[3-(Ethyltellanyl)phenyl]ethanone (3e). Pale yellow oil, 46%. Rf (20% 

EtOAc/hexane): 0.63. IR (NaCl): = 1249, 1562, 1679, 2860, 2917, 2953 

cm-1. 1H NMR (CDCl3, 300.13 MHz): = 1.63 (t, 3H, 3JH,H = 7.6 Hz), 2.56 

(s, 3H) 2.89 (q, 2H, 3JH,H = 7.6 Hz), 7.27–7.28 (m, 1H), 7.80–7.93 (m, 1H), 

8.26 (s, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz): = 1.0, 17.4, 26.7, 112.2, 

127.5, 129,2, 137.6, 137.9, 142.6, 197.6 ppm; 125Te NMR (126.2 MHz): = 

551 ppm. 

1-[3-(Propyltellanyl)phenyl]ethanone (3f). Yellow oil, 43%. Rf (20% 

EtOAc/hexane): 0.46. IR (NaCl): = 1249, 1561, 1680, 2867, 2925, 2956 
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cm-1. 1H NMR (CDCl3, 300.13 MHz): = 0.98 (t, 3H, 3JH,H = 7.3 Hz), 1.82 

(sext, 2H, 3JH,H = 7.4 Hz), 2.58 (s, 3H), 2.93 (t, 3H, 3JH,H = 7.4 Hz), 7.27 (t, 

1H, 3JH,H = 7.7 Hz), 7.81–7.89 (m, 2H), 8.27 (t, 4JH,H = 1.7 Hz, 1H) ppm; 
13C NMR (CDCl3, 75.5 MHz): = 11.8, 16.7, 25.1, 26.7, 112.4, 127.5, 129.2, 

137.7, 137.9, 142.6, 197.7 ppm; 125Te NMR (126.2 MHz): = 479 ppm. 

1-[3-(Butyltellanyl)phenyl]ethanone (3g). Pale yellow oil, 49%. Rf (20% 

EtOAc/hexane): 0.75. IR (NaCl): = 1249, 1562, 1681, 2869, 2925, 2955 

cm-1. 1H NMR (CDCl3, 300.13 MHz): = 0.89 (t, 3H, 3JH,H = 7.3 Hz), 1.36–

1.43 (m, 2H), 1.73–1.81 (m, 2H), 2.58 (s, 3H), 2.94 (t, 2H, 3JH,H = 7.6 Hz), 

7.26–7.31 (m, 1H), 7.84–7.86 (m, 2H), 8.27 (s, 1H) ppm; 13C NMR (CDCl3, 

75.5 MHz): = 9.0, 13.5, 25.1, 26.7, 33.9, 112.5, 127.5, 129.3, 137.8, 142.6, 

197.7 ppm; 125Te NMR (126.2 MHz): = 485 ppm. 

Synthesis of racemic alkyltellurium-1-phenylethanols 4a-g 

NaBH4 (0.57 mg, 1.5 mmol) was added in portions to a solution of the 

corresponding telluroketone 3a-g (1 mmol) in dry MeOH (2 mL) under 

nitrogen atmosphere and 0 °C. The mixture was left to warm until room 

temperature and stirred for 1 h. Unreacted hydride excess was destroyed 

adding an aqueous NH4Cl saturated solution (2 mL), and then MeOH was 

evaporated in a rotary evaporator under reduced pressure. The mixture 

was extracted with CH2Cl2 (3 x 10 mL), combing the organic layers that 

were dried over Na2SO4, filtered and concentrated under reduced pressure. 

The reaction crude was purified by column chromatography on silica gel 

(20% EtOAc/hexane), affording the corresponding racemic hydroxy 

tellurides 4a-g employed later for analytical purposes. 

1-[4-(Methyltellanyl)phenyl]ethanol (4a). Pale yellow oil, 75%. Rf (20% 

EtOAc/hexane): 0.36; IR (NaCl): =1086, 1111, 1396, 2925, 2970, 3370 

cm- 1. 1H NMR (CDCl3, 300.13 MHz): = 1.47 (d, 3H, 3JH,H = 6.3 Hz), 2.00 

(brs, 1H), 2.19 (s, 3H), 4.85 (q, 1H, 3JH,H = 6.3 Hz), 7.22 (dd, 2H, 3JHH = 

7.9 Hz, 4JH,H = 1.8 Hz), 7.62 (dd, 2H, 3JH,H = 7.9 Hz, 4JH,H = 1.8 Hz) ppm; 
13C NMR (CDCl3, 75.5 MHz): = –16.4, 25.3, 70.1, 111.1, 126.4, 137.0, 

145.2 ppm; 125Te NMR (126.2 MHz): = 326 ppm. 

1-[4-(Ethyltellanyl)phenyl]ethanol (4b). Pale yellow oil, 92%. Rf (20% 

EtOAc/hexane): 0.36; IR (NaCl): = 750, 968, 1009, 2970, 3324 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): = 1.48 (d, 3H, 3JH,H = 6.5 Hz), 1.65 (t, 2H, 
3JH,H = 6.5 Hz), 1.92 (brs, 1H), 2.87 (q, 2H, 3JH,H = 7.6 Hz), 4.87 (q, 1H, 
3JH,H = 7.6 Hz), 7.23 (dd, 2H, 3JH,H = 8.0 Hz, 4JH,H = 1.9 Hz), 7.70 (dd, 2H, 
3JH,H = 8.0 Hz, 4JH,H = 1.9 Hz) ppm; 13C NMR (CDCl3, 75.5 MHz): = 0.7, 

17.5, 25.3, 70.2, 110.4, 126.4, 138.7, 145.4 ppm; 125Te NMR (126.2 MHz): 

= 527 ppm. 

1-[4-(Propyltellanyl)phenyl]ethanol (4c). Yellow oil, 70%. Rf (20% 

EtOAc/hexane): 0.45; IR (NaCl): = 750, 764, 1274, 2959, 3324 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): = 0.99 (t, 3H, 3JH,H = 7.2 Hz), 1.47 (d, 3H, 
3JH,H = 6.5 Hz), 1.80 (sext, 2H, 3JH,H = 7.2 Hz), 1.93 (brs, OH), 2.88 (t, 2H, 
3JH,H = 7.2 Hz), 4.86 (q, 1H, 3JH,H = 6.5 Hz), 7.21 (dd, 2H, 3JH,H = 8.2 Hz, 
4JH,H = 1.9 Hz), 7.68 (dd, 2H, 3JH,H = 8.2 Hz, 4JH,H = 1.9 Hz) ppm; 13C NMR 

(CDCl3, 75.5 MHz): = 11.4, 16.7, 25.2, 25.3, 70.2, 110.5, 126.4, 138.6, 

145.4 ppm; 125Te NMR (126.2 MHz): = 454 ppm. 

1-[4-(Butyltellanyl)phenyl]ethanol (4d). Pale yellow oil, 89%. Rf (10% 

EtOAc/hexane): 0.22; IR (NaCl): = 764, 1010, 1261, 2959, 3336 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): =  0.91 (t, 3H, 3JH,H = 7.2 Hz), 1.35–1.47 (m, 

2H), 1.73 (d, 3H, 3JH,H = 6.5), 1.78–1.80 (m, 2H), 2.01 (brs, OH), 2.89 (t, 

2H, 3JH,H = 7.5 Hz), 4.85 (q, 1H, 3JH,H = 6.5 Hz), 7.19 (dd, 2H, 3JH,H = 8.3 

Hz, 4JH,H = 1.8 Hz), 7.68 (dd, 2H, 3JH,H = 8.3 Hz, 4JH,H = 1.8 Hz) ppm; 13C 

NMR (CDCl3, 75.5 MHz): =  8.6, 13.5, 25.2, 25.3, 34.0, 70.2, 110.6, 126.3, 

138.5, 145.3 ppm; 125Te NMR (126.2 MHz): = 461 ppm. 

1-[3-(Ethyltellanyl)phenyl]ethanol (4e). Pale yellow oil, 89%. Rf (20% 

EtOAc/hexane): 0.38; IR (NaCl): = 697, 764, 1275, 2969, 3324 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): = 1.48 (d, 3H, 3JH,H = 6.5 Hz), 1.66 (t, 2H, 
3JH,H = 7.6 Hz), 2.89 (q, 2H, 3JH,H = 7.6 Hz), 4.84 (q, 1H, 3JH,H = 6.5 Hz), 

7.16–7.21 (m, 1H), 7.26–7.29 (m, 1H), 7.59–7.62 (m, 1H), 7.72 (s, 1H) 

ppm; 13C NMR (CDCl3, 75.5 MHz): = 1.2, 17.3, 25.3, 70.2, 112.0, 124.8, 

129.3, 135.4, 137.4, 146.8 ppm; 125Te NMR (126.2 MHz): = 534 ppm. 

1-[3-(Propyltellanyl)phenyl)ethanol (4f). Yellow oil, 79%. Rf (20% 

EtOAc/hexane): 0.50. IR (NaCl): = 697, 764, 1267, 2959, 3323 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): = 0.99 (t, 3H, 3JH,H = 7.4 Hz), 1.48 (d, 3H, 
3JH,H = 6.5), 1.82 (sext, 2H, 3JH,H = 7.4 Hz), 1.94 (brs, OH), 2.90 (t, 2H, 3JH,H 

= 7.4 Hz), 4.84 (q, 1H, 3JH,H = 6.5 Hz), 7.15–7.20 (m, 1H), 7.28–7.29 (m, 

1H), 7.58–7.61 (m, 1H), 7.72 (s, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz): = 

11.4, 16.8, 25.2, 25.3, 70.2, 112.0, 124.7, 129.3, 135.3, 137.2, 146.7 ppm; 
125Te NMR (126.2 MHz): = 469 ppm. 

1-[3-(Butyltellanyl)phenyl]ethanol (4g). Pale yellow oil, 35%. Rf (20% 

EtOAc/hexane): 0.56. IR (NaCl): = 698, 1064, 1267, 2956, 3334 cm-1. 1H 

NMR (CDCl3, 300.13 MHz): = 0.90 (t, 3H, 3JH,H = 7.3 Hz), 1.38–1.41 (m, 

2H), 1.47 (d, 3H, 3JH,H = 6.3 Hz), 1.76–1.79 (m, 2H), 2.04 (brs, 1H), 2.91 

(t, 2H, 3JH,H = 7.7 Hz), 4.83 (q, 1H, 3JH,H = 6.3 Hz), 7.17 (t, 2H, 3JH,H = 7.4 

Hz), 7.36–7.61 (m, 1H), 7.70 (s, 1H) ppm; 13C NMR (CDCl3, 75.5 MHz): = 

8.6, 13.5, 25.2, 25.3, 34.0, 70.1, 124.7, 129.3, 135.2, 137.2, 146.7 ppm; 
125Te NMR (126.2 MHz): =  462 ppm. 

Bioreduction experiments 

ADH-catalyzed reduction experiments were performed in aqueous 

medium (50 mmol L-1 Tris.HCl buffer pH 7.5) using a small quantity of 

dimethylsulfoxide (DMSO, 2.5% v/v) as cosolvent aiming the solubilization 

of telluroketones in aqueous media, all of them containing catalytic 

amounts of NAD+ or NADP+ (10 mmol L-1) depending on the enzyme 

cofactor dependency at 30 °C for 24 h. For cofactor regeneration purposes, 

the usual substrate-coupled method was employed, in which 2-propanol 

(iPrOH, 5% v/v) acted as co-substrate and co-solvent, except for Ras-ADH 

that used the enzyme-coupled approach with glucose and glucose 

dehydrogenase. 

Bioreduction mediated by E. coli/Ras-ADH 

Lyophilized cells of E. coli//Ras-ADH (12 mg), DMSO (15 μL, 2.5% v/v), 1 

mmol L-1 NADP+ (60 μL of a 10 mmol L-1 stock solution), 50 mmol L-1 

glucose (60 μL of a 500 mmol L-1 stock solution) and glucose 

dehydrogenase (10 U) were added into an Eppendorf tube containing 

telluroketones 3a-g (25 mmol L-1) in a 50 mmol L-1 Tris.HCl buffer pH 7.5 

(420 μL). The reaction was shaken at 30 °C and 250 rpm for 24 h, and 

after this time, the mixture was extracted with ethyl acetate (3 x 500 μL). 

The organic layers were separated by centrifugation (2 min, 5700 rpm), 

combined and finally dried over Na2SO4. An aliquot was taken to inject in 

the GC for the measurement of conversion and enantiomeric excess 

values. 

Bioreduction mediated by E. coli/Lb-ADH 

Lyophilized cells of E. coli/Lb-ADH (12 mg), iPrOH (30 μL, 5% v/v), 1 mmol 

L-1 NADP+ (60 μL of a 10 mmol L-1 stock solution) and 10 mmol L-1 MgCl2 

(60 μL of a 100 mmol L-1 stock solution) were added into an Eppendorf 

tube containing telluroketones 3a-g (25 mmol L-1) in a 50 mmol L-1 Tris.HCl 

buffer pH 7.5 (480 μL). The reaction was shaken at 30 °C and 250 rpm for 

24 h, and after this time, the mixture was extracted with ethyl acetate (3 x 

500 μL). The organic layers were separated by centrifugation (2 min, 5700 
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rpm), combined and finally dried over Na2SO4. An aliquot was taken to 

inject in the GC for the measurement of conversion and enantiomeric 

excess values. 

Bioreduction mediated by E. coli/Sy-ADH, E. coli/TeS-ADH and E. 

coli/ADH-T  

Lyophilized cells of E. coli/ADH (12 mg), iPrOH (30 μL, 5% v/v) and 1 mmol 

L-1 NADP+ (60 μL of a 10 mmol L-1 stock solution) were added into an 

Eppendorf tube containing telluroketones 3a-g (25 mmol L-1) in a 50 mmol 

L-1 Tris.HCl buffer pH 7.5 (510 μL). The reaction was shaken at 30 °C and 

250 rpm for 24 h, and after this time, the mixture was extracted with ethyl 

acetate (3 x 500 μL). The organic layers were separated by centrifugation 

(2 min, 5700 rpm), combined and finally dried over Na2SO4. An aliquot was 

taken to inject in the GC for the measurement of conversion and 

enantiomeric excess values. 

Bioreduction mediated by E. coli/ADH-A 

Lyophilized cells of E. coli/ADH-A (12 mg), iPrOH (30 μL, 5% v/v) and 1 

mmol L-1 NAD+ (60 μL of a 10 mmol L-1 stock solution) were added into an 

Eppendorf tube containing telluroketones 3a-g (25 mmol L-1) in a 50 mM 

Tris.HCl buffer pH 7.5 (510 μL). The reaction was shaken at 30 °C and 250 

rpm for 24 h, and after this time, the mixture was extracted with ethyl 

acetate (3 x 500 μL). The organic layers were separated by centrifugation 

(2 min, 5700 rpm), combined and finally dried over Na2SO4. An aliquot was 

taken to inject in the GC for the measurement of conversion and 

enantiomeric excess values. 

Bioreduction mediated by evo-1.1.200 

Commercially available evo-1.1.200 (10 mg), iPrOH (25 μL, 5% v/v), 1 

mmol L-1 NAD+ (50 μL of a 10 mmol L-1 stock solution) and 10 mmol L-1 

MgCl2 (50 μL of a 100 mmol L-1 stock solution) were added into an 

Eppendorf tube containing telluroketones 3a-g (25 mmol L-1) in a 50 mM 

Tris.HCl buffer pH 7.5 (325 μL). The reaction was shaken at 30 °C and 250 

rpm for 24 h, and after this time, the mixture was extracted with ethyl 

acetate (3 x 500 μL). The organic layers were separated by centrifugation 

(2 min, 5700 rpm), combined and finally dried over Na2SO4. An aliquot was 

taken to inject in the GC for the measurement of conversion and 

enantiomeric excess values. 

Derivatization of optically active hydroxy tellurides (4a-g) into 1-

phenylethanol for enantiomeric excess measurements 

Enantiomeric excesses (ee) values were determined using an Agilent 

6890A GC-system equipped with a chiral stationary phase Chirasil β-Dex 

column (25 m x 0.25 mm, 0.25 μm), after treatment of the hydroxy telluride 

samples with tBuLi for the removal of the tellurium moiety (“TeR”) at the 

aromatic ring. For this purpose, a solution of tBuLi in pentane 1.9 mmol L-

1 (0.195 mmol, 100 μL) was added dropwise to a solution of optically active 

hydroxy telluride 4a-g (approximately 0.015 mmol) in dry THF (200 μL) 

under nitrogen atmosphere at -78 °C. The mixture was left to warm until 

0 °C and stirred for 2 h and after this period unreacted tBuLi was destroyed 

adding brine (300 μL). The mixture was extracted with EtOAc (2 x 250 μL), 

the organic layers separated by centrifugation (1 min, 5700 rpm), 

combined and finally dried over Na2SO4. Then, an aliquot was promptly 

analyzed in the GC (see the Supporting Information for further details). 

Semi-preparative bioreduction of 3b into (S)-4b mediated by Ras-

ADH 

Lyophilized cells of E. coli//Ras-ADH (290 mg), DMSO (362 μL, 2.5% v/v), 

1 mmol L-1 NADP+ (1.45 mL of a 10 mmol L-1 stock solution), 50 mmol L-1 

glucose (1.45 mL of a 500 mmol L-1 stock solution) and glucose 

dehydrogenase (10 U) were added into an Erlenmeyer flask containing 

telluro-acetophenone 3b (100 mg, 0.36 mmol, 25 mmol L-1) in a 50 mmol 

L-1 Tris.HCl buffer pH 7.5 (10 mL). The reaction was shaken at 30 °C and 

250 rpm for 24 h, and after this time, the mixture was extracted with ethyl 

acetate (3 x 500 μL). The organic layers were combined, dried over 

Na2SO4 and filtered. The resulting reaction crude was purified by column 

chromatography on silica gel (20% EtOAc/hexane), affording (S)-(–)-4b 

[42% isolated yield and >99% ee, []D20 = –10.2 (c = 2.0, CHCl3)]. 
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A series of telluro-acetophenones has been chemically synthesized and later reduced using alcohol dehydrogenases of complementary 

selectivity. Therefore, (R) and (S)-hydroxy tellurides have been obtained in good to excellent optical purities under mild reaction 

conditions in aqueous medium. 

 


