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Abstract—This paper proposes a fusion method to estimate
the low frequency impedance of Lithium-Ion batteries by using
excitation signals. The proposed excitation is delivered by the
converter used for the interface of the battery. The fusion method
is conducted in two steps. Firstly, the impedance is estimated by
using a frequency method known as vector fitting. Despite its high
accuracy, it has a moderate computational burden that makes it
difficult to use in real-time application running on the embedded
systems often used for battery and converter control. For that
reason, in a second stage, recursive least squares algorithm will
be used for the parameter estimation in real-time. The discussion
includes not only the methods description and testing, but also
the effects of the data used for the estimation (terminal current
and voltage) as well as the discretization method used for the
digital implementation. The proposal is validated by simulation
and with preliminary experimental results.

I. INTRODUCTION

Thank to the economy of scale, Lithium-Ion batteries have
become a competitive technology in the market while their
price keep decreasing [1]. One of the critical parts of the
battery that has a clear impact on its performance is the inner
impedance. Power management, state of charge (SoC), state
of health (SoH) are all affected by this impedance [1]. In
most applications, the battery cells are connected in series
or parallel, forming the battery pack which is plugged to
a converter. The ultimate goal is to estimate the resulting
impedance using converter-side electrical variables (current
and voltage at the battery terminals).

Different excitation inputs have been used for estimating
the impedance in the literature [2]. DC current pulse injection
is the technique most frequently used for measuring the
impedance and evaluate the degradation. Furthermore, it is the
only one accepted by the current standards for determining the
power capability in Lithium-Ion batteries [3], [4]. The obtained
impedance is also sensitive to the amplitude and pulse width
[4] and its frequency resolution [5]. The discussion presented
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in this paper evaluates how both properties impact on the final
results.

The inner parameters depend on battery operation condition
and they change with aging, triggering the need for estimating
them online. Regarding online estimation techniques, different
adaptive filtering methods have been successfully implemented
in the modeling of unknown systems [6]. A complete review
can be found in [7], [8]. Kalman filter is widely used in
state estimation, however it has a complex computation and
becomes quite difficult to be tuned when parameters and
states have to be estimated simultaneously [9]. Different fusion
techniques have been proposed for solving the problem of
estimating both parameters and states at the same time [9].
This paper presents a novel fusion method which initializes the
parameters with a frequency method known as vector fitting
(VF), and uses the recursive least squares (RLS) algorithm
for both estimating the states and the parameters in real time.
Furthermore, a more accurate model which consists of two RC
branches is considered, rather than the single RC model often
used [10], [11].

VF approximates, first introduced in [12], estimates the
frequency domain response of a transfer function with a fast
and a robust performance. Even if very robust and accurate, the
method has an important computational cost. For that reason,
an RLS approach is used for the real time estimation [8]. It has
to be remarked that the proposed method also considers the
effect of the bidirectional dc/dc power converter needed for
the battery interface, including the effect of the used inductor
filter.

This paper is organized as follows. In Section II the model
proposed for the battery impedance and the discrete transfor-
mation are introduced. In Section III, the parameter estimation
methods and the effects of the input signal parameters, pulse
width and frequency, are analyzed. In Section IV, the simula-
tion and experimental results are exposed. To summarize, the
conclusions obtained are gathered at the end of the paper.

II. SYSTEM MODELING

The chemical reactions that takes place in Lithium-Ion bat-
teries can be modeled by the equivalent circuit shown in Fig.
1 [13]. Rs represents the cabling connections and the inner
resistance of the battery, which performs the electrochemical
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Fig. 1. Battery cell equivalent circuit.

TABLE I
RELATIONSHIP FROM CONTINUOUS TO DISCRETE TRANSFER FUNCTION

SYSTEM

ZOH Bilineal Forward Backward

Ad eATs

(
I + ATs

2

)
·

·
(
I − ATs

2

)−1 (I+
ATs)

(I −ATs)−1

Bd
∫ Ts
0 eAλdλB

(
I − ATs

2

)−1
·

·B
√
Ts

BTs
BTs·

·(I −ATs)−1

Cd C
C
√
Ts·

·
(
I − ATs

2

)−1 C C (I −ATs)−1

Dd D
C
(
I − ATs

2

)−1
·

·BTs
2

+D
D

C (I −ATs)−1 ·
·BTs +D

reaction and it grows with aging [14]. The capacitive effects
located in the surface of the electrode are illustrated by the
first RC branch, whereas the second RC branch represents
the diffusion processes of the electrolyte [14]. The continuous
domain transfer function and state space representation for the
impedance are gathered in (1)-(3).
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1
C1

s− 1
R1C1

+
1
C2

s− 1
R2C2

+Rs

(2)
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0
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1
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∣∣1 1
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In order to conduct the estimation in a digital system, a
discrete approximation for the continuous-domain representa-
tion is needed. Alternatives for the discretization are shown
in Table I, which allows to perform the (2) → (4) transfor-
mation [15]. For this work, the backward transformation is
used as a compromise between precision, stability [15] and
computational costs.

(4)
VC [k + 1] = AdVC [k] +BdIBAT [k]
VzBAT

[k] = CdVC [k] +DdIBAT [k]
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Fig. 2. Scheme for the connection of the converter to the battery terminals.

TABLE II
LITHIUM-ION CELL PARAMETERS

Rs [mΩ] R1 [mΩ] C1 [F] τ1[s] R2 [mΩ] C2 [F] τ2[s]

24 0.06 5630 0.33 8.2 54277 445

III. PARAMETER ESTIMATION

A. Converter Implementation

This work is intended for batteries which are interfaced
by a converter capable of controlling the battery current by
means of a current regulation. From the existing converter
alternatives, a bidirectional dc/dc synchronous boost converter
is considered. This converter is made up of two complementary
switches series connected to which common point the output
filter is connected. From the converter side, current pulses can
be generated to stimulate the battery impedance, as shown in
Fig. 2. The excitation signal has to be sensitive to the response
of the impedance, thus the parameters can be identified in
the frequency and time domain. As a first approach, the
parameters obtained for a Lithium-Ion battery following the
same equivalent circuit model [16] collected in Table II are
used to evaluate the estimation performance by simulation.

B. Methods

1) Vector fitting: VF method seeks to obtain all the param-
eters from the frequency spectrum of the impedance response,
which is obtained from the battery voltage and current. From
the impedance frequency spectrum, the method will find
the coefficients of the transfer function in (5), with closest
frequency spectrum to the impedance one, as formulated in
[17]–[19], where s is the Laplace variable and an the system
poles. According to (1), the impedance consists of two poles
and the E component in (5) is 0, resulting in the transfer
function in (6). The coefficients in (6) are related with the
battery equivalent circuit parameters as stated in (7-11).

(5)f(s) '
N∑

n=1

cn
s− an

+D + sE

(6)
f(s) = C · (sI −A)−1 ·B +D + sE

=
b2s

2 + b1s+ b0
(s+ a1)(s+ a2)

+D
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Fig. 3. a) Current pulse. b) Total battery voltage. c) Impedance battery voltage

(7)Rs = D (8)R1 = b0 −R2 (9)C1 = − 1

R1a1

(10)R2 =
b1 +

1
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b0
−1
a1

+ 1
a2

(11)C2 = − 1
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The VF method obtains the impedance by getting the
frequency response of the current and battery voltage (VBAT ).
The digital implementation could relay on any implementation
of the discrete Fourier transform (DFT). For the estimation,
the DC voltage component VBAT 0 is removed before the
excitation signal starts, in order to isolate the system response
to the applied impulse, as depicted in Fig. 3.

This method is digitally implemented using the following
procedure: 1) a number of samples for the voltage and the
current are captured and saved in two buffers, 2) the frequency
domain transfer function response is obtained by calculating
the DFT for both signals and using the expression (12), and 3)
the VF estimation is launched to obtain the system parameters.
In order to obtain a crisp resolution in the frequency domain,
the different natural frequencies for the system dynamics
have to be captured. According to the definition of frequency
resolution in discrete systems, fres = 1

NTs
, where N is the

number of samples and Ts the sample time, this resolution
should be low enough to identify the large time constants of
the two RC branches. The following section will present a
discussion for the constrains of fres.

(12)Z[f ] =
VZBAT

[f ]

I[f ]

2) Recursive Least squares: The RLS algorithm is an
adaptive filter algorithm which combines the least square
estimation method plus the matrix inversion lemma [20]. As
depicted in Fig. 4, this algorithm seeks to minimize a cost
function, which in this case is (13), by recursively finding the
coefficients of the system (3) using a forgetting factor λ and
a weighted covariance matrix P . In this case, not only the
coefficients (3) but also the states, have to be estimated since
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Fig. 4. Adaptive algorithm RLS scheme.

they are not observable. The final system equation is expressed
as (15). There will be added further considerations due to
the unobservable states before launching the RLS algorithm
which are presented down below. The method is gathered in
Algorithm 1, where the parameters are solved as in (16-18)
following the Backward discrete transformation.

(13)
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(17)C1 =
Tsw11

w13
, C2 =

Tsw22

w23

(18)Rs = w33 − w23 − w13

As shown in (13)-(18), the RLS method needs to estimate
five parameters and two unobservable states only using two
measured variables (battery terminal voltage and current). In
order to reduce the order or the problem, a novel approach
using a multi-resolution technique is applied. The system is a
second order system, which can be split into two equivalent
two first order system in series, with two different time
constants for their corresponding poles. Fig. 5 represents the
response of a current pulse train and the total voltage of the
impedance (VzBAT

) and the hidden capacitance voltages (VC1,
VC2). As it can be seen, the first branch voltage maintains the
value within a range, whereas the second branch has a larger
time constant with an increasing trend for positive values of the
average battery current. Notice that when there is no current,
the second branch barely varies their voltage for this time
interval, so it will be assumed to be constant.

Following the previous assumptions, the real-time estima-
tion is conducted by using the three main steps represented
in Fig. 6. Firstly, the parameters are initialized with the
ones obtained in the VF method and the series resistance
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Fig. 5. Battery current and voltages: a) Current (measured) b) Voltage
(measured) c) VC1 (unobservable) d) VC2 (unobservable).

is estimated every time a falling (IFE) or rising edge (IRE)
in the current occurs (line 8 of Algorithm 1). The branches
estimation is held during one cycle in order to determine
an approximate value of the minimum voltage of the first
branch V̂C1min, as depicted in Fig. 6. This is the key point to
decouple both voltage branches. Every time an IRE occurs,
the estimated V̂C1 voltage is compared to V̂C1min and if it
is out of a 20% range of its value, is back initialized with
V̂C1min (line 11).

Finally, the second branch voltage, V̂C2, is estimated con-
sidering two main assumptions: 1) In the interval [IRE [k] −
IFE [k], the slope of VC2 (∆V̂C2) is considered to be constant
and almost equal to the one during the previous interval,
[IRE [k− 1]− IFE [k− 1], and 2) Between [IFE [k]− IRE [k],
the value of VC2 remains constant. The step 3 is described as
follows: At IRE , V̂C2 is initialized by using (19). From this
point, the slope between the actual rising edge, IRE [k], and
the previous one, IRE [k − 1], can be determined. Assuming
the V̂C2 evolves with the slope of the previous pulse, the
V̂C2 voltage can be determined for the current pulse (line
16). As explained before, when the current vanishes to zero,
V̂C2 remains constant. Fig. 6 represents the explained decouple
voltage stages, where step 1 is repeated every IFE and IRE

and step 2 and 3 update the variables every IRE occurs.

(19)V̂C2kTw = VzBAT
− V̂C1 − IR̂s k

C. Input signal

1) Time domain: For the RLS implementation, the shape
of the input signal current has to be selected so the output
voltage is sensible to the parameters sought to be estimated.
For determining the influence of the input signal, a simulation
is conducted in which all the states are made observable, so

Algorithm 1 Proposed RLS method.
1: λ = 0.998; I = eye(3); Pk−1 = 106 · I;
2: V̂ c[2][2]; XRLS [3][1]; WRLS [3][3]; v2 k[1][2];
V̂C2kTw

[1][2];
3: Rs est[0], R1 est[0], R2 est[0], C1 est[0], C2 est[0];
4: Wk−1RLS = [Ad[0], Bd[0];Cd[0], Dd[0]];
5: nIRE = 0; IRE ref = In

2 ; V̂c1min = 0;
6: for k = 2, 3... do
7: IRE = I[k − 1]− I[k];

//Update Rsk (Step 1)
8: if abs(IRE) > IREref then
9: Rk s =

VZBAT
[k]−VZBAT

[k−1]
I[k]−I[k−1]

10: end if
//Maintain V̂C1 within its range (Step 2)

11: if IRE > IREref then
12: if |V̂C1min−V̂ c[1,2]|

V̂ c[1,2]
· 100 > 20% then

13: V̂ c(1, 1) = V̂C1min;
14: end if
15: V̂C2kTw [1, 1] = VZBAT

[k]−Rk s ∗ I[k]− V̂ c[1, 1];
//Update ∆V tC2 (Step 3)

16: if nIRE > 0 then
17: ∆VC2 = V̂C2kTw

[1, 1]− V̂C2kTw
[1, 2];

18: ∆V tC2 = ∆VC2/Tpw;
19: dt = 0;
20: if nIRE == 1 then
21: V̂C1min = VZBAT

[k]−Rk s ∗ I[k];
22: end if
23: end if
24: nIRE + +;
25: end if
26: if I[k] > IREref then
27: dt = dt+ Ts;
28: V̂C2k[1, 1] = ∆V tC2 · dt+ V̂C2kTw

[1, 1];
29: else
30: V̂C2k[1, 1] = V̂C2k[1, 2];
31: end if
32: V̂ c[2, 1] = V̂C2k[1, 1];
33: V̂ c[1, 1] = VZBAT

[k]−Rk s · I[k]− V̂ c[2, 1];

34: XRLS =

∣∣∣∣∣∣
V̂ c[1, 2]

V̂ c[2, 2]
I[k − 1]

∣∣∣∣∣∣ ;
//RLS Algorithm

35: if nIRE > 1 then

36: ek =

∣∣∣∣∣∣
V̂ c[1, 1]

V̂ c[2, 1]
VZBAT

[k − 1]

∣∣∣∣∣∣−Wk−1RLSXRLS ;

37: gk = Pk−1XRLS [λ+XT
RLSPk−1XRLS ];

38: Pk = λ−1Pk−1 − gkXT
RLSλ

−1Pk−1;
39: wRLS = Wk−1RLS + ekgk;
40: Pk−1 = Pk;
41: Wk−1 = Wk;
42: end if
43: V̂ c[:, 2] = V̂ c[:, 1];
44: V̂C2kTw

[1, 2] = V̂C2kTw
[1, 1];

45: end for
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Fig. 7. Estimation error in terms of pulse width (Tpw) for the RLS method.

the obtained error is only due to the signal itself. The width
of the pulse (Tpw) and the simulation length (tend) are varied.
Each parameter error is represented in Fig. 7. The second RC
branch has a larger time constant τ and it requires a longer
time to obtain a the voltage evolution to identify it. Clearly,
a higher Tpw and tend results in a better estimation for both
RC branches.

2) Frequency domain: The requirement for this domain, in
which the VF method is implemented, are slightly different
regarding the excitation signal. In the literature, three main
input signals are commonly used: chirp [2], train of pulses
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Fig. 8. Pulse in time and frequency domain for two different Tpw .

[5] or a single pulse [4]. The chirp signal has a constant
magnitude over the frequency range it covers. The train of
pulses will only cover the odd harmonics starting from the
main frequency of the signal. This paper is focused on the
low frequency range, thus, the pulse response will be enough
for obtaining the response at that range. In order to examine
only the impedance, the initial voltage VBAT 0 is subtracted
as it has been previously mentioned.

Fig. 8 shows the module of the DFT response of two
pulse signals with same amplitude and a Tpw of 1s and 2s
respectively. This module vanishes to zero at 1/Tpw and its
harmonics, and also, the zero-frecuency value is proportional
to Tpw: It is doubled when Tpw has twice the width. Since
the impedance estimation requires to divide the frequency
domain values of the voltage by the current, frequencies at
zero-crossing points have to be removed from the estimation.
Estimation results for different fres and pulse widths are
presented in Fig. 9, where it can be observed that a lower
Tpw and fres values enhance the results. Tpw up to 3 s and
fres = 0.7 mHz give good results, corresponding with three
times the second RC time constant.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulation results

The simulation results are presented herein. Both methods
will be evaluated considering the parameters of Table II.

1) VF results: Firstly, the simulated cell battery response
is obtained. The VF method is evaluated by analyzing the
response after a current pulse with a Tpw of 1 s and a fres of
0.4 mHz. In Fig. 10a and 10b, the module of the frequency
response for the current and the voltage are shown and from
their division, the real impedance response is calculated. The
real and estimated impedance is gathered in Fig. 10a and the
results are collected in Table III.

2) RLS results: From the signal processed by the VF, the
initial parameters for the RLS implementation are obtained.
The parameters are listed in Table II. A sampling frequency
of 10 Hz and Tpw = 4 s have been selected. The forgetting
factor λ has been set to 0.999 for the estimation and the
initial covariance P to 106 by the identity matrix of (13).
The parameter estimation has been achieved within 100 s, as
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it can be observed in Fig. 11, which is less than four times
the second RC time response. Fig. 12 presents the theoretical
responses compared to the ones with the estimated parameters.
The mean values of the estimation results of the last 100 s
are gathered in Table III. The results are in good agreement
for the first branch whereas they show noticeable deviations
for the value of the capacitance of the second branch due to
the inexact decoupling of both branch voltages and difference
between VC2 and V̂C2. Despite this inaccuracies, it can be seen

TABLE III
SIMULATION RESULTS

Rs[mΩ] R1[mΩ] C1[F] R2[mΩ] C2[F]

VF 24.2 0.64 5626 8.1 55018
error[%] 0.004 0.14 0.07 1.37 1.36

RLS 24.2 0.71 5432 9.8 72237
error[%] 0.1 11 3.5 19 33
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in Fig. 12d that the estimated voltage tracks the real one.



B. Experimental results

The experimental setup is shown in Fig. 13. The cell
type used in the setup is a 26650 LPF cell with a capac-
ity of 3.2 Ah and nominal voltage of 3.2 V. The battery
pack is built by series connection of 8 cells. The battery
terminals are connected to a bidirectional source Regatron
TC.ACS.30.528.4WR.S.LC that controls the output voltage
with an accuracy of 0.1 mV. The inner filter is unknown. The
battery can be connected/disconnected to the source manually
by a remote switch.

The data required for the estimation is acquired with a data
acquisition system from National Instruments, NI 9205. These
modules are capable to reach a resolution up to 0.2 mV. The
cells are connected to the measurement modules by means of
a non-isolated probes for the cell voltage, a 600 V CAT III
current probe and a LEM voltage sensor LV-25 for measuring
the overall battery pack voltage.

ACS
SOURCE

VOLTAGE 
MEASUREMENT
 MODULES

VOLTAGE SENSOR BATTERY PACK

CONTACTOR
SWITCH

24 V, ± 15 V SOURCE

CONTACTOR

CURRENT PROBE

SOURCE

Fig. 13. Setup used for the experimental results.

1) VF estimation: Following the same steps than for
the simulation results, first the frequency response of the
impedance is obtained. For this purpose, a 2 s voltage pulse
with a magnitude equal to −3 V with respect to the battery
pack voltage is injected and right after forced to zero, so the
natural response of the battery can be obtained. The test last
45 min with a sampling time of 90 kHz. The high sample rate
is required to avoid aliasing due to the switching harmonics
delivered by the power converter. A noticeable reduction
can be achieved if antialiasing filters are used for an online
implementation. For a reduction of the number of samples, a
pre-processing digital signal stage composed by a digital low-
pass filter using a second order butterworth filter with a cut-off
frequency of 100 Hz and a subsequent downsampling down
to 2 kHz is applied. After the preprocessing is finished, a final
fres of 0.8 mHz and a Ts of 0.25 s are obtained.

Fig. 14 depicts the response of a cell battery. It can be
observed that the converter noise becomes noticeable. Consid-
ering the impedance is measured at frequencies far from the
switching harmonics, the response is filtered with a fifth order
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Fig. 14. Experimental results. VF response of the experimental test. a)
Real (blue) and filtered(red) current. b) Real(blue) , filtered(red)and estimated
(yellow) cell voltage. c) DFT of the filtered current signal. d) DFT of the
filtered voltage.

0

0.2

0.4

a)
 Z

 [
] Meas

Est

0 0.5 1 1.5 2
f [Hz]

0
100
200

b)
 E

rr
or

 [
%

]

0 0.005 0.01
0

0.2
0.4

Fig. 15. Experimental results. a) Module in the frequency domain. b) Error
between the experimental and estimated response.

low-pass-butterworth filter having a 0.1 Hz cutoff frequency,
and the signal is resampled by a factor of 1/100. The resulting
impedance module in frequency domain is shown in Fig. 15a,
both for the measured and the estimated parameters collected
in Table IV. The mean error over the depicted range is below 1
%, which means that the estimated parameters are valid. The
error peaks that can be observed are due to the measurement
noise at those frequencies close to the 1/Tpw harmonics, as it
can be observed in Fig. 15b.

It has to be remarked that for the experimental results, only
the VF method has been implemented. This is becasue the used
power source does not have current-control capability. That
means, the excitation pulses are delivered as voltage pulses,
being the resulting current distorted by the output filter. That
makes the estimation too noisy and not comparable with the
results obtained in simulations.

TABLE IV
EXPERIMENTAL RESULTS

Rs[mΩ] R1[mΩ] C1[F] R2[mΩ] C2[F]

VF 46.8 0.008 341 1.3 5600



V. CONCLUSION

The presented paper exposed a novel method that estimates
the inner impedance of a battery and the inner states in real
time using a current-pulse delivered by the converter. The pa-
rameters are initialized by means of a frequency method (VF),
whereas the estimation in real time is performed by an RLS
adaptive filter. Not only the method has been implemented but
also some key input properties that enhance the final results
have been remarked. Furthermore, the results are validated
using a 3.2 Ah module which consists of 8 26650 Lithium
Iron Phosphate (LFP) cells in series.
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