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Chemical bonding from the statistics of the

electron distribution

A. Mart́ın Pendás∗ and E. Francisco∗

Abstract

An introduction to the theory of chemical bonding from the point of view of the
statistics of the electron distribution is presented. When atoms bind to form a
molecule, their originally fixed number of electrons ceases to be a well-defined
observable, and this implies that their in-the-molecule electron populations fluc-
tuate. If a chemically meaningful definition of an atom in a molecule is assumed,
the probabilities of finding a given number of electrons in each of the atoms com-
prising the molecule can be computed. We show in this review how the complete
electron distribution function (EDF) can be used to reconstruct the basic con-
cepts and quantities used in chemical bonding without recourse to the orbital
paradigm. From the statistical point of view, which inherits Born’s probabilis-
tic interpretation of quantum mechanics, a set of atoms are bonded when their
electron populations are mutually dependent. We quantify this statistical de-
pendence by the cumulant moments of the EDF, which provide a consistent
description of both two- and multi-center bonding. Particular attention is paid
to building EDFs from model wavefunctions. With this, a simple bridge with
orbital thinking is built. The statistical interpretation allows to easily classify
all possible bonds of a given kind. We show that there are vast unexplored
territories that should receive due consideration. Although building EDFs from
models is easy and very instructive, the contrary is considerably more difficult.
Recipes to extract chemical information from computed EDFs are also reviewed
and, in all the cases, simple toy systems are used to show how the methodology
works, allowing non-experts to follow easily the presentation.

1 Introduction

The theory of the chemical bond is inextricably linked to the development of
quantum mechanics. After Heitler and London’s paper [1] on the dihydrogen
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molecule was published, it turned out clear that the basic framework to under-
stand chemical phenomena within physics had been discovered. In the years to
come, the work of Lewis (who had introduced the electron pair well before the
advent of the modern quantum theory), Pauling, Slater, Mulliken, and many
others shaped what we now know as theoretical chemistry. Given the depen-
dence of this new discipline on calculation, the computational efficiency of the
molecular orbital (MO) scheme advocated by Mulliken over the more cumber-
some valence bond (VB) alternative of Heitler and London spread by Pauling
led the MO paradigm to overwhelmingly dominate the field. Within the MO
theory, the simplest mean-field or single-determinant (SD) approximation leads
to the one-electron states that will have soon been used during a century to ra-
tionalize the chemical bond. In this picture, atoms lose their identity as a result
of molecular orbitals being generally delocalized over the molecular space. As a
result, different methods [2, 3] have been proposed over the years to reintroduce
the atom into theoretical chemistry. Once the atom is back, a molecule may be
seen as a set of interacting atoms, much like in the phenomenological atomistic
simulations popular in physics [4].

Be that as it may, the deep roots of chemical bonding theory are still a source
of bitter disputes among different schools. Some of them focus on the role of
quantum mechanical interference [5], others on the buildup of electron density
in internuclear regions [6], or on the decrease in the kinetic energy density
accompanying bond formation [7], to cite just a few. Although every chemist
learns soon about Born’s [8] statistical interpretation of quantum mechanics,
and the cloud image of the square of an orbital as a probability density has
become ubiquitous, it is surprising that not much effort has been devoted to
understand the chemical bond in statistical (or probabilistic) terms.

There are several simple clues that support the existence of such a proba-
bilistic interpretation. It is for instance well known that the bonding glue is
exchange [9], and that no bonding can exist in an orbital picture without over-
lap. Since to define a traditional chemical bond we need at least two interacting
atoms A and B, it is not hard to understand that exchange, or overlap, among
the electrons located originally on the non-interacting atoms leads to delocal-
ization: electrons originally seen on A may now be located on B. For instance,
binding of a H atom to a proton to form the H +

2 cation, possibly the simplest
chemical species, implies that the electron has delocalized over the two nuclei.
The probability of finding the electron in each of the atoms has changed from
(1, 0) to (0.5, 0.5).

In a more mathematical language, delocalization is a consequence of the ex-
pansion of the Hilbert space following the interaction of A and B, e.g. the
isolated B system characterized by NB electrons lives now in an expanded
space with up to NA + NB electrons when considered as a subsystem of the
AB molecule. Our standpoint in this review is that this delocalization can be
monitored as a signature of bonding. If two atoms are bonded, their electron
populations must necessarily fluctuate as a result of the delocalization of their
electrons. As we intend to show, the statistics of electron populations provides
a refreshing new perspective of chemical bonding in which Born’s probabilistic
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interpretation is directly introduced in the chemical language.
As we will see, the probabilistic view is able to encode equally two- and mul-

ticenter bonding, providing descriptors for the latter which are intimately linked
with indicators successfully used over the years [10–15]. Unlike in other frame-
works, the statistical image unifies all types of bonding in terms of two- or many-
center population fluctuations. Moreover, it provides hierarchical classification
schemes. All possible fluctuation types can be categorized, something that is
not easy with other methodologies. This expands considerably the chemical
bonding landscape, allowing to understand exotic bonding situations on equal
footing with standard ones. For instance, the statistical treatment allows to ex-
amine the connection between seemingly independent phenomena like bonding
and entanglement. Moreover, statistical descriptors of bonding (i.e. statistical
bond orders) are directly related to the system’s energetics. This already known
link [16, 17] is extremely important, for it provides a rigorous tool to estimate
the energetic strength of a given bond.

Finally, the statistical perspective presented here provides a valuable toolbox
for constructing models. These are much easier to build than in MO theory, and
provide a nice playground in which to examine when this or that situation may
be found in a real system. Models are also important for instructional purposes.

The aim of this review is to present in a unified manner the statistical de-
scription of chemical bonding. Although all the material that will be presented
can be already found dispersed in several works [18–23], no single logically con-
sistent account exists. We have decided to focus on models and to provide
an example-assisted presentation, since formal accounts severely limit the po-
tential audience of our conclusions. The basis of the statistical theory of the
chemical bond (STCB in the following) is the construction of the electron dis-
tribution function (EDF) [19, 23]. The EDF for a system of N electrons and
m nuclei is the probability distribution of a partition S = (n1, n2, . . . , nm),
n1 + n2 + · · ·+ nm = N of the electrons in the available nuclei, p(S). The spin
of each electron can also be specified. We talk then of a spin-resolved EDF. It
is clear that EDFs imply that atoms-in-the-molecule (AIMs) have been intro-
duced by whatever means. Most of the available definitions of AIMs are easily
implemented [24], from that provided by Mulliken’s prescription to the quantum
theory of atoms in molecules (QTAIM) of Bader and coworkers [3]. Although
we prefer the latter to show production results, all the insights are independent
of the particular AIM implementation, so that we will turn to Mulliken’s for
many models and examples.

We start by briefly considering how an EDF is rigorously obtained and how
it can be approximated by back of the envelope calculations. Then we will
characterize two-, three– and general multi-center bonds from simple models and
switch to the inverse problem, characterizing chemical bonds from computed
EDFs. We will end the presentation with some conclusions. A number of
more detailed mathematical derivations as well as a few specific points that
may be difficult to grasp for the non-specialist can be found in the supporting
information.
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2 Electron distribution functions

The probability of finding a partition S = (n1, n2, . . . , nm) of an N electron
system described by the wavefunction Ψ(1, N) into m atoms can be found as
[19]

p(S) = P
∫
D

Ψ∗Ψdx1x2 · · · dxN , (1)

where xi is a spin-spatial coordinate for electron i, P = N !/(n1! . . . nm!) is an
indistinguishability combinatorial factor, and D is a domain in which the first
n1 electrons are projected (integrated) onto atom one, the second n2 electrons
onto atom two, etc. If the spin coordinates are not summed up, then we arrive
at a spin-resolved partitition [20], in which we specify also the ms value of each

electron and S ≡ {nα1 , nα2 , . . . , nαm;nβ1 , n
β
2 , . . . , n

β
m}. The projection (integration)

procedure for different definitions of AIMs can be unified through the use of
atomic weight functions [24]. We will consider here only Mulliken’s projection,
which is convenient in modelling, and QTAIM integration, in which the above
integration is simply done over the real space atomic domains Ωi.

Although algorithms to compute EDFs in the case of correlated wavefunc-
tions are known [19], it is in the SD case when back of the envelope cal-
culations can be performed with simple models to gain chemical insight. If
Ψ(1, N) = (N !)−1/2det |χ1(1) . . . χN (N)|, where χ1, . . . , χN are the N occu-
pied molecular spinorbitals (MSO), the probability of a partition S is simply
given by [25]

p(S) = N
∑

{kj}∈SN

det
[
S
b(kj)
ij

]
. (2)

where N = P/N !, SN is the set of N ! permutations of the 1 . . . N set, {kj} ≡
{k1, . . . , kN} is one of these permutations, and the overlap integral between
primitives χi and χj are projected over the atoms in the order that leads to the
partition S subjected to permutation kj . The procedure will become clear in
the following.

The projected overlap integrals are defined as Sbij =
∫
b
χi(x)χj(x)dx. If

we use QTAIM atoms,
∫
b
≡
∫

Ωb
. If we perform a Mulliken projection and

spinorbitals are expanded in a minimal basis, χi =
∑
j c
i
jφj , then

Sbij =
∑
k

∑
l

cikc
j
l 〈φk|φl〉b, (3)

where the last scalar product is the share of the primitive overlap in atom b,
which may be defined in multiple ways. In the zero differential overlap (ZDO)
approximation that we will use in modelling this can just be written as

Sbij =
∑
k∈b

∑
l∈b

cikc
j
l 〈φk|φl〉. (4)

These sums can be evaluated immediately from model orbitals, as we will show.
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Notice that if spinorbitals in Ψ(1, N) are ordered by spin, so that all α χ’s
come before the β ones, the overlap determinants in Eq. 2 are spin-block diag-
onal, so that the probability distribution can be written as the product of inde-
pendent distributions for the α and β sets: p = pα⊗pβ . At the one-determinant
level, alpha electrons are statistically independent from beta electrons. As we
will see, this is the statistical basis for the Lewis pair. Moreover, in closed shells
pα = pβ . This property is very valuable in reducing the algebraic work when
working with models.

Once the EDF is known, all kind of statistical measures can be obtained from
it. We can, for instance, construct marginal distributions from the full joint one.
As an example, the one atom distribution p(n1) gives the probability of finding a
given number of electrons in atom 1, p(n1) =

∑
n2,...,nm

p(n1, n2, . . . , nm). This
is a measure of its entanglement with the rest of the system, and its Shannon
entropy

∑
i p(i)log2(p(i)) does only vanish if the atom is isolated. Moreover, its

first moment 〈n1〉 =
∑
i i×p(i) gives the standard atomic population. As we will

show, two-, and in general, n-atom marginals provide information about multi-
center bonding through the several central or cumulant (see below) moments of
the distributions. Since the number of elements in a given distribution is lim-
ited, the several marginal distributions that we will be using can be exhaustively
classified. For instance, a two-atom (two-center), two-electron distribution has
only three different electron partitions: two electrons in the first atom, none in
the second, one and one, none and two. Given that the sum of the three proba-
bilities add to one, any 2c,2e distribution can be classified using two parameters.
This is the basis for the classification of links that will be presented.

3 The two center bond

We sample here the most important type of chemical bond, in which only two
atomic centers are involved. We intend to work out several examples from
scratch, laying the grounds for more interesting situations that will be delayed
to subsequent sections. We start by examining the two-center one-electron bond.

3.1 The 2c,1e bond

Although the consideration of this type of link is not usually found in freshman
chemistry courses (the Lewis pair is to blame), there is no doubt that much can
be learned from the molecular hydrogen cation, H +

2 . Let us set up our model:
with one electron, the EDF has two components: p(1, 0), the probability of
finding the electron on the left H, Ha, and p(1, 0), that of finding it on the right
H, Hb. Symmetry dictates the solution, so that each of them needs be equal to
1/2. Let us, however, build the solution from the bottom up through Eq. 2.

To do that, we need a model wavefunction determinant, equal in this case
to the electron’s orbital. Using a minimal basis set formed up from two 1s func-
tions, σg = (1sa + 1sb)/

√
2(1 + s), where s is 〈1sa|1sb〉. In the ZDO approxi-

mation, σg ≈ (1sa+ 1sb)/
√

2, and Sa = c2a = 1/2, Sb = c2b = 1/2. This holds by
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symmetry whatever atomic partition we use. Then Eq. 2 reads p(na = 1, nb =
0) = Sa = 1/2, p(na = 0, nb = 1) = Sa = 1/2, as expected. It is clear that the
average number of electrons in each H atom equals 1/2 = 0×p(0, 1)+1×p(1, 0),
and that the electron population fluctuates, the electron is delocalized between
the two atoms. Taking a large number of snapshots, half the frames will show
the electron in atom a, half in b. A measure of this fluctuation is the covariance
of the distribution, cov(na, nb) = 〈(na − n̄a)(nb − n̄b)〉, where n̄a = 〈na〉. Using
the EDF,

cov(na, nb) =
∑
na,nb

(na − n̄a)(nb − n̄b)× p(na, nb). (5)

For a bivariate distribution, a vanishing covariance implies that the two
electron populations are independent, i.e. that p(na, nb) = p(na)p(nb). In
the present case, the covariance is immediately computed as cov(na, nb) =
1
2 (1− 1

2 )(− 1
2 ) + 1

2 (− 1
2 )(1− 1

2 ) = − 1
4 . Let us build for convenience the quantity

δab ≡ δ(a, b) = −2cov(na, nb). Its value equals 1/2 in this case, which is the
conventional bond order associated to a 2c,1e bond. Scheme 1 illustrates these
ideas.

σg

a b
p(1, 0) = 1

2

p(0, 1) = 1
2δab = 1

2

Scheme 1: The 2c,1e bond in H+
2

The scaled covariance just defined is known in the literature as the delocaliza-
tion index (DI) [10, 13, 14], and can be obtained from the exchange-correlation
density without recourse to the EDF concept. It has been used as a measure
of the covalent bond order, and is intimately related to the covalent component
of the interaction energy between two atoms [26]. As we can see, δ will remain
equal to 1/2 in H +

2 up to dissociation inasmuch the electron remains described
by the symmetric σg function. The DI is thus a measure of the spatial entan-
glement of the electron. The quantity that is associated to bond order uncovers
spatial quantum mechanical entanglement. The DI in a two center system is
semipositive definite, since an increase in the electron population of one atom
is necessarily followed by a decrease in the other. We will see that this needs
not be the case in more general situations.

Let us now introduce an electronegativity difference in the two atoms A, B
that are bonded via the one-electron bond (an example would be the HHe2+

system). We can now use σg = λ1sa + µ1sb, with λ2 + µ2 = 1, and play with
the results. Now, p(1, 0) = λ2 = n̄a and p(0, 1) = µ2 = n̄b, as expected from
basic quantum mechanics. More interestingly, cov(na, nb) = −λ2µ2, so that
δ = 2λ2µ2. An electronegativity difference leads to a decrease in the DI, that is
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confined: δ ∈ [0, 1/2]. Bond polarity thus decreases the bond order, maximum
if the electron is perfectly shared, and falling to zero if the electron is completely
localized in one of the atoms so that only one of the two resonance structures
appears. Simple as it is, this näıve example introduces a number of standard
concepts in chemical bonding theory in an effortless manner. We define a pure
or perfect 2c,1e bond as that with maximum delocalization. It is achieved when
λ = µ.

3.2 The 2c,2e bond

Adding a second electron to the above picture brings the Lewis pair in. If we
do not leave the SD approximation, the simplest model changes us from the
H +

2 to the H2 molecule. Now Ψ = |σgσ̄g|. Although we might use Eq. 2,
it is easier to take profit of the independence of the pα and pβ distributions
for a single determinant. Since each spin block is equivalent to the H +

2 case,
the EDF is the product of those found in Scheme 1. This leads to a binomial
distribution: p(2, 0) = pα(1, 0) × pβ(1, 0) = 1/4, p(0, 2) = p(2, 0), p(1, 1) =
pα(1, 0) × pβ(0, 1) + pα(0, 1) × pβ(1, 0) = 1/2. The two electrons delocalize
independently, forming a Lewis pair. A 2c,2e bond is thus better envisioned as
two quasi-independent opposite spin 2c,1e bonds. If we are interested in the
spin resolved EDF, the direct product shown in Scheme 2 shows that each of
the four spin structures is equally populated. We define these distributions as
those of a perfect or pure 2c,2e covalent bond.

Since the covariance of independent contributions is additive, δ = 1, in agree-
ment with its bond order interpretation. In general, cov(na, nb) = cov(nαa , n

α
b )+

cov(nβa , n
α
b ) + cov(nαa , n

β
b ) + cov(nβa , n

β
b ). This implies that the same spin (σσ

in the following) covariances are measuring the spatial entanglement or delocal-
ization of the two independent electrons, while the opposite spin contributions
(σσ′) (zero in this case) refer to opposite spin electrons dependency, i.e. to
Coulomb correlation. Although we will not engage here in a full discussion of
the effects of electron correlation on EDFs [19, 23], it is rather easy to understand
the behavior of the probability distribution from simple symmetry properties.

σg

δab = 2× 1
2 = 1

a b

⊗

a b

=

1
4

1
4

1
4

1
4pα pβ

Scheme 2: The ideal 2c,2e bond in H2 (blue-red ≡ α− β).

At dissociation, where the SD description does not hold, and we need at
least a two-determinant wavefunction Ψ = c1|σgσ̄g|+ c2|σgσ̄g| (complete active
space (CAS) calculation with two electrons in two spinorbitals) to correctly
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dissociate dihydrogen, the spinless EDF collapses onto p(1, 1) = 1, p(0, 2) =
p(2, 0) = 0. Full configuration interaction (FCI) results are known [27]. Thus,
the electrons are perfectly localized (one in each atom), and δ = 0. However,
1Σg-dissociated dihydrogen is still a singlet, so the spin resolved EDF contains
two equiprobable components: p(↑, ↓) = p(↓, ↑) = 1/2. As it can be readily
calculated, p 6= pα⊗pβ . Actually, the pα and pβ distributions are equal to those
in H +

2 . Straighforward calculation leads to cov(nαa , n
α
b ) = cov(nβa , n

β
b ) = +1/2,

so that the total covariance vanishes. The two electrons are spin-entangled,
describing a non-bonded singlet diradical.

As it has already been fully discussed [27], at equilibrium the SD approxi-
mation is reasonable, and Coulomb correlation slightly localizes the electrons in
the atoms, increasing p(1, 1) ≈ 0.58 at the expense of the p(2, 0), p(0, 2) contri-
butions. This decreases the DI to about 0.85, so that correlated bond orders are
usually smaller than non-correlated ones [28]. For our purposes here, although
a perfect 2c,1e bond may exist, electron correlation prevents the existence of a
pure Lewis pair or a pure covalent bond.

Polarity is obviously introduced with our λ, µ model as before. Due to
statistical independence, the polar |σgσ̄g| determinant EDF is immediately con-
structed as a product of the one electron distributions, so that δ = 4λ2µ2. For
a 2c,2e non-correlated bond, polarity decreases covalency and viceversa.

The introduction of electron correlation (thus abandoning statistical inde-
pendence) opens many new possibilities. The complete (spinless) EDF land-
scape for a 2c,2e bond depends on two variables, and since the three probabili-
ties add to one, any EDF can be represented on a triangular diagram in which
each corner is a pure (1, 1), (0, 2), or (2, 0) distribution. We have shown [23] that
any point can be described by the formal charge of one of the atoms q ∈ [−1, 1],
measuring polarity, and a correlation factor f ∈ [−1, 1] that determines how the
two electrons are correlated.

From our present perspective it is better to start from the two non-interacting
electrons, each with a probability distribution p(1, 0) = p = 1 − p(0, 1), where
p plays the same role as λ2. This leads to the binomial p(2, 0) = p2, p(1, 1) =
2p(1− p), p(0, 2) = (1− p)2. We now introduce the correlation factor f so that
p(1, 1) = 2p(1− p)(1 + f), that subtracts p(1− p)f from each of the (2, 0) and
(0, 2) components. This symmetric subtraction stems from considering correla-
tion as a phenomenon affecting the interaction between the electrons in a pair,
not the intercenter charge transfer. As it can be easily proven, the electron
population of each center is not affected when the correlation factor f is intro-
duced and the symmetric partitioning is employed. When f > 0 the electrons
try to avoid staying in the same center (in a physicist-like language, they have a
repulsive on-site energy), and p(1, 1) increases over its uncorrelated value. This
is the situation expected in chemistry. When f < 0 (attractive on-site energy)
p(1, 1) decreases, so that the electrons prefer to pair and move together. This
is equivalent to a bosonization of their behavior. It is easily shown that the
average population of each atom in this model is not affected by f , 〈na〉 = 2p,
but the covariance senses strongly correlation, δ = 4p(1−p)(1−f) ∈ [0, 2]. This
extremely simple expression provides a very useful general model of the 2c,2e
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bond.
Since polarity is easy to introduce in the models, we will basically restrict

in the following to non-polar interactions (except in exceptionally interesting
cases) without loss of generality. With p = 1/2, then δ = (1− f) also runs over
its possible spectrum, and p(1, 1) = (1 + f)/2, p(2, 0) = p(0, 2) = (1 − f)/4.
The journey from f = 0 to f = 1 describes the dissociation of H2 and is no
more interesting. However, the bosonized limit f = −1 leads to the resonance
between two electrons located at each center, as described in Scheme 3.

1
2

0

0

1
2

δ = 2

Scheme 3: The bosonized 2c,2e bond in H2.

This shows that standard bond orders may be difficult to interpret in many
interesting situations. DIs greater than one for 2c,2e bonds have actually been
found, for instance in the E,F-1Σ+

g excited state of H2, which correlates with

a 1σ2
u [29]. This is, grossly speaking, the traditional H+−H– ←−→ H−H+ VB

resonance. This type of bonding pattern can also be found via electron-phonon
coupling, being thus the simplest possible chemical analogue of a Cooper pair.

A straightforward back of the envelope spin analysis on the (p = 1/2, f)

non-polar bonds shows that DIσσ = 1, independently of f , so that DIσσ
′

= −f .
All non-polar 2c,2e bonds, correlated or not, have a DIσσ = 1 bond order.
This is why some authors [30] prefer to use same-spin component as a more
chemical bond order definition. In our opinion, this result should be better read
in the following terms: if we ignore the correlated electron movement, each of
the two indistinguishable electrons in between two equivalent nuclei are fully
spatially entangled (like in H +

2 ) with DIσσ = 1. For a non-polar 2c,2e system,

DIσσ
′

= −f measures the degree of pair repulsion/attraction.

3.3 2c,2e triplets. EDFs and the Pauli principle

In our bottom-up approach, much is learnt from modelling the first 3Σ+
u non-

bonded state in H2. The simplest MO description of this state implies populat-
ing the σg and σu states: Ψ = |σgσu| for the MS = 1 spin component. With
two populated orbitals we need to use Eq. 2 for the first time. In the ZDO
approximation, χ1,2 = σg,u = (1sa ± 1sb)/

√
2, and our Mulliken strategy leads

to Saij = (1/
√

2)2 = 1/2 ∀i, j. The elements of Sbij are also equal to 1/2 except
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Sb12 = Sb21 = −1/2. If we now use Eq. 2,

p(2, 0) =

∣∣∣∣∣∣
a︷︸︸︷

1/2

a︷︸︸︷
1/2

1/2 1/2

∣∣∣∣∣∣ = 0, p(1, 1) = 2

∣∣∣∣∣∣
a︷︸︸︷

1/2

b︷ ︸︸ ︷
−1/2

1/2 1/2

∣∣∣∣∣∣ = 1.

Obviously, p(0, 2) = p(2, 0) = 0. There is only one permutation leading to two
electrons on center a, while two equivalent ones, (a, b) and (b, a), lead to one
electron on each center. The result implies that the two-same spin electrons are
perfectly localized so that δ vanishes (Scheme 4).

σg

δab = 0

a b
1

σu

Scheme 4: The triplet distribution in model H2.

The calculation shows that it is the interference between σg and σu compo-
nents that cancels out the delocalization. In chemical terms, if we only allow
the 1s orbitals to interact, the delocalization channel is blocked once an electron
is present. In H +

2 we may think of one occupied and one empty 1s orbital. The
channel is open, and the electron delocalizes. Adding a second electron forces
the first to stay in its original center, and so does the second. This is Pauli
principle acting in real space.

From the present perspective, there is no reason to call σu an antibonding
orbital. As expressed above, a |σuσ̄u| determinant delocalizes electrons as well
as its |σgσ̄g| counterpart, and has δ = 1. It is only through the g, u interference
that the open delocalization channels in both determinants become blocked. Of
course, if we now couple the pα distribution to an equivalent pβ one to form
a closed shell system like He2 with a σ2

gσ
2
u configuration, the product of the

different spin configurations lead (like in going from H +
2 to triplet H2) to an

additive δ which is still zero, and to a pair of completely localized electrons
in each center. In this way it is easy to understand the Aufbau principle in
diatomics that we will briefly examine in the next subsection. The “bonding-
antibonding” cancellation of the bond order appears in the EDF formalism as
a Pauli induced localization of electrons. The no bonding without delocalization
maxim thus acquires a clear meaning.

Unlike the triplet H2 case, the triplet model is sensitive to the ZDO approx-
imation. It is easy to show that as overlap between the 1s functions is switched
on, the S12 matrix elements are no longer constrained to be equal to ±1/2, and
the p(2, 0) probability ceases to be zero, although it remains much smaller than
in the singlet. If a true real space analysis is done [27], then the evolution of
delocalization in the triplet can be followed.
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3.4 The Aufbau principle in diatomics

The bonding pattern in simple diatomics appears effortlessly as new delocaliza-
tion channels (orbitals) open and close on adding new electrons. Let us briefly
summarize how this is done with first and second row diatomics.

Starting with the 1s block, in 1s2 H2 the independent opposite spin 1sα and
1sβ channels are open and, as already explained, each pα or pβ distribution
provides an additive δ = 1/2 contribution. The total bond order is 1, and the
two electrons are perfectly delocalized in the single determinant approximation.
Passing to He2 adds one electron to each of the 1s spin channels, blocking both
of them. The spinless δ vanishes. Two localized 1s2 cores are formed.

In Li2 a 2s block is added, so that at the SD level and within the ZDO
approximation, Ψ = |1σg ¯1σg1σu ¯1σu2σg ¯2σg|, with 1σg,u = (1sa±1sb)/

√
2, 2σg =

(2sa+2sb)/
√

2. Following Eq. 2, and considering the independent spin channels
separately we have 3 alpha electrons and only two non-equivalent distributions,
(3, 0) ≡ (0, 3) and (2, 1) ≡ (1, 2):

pα(3, 0) =

∣∣∣∣∣∣∣∣∣∣
a a a

1/2 1/2 0
1/2 1/2 0
0 0 1/2

1σg 1σu 2σg

∣∣∣∣∣∣∣∣∣∣
= 0,

pα(2, 1) = 2

∣∣∣∣∣∣∣∣∣∣
a b a

1/2 −1/2 0
1/2 1/2 0
0 0 1/2

1σg 1σu 2σg

∣∣∣∣∣∣∣∣∣∣
= 1/2

Notice that the overlap matrices are block-diagonal due to the 1s, 2s orthog-
onality. The 2 × 2 blocks are easily recognized as those in triplet H2 or He2.
Given that any new orbital block we add is orthogonal to all previous ones,
once the block closes, i.e. once the subshell closes, its contribution to the over-
lap matrices becomes isolated, remaining block-diagonal in the following. In
other words, in this case the 1s2 localized core is preserved, and the 2s chan-
nel behaves independently of the 1s core. With only 1s and 2s channels, the
probability of finding three same spin electrons in the same center vanishes,
and the only remaining EDF components are pα(2, 1) = pα(1, 2) = 1/2. This
obviously provides δαα = 1/2, and we can safely ignore the (1, 1) constant con-
tribution so that there is effectively only one alpha electron that delocalizes:
pα(2, 1) ≡ pα(1, 0). Adding the independent beta terms, an image of two local-
ized two-electron cores and a perfect covalent bond with δ = 1 formed by two
opposite spin perfectly delocalized electrons emerges. In this approximation,
Li2 behaves like H2.

The following rationale emerges. Two extra electrons close the 2s chan-
nels, and Be2 has δ = 0. In traditional MO terms, two full 1, 2σg,u bonding-
antibonding pairs. If we add the 2p block, we open six independent delocal-
ization channels (from spin independency coupled to ml = −1, 0, 1 or x, y, z
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orthogonality). On traversing B2, C2 and N2 the bond order increases from one
to three, as expected. An interesting situation is, for instance, dioxygen, where
two extra alpha electrons are added on top of dinitrogen that occupy the (an-
tibonding) 1πg,x and 1πg,y states as a triplet. The 1π alpha channels are thus
blocked with localized px,y orbitals on both centers such that the bond order of
the alpha set of electrons is 1. Contrarily, the beta 1πu set is still fully open,
with bond order equal to 3. On average, δ = 2. This simple picture, which has
been described in detail elsewhere [19, 20], shows how, with the same back of
the envelope effort, the EDF image provides a far more detailed picture of the
electron distribution than the MO one. In Ne2, all the L channels are full, δ
vanishes again, and in the SD approximation, two Ne atoms cannot delocalize
any electron and do not bind to each other.

3.5 Building polyatomics from 2c,2e bonds

The electronic structure of simple polyatomic molecules can be easily modeled
from several 2c,2e distributions that are considered independent. We take the
water molecule as an example. Table 1 shows the dominant EDF component at
the HF//6-311G(d,p) level obtained from QTAIM atoms. We can check that
to about 1% in probability, each H atom is only involved in the exchange of
one electron, so that in terms of 2c,2e links there are only two electrons in the
oxygen atom that are also engaged in bonding. From the Table we compute
easily that the net charge of the oxygen atom is −1.203 electrons, and that
δ(O,H) = 0.648, δ(Ha,Hc) = 0.008. If we ignore the last covariance, a clear
model of two 2c,2e links emerges. Summing up, six electrons in oxygen are
always localized and thus inactive (i.e. in chemical terms the 1s core and two
lone pairs). We can safely ignore them.

Table 1: QTAIM EDF for a HF//6-311G(d,p) calculation in H2O. Only struc-
tures contributing to the EDF with a probability greater than 0.01 are shown.

n(Ha) n(O) n(Hc) p
a b c
0 10 0 0.4133
0 9 1 0.2032
1 9 0 0.2032
1 8 1 0.0971
0 8 2 0.0274
2 8 0 0.0274
1 7 2 0.0126
2 7 1 0.0126

To build an EDF model, we construct a determinant with the three inactive
functions of the oxygen atom and two bonding orbitals, φ1 and φ2, built from
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the 1sa ≡ a and 1sc ≡ c primitives of both hydrogen atoms, together with two
equivalent orthogonal oxygen hybrids that bind to Ha and Hc, respectively, say
b and b′. With this, φ1 = λa + µb, φ2 = λc + µb′. It is a simple exercise to
obtain the alpha or beta block distributions obtained by the product of two
equivalent polar 2c,2e bonds already examined: pα(a, b, c) = pα(a, b)⊗ pα(b, c),
so that pα(1, 1, 0) = pα(0, 1, 1) = λ2µ2, pα(0, 2, 0) = µ4, pα(1, 0, 1) = λ4. In
this model, δ(Ha,Hc) strictly vanishes, not far from our assumption. We will
return to this result, since the covariance between two atoms not directly linked
in a model of independent 2c,2e bonds is necessarily zero, in agreement with the
chemical intuition that atoms not linked by a “dash” should have independent
electron populations. The situation is sketched in Scheme 5.

We can now fit the parameters of the model to the data. This can be done
in many ways, see below. For our present purposes, a simple procedure is to
recognize that the two bonds are statistically independent and compute the
average population of any of the H atoms, that turns out to be 〈n(Ha)〉 = 2λ2.
This leads to λ2 = 0.199. From this result, δ(H,O) = 4p(1 − p) = 4λ2µ2

is equal to 0.638, to be compared with the actual Hartree-Fock value, 0.648.
The fact that a single parameter (λ) model can very reasonably reconstruct the
dominant Hartree-Fock QTAIM EDF of H2O shows that the Pauli principle
decreases enourmosly the complexity of the electron distribution that, in many
cases, may be very accurately understood from very simple principles.

δ(OHa) δ(OHc)

δ(HaHc) = 0

Scheme 5: The H2O model.

The general procedure of extracting chemical information from a general
correlated EDF is considerably more cumbersome than that shown in the pre-
vious toy example. An introduction to how this can be done will be delayed to
Section 7.

In the general case, the molecular EDF coming from a set of n independent
2c,2e bonds is the product of the n 2c,2e probability distributions: p =

⊗
i p

i.
The i-th component pi specifies the (2, 0), (1, 1), (0.2) probabilities betweeen
the centers i1 and i2 associated to the bond. If the links are supposed to be
uncorrelated (f = 0), then each pi is specified by one polarity parameter (λ or
p, as in the previous H2O example). If the links are correlated then we need
two parameters (p, f) per bond.
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4 The three center bond

The need for multicenter bonding did not consolidate in Chemistry until it
became clear that new rules were necessary to understand the chemical bond in
boranes [31–33]. At present, three-center bonds are customarily classified within
the MO paradigm into two- and four-electron categories. Here, we will show how
multicenter bonding is easy to characterize from the statistical point of view.
Much as two-center bonding senses two-center electron delocalization (i.e. a
mutual fluctuation of the electron population of the two centers that can be
quantified through the covariance), we define a multicenter bonding interaction
by a mutual n-center fluctuation of the electron populations. In other words,
much as when the populations of two atoms are statistically independent we
say that they are not bonded, whenever we can partition the n(> 2) atoms
that are being considered into two (or more) subsets with independent electron
populations we say that there is no n-center bonding.

Measures to quantify multivariate influence are well studied in statistics. An
i-th order cumulant [34], κi(n1, . . . , ni) is a combination of central moments that
measures how far a set of random variables are from mutual independence. If κi
vanishes the set of i variables can be partitioned into two or more subsets that are
statistically independent. We take a non-vanishing κn as a definition of n-center
bonding. Among the many properties of cumulants, it is particularly important
for our purpose to notice that cumulants are additive. The cumulant of a
distribution which can be separated into a set of independent components is just
the sum of its contributions. Expressions for the n-th order cumulants can be
found elsewhere [15]. Second and third order κ’s coincide with the multivariate
covariances: κ2(n1, n2) = cov(n1, n2) ≡ cov12, κ3(n1, n2, n3) = cov3(n1, n2, n3)
= 〈(n1 − n̄1)(n2 − n̄2)(n3 − n̄3)〉 ≡ cov123. However, this is not the case for
further order cumulants. For instance, κ4 = cov4 − cov12cov34 − cov13cov24 −
cov14cov23. It can be shown [15] that atom-projected cumulants can be obtained
from cumulant densities. The latter depend on general-order reduced density
matrices.

4.1 The 3c,1e bond

Let us proceed analogously to what was done in the two-center case. A simple
example would be the H 2+

3 system, which we consider in an equilateral triangle
configuration. Using the 1s manifold, the totally symmetric orbital in the ZDO
approximation is χ = (1sa + 1sb + 1sc)/

√
3. The distribution function provides

p(1, 0, 0) = p(0, 1, 0) = p(0, 0, 1) = 1/3, and n̄a = n̄b = n̄c = 1/3. It is easily
verified that there is two-center delocalization between each of the three pairs
of atoms: δ(a, b) = −2cov(na, nb) = 2/9.

From the standard MO point of view, an electron is delocalized over the
three centers, the orbital describing it having equal contributions on each of
them. From the statistical point of view, the electron can be equiprobably
located in each center, and there is a mutual fluctuation in the electron popu-
lation. The triple covariance (covabc = κ3) is immediately computed from κ3 =
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∑
na,nb,nc

p(na, nb, nc)(na−n̄a)(nb−n̄b)(nc−n̄c) as κ3 = 3
(

1
3

) (
2
3

) (−1
3

) (−1
3

)
=

2/27. As before, we define this EDF as that defining a pure or perfect 3c,1e
bond.

It is customary to define an n−center bond order δn as δn ≡ δ(a, b, c) =
(−1)n+1nκn, that coincides with the overall many center projection of the n-th
order cumulant density [15]. In this case, δ(a, b, c) = 2/9. Since the specialized
literature is plagued with different normalization conventions for these multi-
center delocalization indices, we will try to stick to the cumulants or clearly
specify to which quantities we refer to.

Electronegativity differences among the three centers are introduced as above,
with χ = λ1sa+µ1sb+ν1sc and λ2 +µ2 +ν2 = 1 at the ZDO level. The average
electron populations in each center are given by the squares of the coefficients,
and p(1, 0, 0) = λ2, p(0, 1, 0) = µ2, p(0, 0, 1) = ν2. From this, it can be easily
obtained that δ(a, b) = 2λ2µ2, just like in the H +

2 case (with equivalent values
for the other two pairs), and that κ3 = cov(na, nb, nc) = 2λ2µ2ν2. This shows
that the maximum value for κ3 is again obtained in the symmetric, pure or
perfect bond (λ2 = µ2 = ν2 = 1/3). Exactly as before, polarity decreases the
three-center electronic delocalization, κ3 ∈ [0, 2/27] for a 3c,1e bond. Notice
that κ3 vanishes whenever any of λ, µ, or ν is zero. Within this model, for a
three center bond to exist, it is necessary that the electron can be found in any
of the three centers, as expected.

4.2 The 3c,2e bond

At the SD level, adding an opposite spin electron to form the |χχ̄| determinant of
H +

3 is equivalent to adding an independent spin channel, so that δ(a, b) = 4/9
and δ(a, b, c) = 4/9. The EDF is easily obtained by direct product, and, if
polarity is allowed, δ(a, b) = 4λ2µ2 and κ3 = 4λ2µ2ν2. It is important to
stress that, with two independent opposite spin electrons, κ3 and all the three
two-center δ’s are positive, but that this needs not be the case if correlation is
allowed.

The existence of a negative three-center index was put forward early in Quan-
tum Chemical Topology (QCT) [35]. It was proposed that 3c,2e bonds, like that
in H +

3 , were characterized by positive κ3 or δ3 values, while 3c,4e bonds, like
the standard Pimentel description of F –

3 , provides negative δ3’s. In the present
context, the sign of the several multicenter indices reflects simply the possible
types of fluctuation with respect to the average population of the centers. Since
the total number of electrons is fixed, in the 2c case δ2 = −2cov2 > 0, although
adding a third center that may act as an electron reservoir allows for negative
δ2 values. We will return to this. Similarly, three centers may host + − −
or + + − fluctuations with respect to the average, i.e. fluctuations in which
one of the centers gains population and the two others lose it (+ − −), or in
which two centers gain at the expense of the third (+ + −). These two classes
are associated to positive/negative κ3 = cov3, respectively. At the SD ZDO
level with one three-center delocalized orbital, only the κ3 > 0 case is allowed,
in agreement with the 3c,2e classification (2λ2µ2ν2 can not be negative). At
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least two orbitals that interfere are needed so that the possibility κ3 < 0 can
occur, again in agreement with the 3c,4e class. However, as soon as correlation
is allowed, the classification smoothes out, as we will see.

Abandoning the ZDO approximation and introducing electron correlation
opens a vast new territory in this case. To model it, we can notice that the num-
ber of components of the (spinless) EDF in the nc,2e case is made up from the n
p(2, 0, . . . ), p(0, 2, . . . ), . . . probabilities and the n(n−1)/2 p(1, 1, 0, . . . ), p(1, 0, 1, . . . ), . . .
components in which the two electrons lie in different centers. The total number
of different probabilities is thus n(n+1)/2, so we need n(n+1)/2−1 independent
parameters to span the full 3c,2e space.

We can easily build a general model along the same lines used in the 2c,2e
discussion. We first consider two independent indistinguishable electrons, letting
pa ≡ p(1, 0, 0), pb ≡ p(0, 1, 0, and pc ≡ p(0, 0, 1) (with pa + pb + pc = 1) be the
probabilities that any of the them be found in each of the a, b, c centers. This
provides the following two-electron EDF:

p(2, 0, 0) = p2
a, p(1, 1, 0) = 2papb,

p(0, 2, 0) = p2
b , p(1, 0, 1) = 2papc,

p(0, 0, 2) = p2
c , p(0, 1, 1) = 2pbpc.

We now add a correlation factor for each pair of centers, fab, fac, fbc, much in
the light of what we did in the two center case. Any two of the set (pa,pb,pc) plus
the three correlation factors forms a set of five independent parameters. This
may be immediately generalized to the nc,2e case. The correlated probabilities
are,

p(2, 0, 0) = p2
a − papbfab − papcfac, p(1, 1, 0) = 2papb(1 + fab),

p(0, 2, 0) = p2
b − pbpafab − pbpcfbc, p(1, 0, 1) = 2papc(1 + fac),

p(0, 0, 2) = p2
c − pcpafac − pcpbfbc, p(0, 1, 1) = 2pbpc(1 + fbc).

Whatever the values of the correlation factors, these add correctly to one. A
pictorial representation of the 3c,2e EDFs and their modelling is sketched in
Scheme 6

a

b c

pa

pcpb

f
acf a

b

fbc

a

b c

p(2, 0, 0)

p(0, 0, 2)p(0, 2, 0)

p(1, 0, 1)p(
1,
1,
0)

p(0, 1, 1)

Scheme 6: The EDF and model parameters of the 3c,2e bond.
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It can be checked that in this model the average center populations are
not altered by the correlation factors, staying the same as in the independent
electron case: n̄a = 2pa, n̄b = 2pb, n̄c = 2pc. This is convenient to show
the possible effects of several types of correlation. One can also find simple
expressions for the delocalization measures:

δ(a, b) = −2cov(na, nb) = 4papb(1− fab) etc,
δ(a, b, c) = 3cov(na, nb, nc) = 12papbpc(1− fab − fbc − fac).

The correlation factors are bounded by below, fij ≥ −1, but several situations
allow for very large positive f ’s, as we will show.

Particularly interesting is the consideration of the symmetric non-polar pa =
pb = pc = 1/3, fab = fbc = fab = f situations that might describe H +

3 and
similar systems. The independent electron model (all f ’s equal to zero) gives
p(2, 0, 0) = 1/9 and p(1, 1, 0) = 2/9 plus permutations. The general solution is
immediate: p(2, 0, 0) = 1

9 (1− 2f), p(1, 1, 0) = 2
9 (1 + f). To guarantee that the

probabilities stay between zero and one, it is necessary that −1 ≤ f ≤ 1/2. The
positive limit is easily seen to be 1/(n − 1) for an n-center case. Similarly, all
δ2’s are equal to δ2 = 4

9 (1− f), and 3κ3 = δ3 = 4
9 (1− 3f).

While δ2 is always positive, meaning that the two-center fluctuation in a
symmetric 3c,2e interaction is always like that in standard 2c,2e bonds, κ3 is
positive if f < 1/3 (which includes the non-correlated case) but changes sign if
1/3 < f ≤ 1/2. As commented above, we do not need a 3c,4e interaction to
observe negative three-center indices. Electron correlation is enough.

a

b c

p(2, 0, 0)

p(0, 0, 2)p(0, 2, 0)

p(1, 0, 1)p(
1,
1,
0)

p(0, 1, 1)

a

b c

1/3

1/31/3

a

b c

1/31/
3

1/3

f = 1/2

f = −1
κ3 = 16/27

κ3 = −2/27

Scheme 7: Extreme cases of the symmetric 3c,2e bond

Scheme 7 shows the EDFs of the two extreme cases. When f = −1, δ3
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peaks at the maximum positive value (much like in the ionic resonance in H2).
Only the (2, 0, 0)-like structures are equally populated. It is rather clear that
we only have +−− fluctuations. In the f = 1/2 case it is the three (1, 1, 0)-like
structures that resonate, and again, it is clear that all fluctuations are of the
++− type: it is the fluctuation type that determines the sign of the three-center
delocalization index.

The f = 1/2 case is interesting, since it describes the triangular entangled
dissociation singlet of H +

3 . Its δ2 does not vanish, becoming equal to 2/9. This
is a similar situation to that examined in H +

2 . At infinite distance we have a
frustrated system with unavoidable spatial delocalization and three equiproba-
ble distributions.

If we do not consider the spin structure, the delocalization pattern of the
f = 1/2 case can be understood not as two particles that delocalize, but as a
hole that can occupy the three centers equiprobably. Notice that 3c,1e model
displayed δ2 = 2/9, κ3 = 2/27. This particle-hole symmetry, very familiar in the
physical literature, will be analyzed below. Sometimes the picture of delocalized
holes is easier to grasp than that of delocalized particles. In the present case,
the delocalization pattern of two heavily correlated electrons matches that of
an independent hole.

a

b c

1/9

1/91/9

2/9

2/
9

2/9

+
6=

a

b c

1/4

1/4

1/
21

3

a

b c
1/4

1
3

a

b c

1/4

1/4

1
3

1/2

1/4
1/2

+

+

Scheme 8: Multicenter bonding is more than resonance. The H +
3 case.

Another point that deserves comment regards the inadequacy of some tra-
ditional chemical images to understand multicenter bonding. It is customary
to understand the 3c,2e bond in H +

3 as a resonance of three normal cova-
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lent bonds, as shown in Scheme 8. In the simple f = 0 case, it is imme-
diate to show that the 3c,2e EDF is not the weighted sum of three 2c,2e
bonds. There is more in multicenter bonding than in plain resonance. For
instance, using Scheme 8 as a guide, the weighted resonance would provide
p(2, 0, 0) = 1/3× 1/4 + 1/3× 1/4 + 1/3× 0 = 1/6 6= 1/9. Not imposing an inde-
pendent particle behavior, one can indeed write the EDF of H +

3 as a weighted
average of a correlated 2c,2e link with f = 1/3. Again, this tells about how
chemistry allows for different, equivalent interpretations from a single dataset.

We end this subsection by considering the role of different correlation types
on the final EDFs of asymmetric systems. As shown above, only through asym-
metry may a δ2 < 0 be observed in this model. We take the very simplest
isosceles asymmetry in which pa = 1/2, pb = pc = 1/4. This leads to n̄a = 1,
n̄b = n̄c = 1/2. We impose also fab = fac = f , fbc = f ′. The general EDF
depends on f, f ′ and is easily worked through. We will restrict here to two
simple possibilities: (a) f = 1, f ′ = −1; (b) f = −1, f ′ = 3. The EDFs are
sketched in Scheme 9.

a

b c

a

b c

1
2

1
2

(b)

a

b c

a

b c

1
2

1
2

(a)

Scheme 9: Asymmetric 3c,2e models described in the text.

The correlation between the two electrons is clearly different. In (a) the
two distributions contribute to κ3 with a zero value, since the population of
center a does not fluctuate. It can readily be checked that not only the triple
covariance vanishes, but that δ(a, b) = δ(a, c) = 0. What is left is a non-
vanishing δ(b, c) = 1/2, typical of the delocalization of a H +

2 system. In fact,
the EDF is the product of a 1e EDF with a fully localized electron in a and
an entangled bc H +

2 system. Being formed by two independent subsystems, κ3

vanishes.
The situation in (b) is more interesting. The three centers have non-vanishing

population fluctuations, but two of them (b, c) are synchronous. This causes
the first fluctuation (+−−) to be equal and of opposite sign to the second one
(−+ +) so that κ3 = 0 at the end. All the 2c delocalizations are non-vanishing:
δ(a, b) = δ(a, c) = 1, and δ(b, c) = −1/2. This is rather simply interpreted. The
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a center acts as an electron buffer. As the b, c pair is regarded, when the pop-
ulation of the first center increases, so does that of the second, and viceversa.
This, of course, at the expense of center a. Weird at a first look, this behavior
cannot be ignored and, in our opinion, has not received any kind of attention in
the theory of chemical bonding. Might real chemical systems show this kind of
synchronous population oscillations and negative δ2’s? As we will show below,
the answer is yes.

4.3 The Pimentel-Rundle 3c,4e bond

We will now comment on the 3c,4e bond, particularized to the Pimentel-Rundle
[36, 37] model. Although this is not the general case that can be worked out
using the strategies defined above, it paves the way to the contents of the next
Section. We build a three-center configuration with open b, c ends, that may be
understood as linear, if necessary. We use the orbitals spanned by three 1s func-
tions (or three 2pz primitives in the F –

3 system) under the ZDO approximation
so that

χ1 = 1
2 (1sb +

√
21sa + 1sc),

χ2 = 1√
2
(1sb − 1sc),

χ3 = 1
2 (1sb −

√
21sa + 1sc).

Building a four electron determinant from the lowest lying levels, Ψ = |χ1χ̄1χ2χ̄2|,
the probabilities can be easily obtained as the direct product of two electron
same spin pα or pβ components. The latter are obtained from 2×2 determinants
using the prescriptions used above. For instance,

pα(0, 2, 0) =

∣∣∣∣∣∣∣∣
a a

1/4 1/2× 1/
√

2

1/2× 1/
√

2 1/2
χ1 χ2

∣∣∣∣∣∣∣∣ = 0.

The only non-vanishing contributions to the alpha spin EDF are pα(1, 1, 0) =
pα(1, 0, 1) = 1/4, pα(0, 1, 1) = 1/2. From our present point of view, the alpha
distribution is a correlated 3c,2e EDF, that we know how to systematize by
using the expressions derived in Subsection. 4.2. For instance, since n̄αa = 1/2,
n̄αb = n̄αc = 3/4, then pαa = n̄αa/2 = 1/4. Similarly, pαb = pαc = 3/8. This provides
fαab = fαac = 1/3, fαbc = 7/9. As it can be checked, all fluctuations are of the
+ + − type, for in all the (1, 1, 0), (1, 0, 1), and (0, 1, 1) structures two centers
bear larger electron population than the average, and the remaining one hosts
no electrons. This leads to δαα(a, b, c) = −1/4. We do not need four electrons
to obtain a negative DI. Adding the beta spin block, the total δ(a, b, c) = −1/2.
It is thus the correlation between the two σσ electrons in each spin channel that
generates a negative three-centered index, and not the four electron nature of
the links. In agreement with all our previous discussions, it is not possible to
get a negative κ3 with a SD formed from one orbital, but it is certainly possible
in the case that the SD (in a triplet state) be constructed from two independent
functions.
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More insight about the particle-hole symmetry that was briefly introduced
above is now at hand. Forming a fully unpaired quartet determinant with three
alpha electrons Ψ = |χ1χ2χ3|, i.e. closing the orbital manifold expanded by
the three 1s orbitals, provides only one surviving probability, pα(1, 1, 1) = 1.
All delocalization is blocked. The original Pimentel’s alpha Ψ = |χ1χ2| is then
equivalent to opening a hole in the “alpha closed-shell”. The 3c,1e state χ3

is a hole state from Pimentel’s Ψ. Its electron populations are n̄αa = 1/2,
n̄αb = n̄αc = 1/4. If interpreted as a positronic function, these are the positive
charges induced by χ3 on the filled sea of three alpha electrons. Being a one-
particle state, its κ3 > 0. It is immediately computed from the 2λ2µ2ν2 rule
as exactly minus Pimentel’s κ3. As we will see, the sign change depends on
the odd/even character of the order of the cumulant. The behavior of a three-
electron state, that cannot be rationalized without Fermi correlation, is again
immediately uncovered from that of an independent hole if we change from the
particle to the hole description.

5 The equivalent primitives manifold

In this Section we will show how to simplify the multicenter indices calculations
in a simple but representative case: a single determinant built from orbitals
which are linear combinations of a manifold of equivalent primitives in the ZDO
approximation (e.g., the n orthonormal orbitals that can be built from n equiva-
lent 1s, 2pz, etc, functions centered at n different centers). Most simple examples
of conjugation in unsaturated hydrocarbons (including aromatic systems) are
studied within these constraints: a set of equivalent pz functions that are used
to build the π set of delocalized one-electron states.

To continue, we need to borrow a result from the framework that links the
fluctuation of the electron populations with the cumulant densities of wavefunc-
tion theory [15]. It is known that at the SD level the n-center delocalization
index can be written as a symmetrized trace of products of atom-projected
overlap integrals. For a closed-shell with N/2 molecular orbitals

δ(a, b, . . . , n) = 2
∑
Sn

Tr(SaSb . . . Sn), (6)

where the sum runs over the n! permutations of the set a, b, . . . , n and all the
S’s are (N/2)× (N/2) matrices.

Now we impose that each of the N/2 populated orbitals χi is a ZDO lin-
ear combination of our manifold primitives: χi =

∑
j c
j
iφ
j , where superindices

refer to the atomic centers a, b, . . . , n. It is now easy to rearrange the sum in
Eq. 6 given that Saij = cai c

a
j . As an example, in the case of n = 2, one of the

components of δ(a, b) is

Tr(SaSb) =
∑
ij

SaijS
b
ji =

∑
ij

cai c
a
j c
b
jc
b
i = (

∑
i

cai c
b
i )(
∑
i

cbic
a
i ).
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Defining pab =
∑
i c
a
i c
b
i , which may be interpreted as a kind of ab transition

amplitude, the result is easy to generalize, so that

δ(a, b, . . . , n) = 2
∑
Sn

pabpbc . . . pna.

The sum in this expression runs over all the possible permutations of the
a, b, . . . n set of centers for which a closed circuit of amplitudes pab . . . pna (where
each ab edge is visited only once) is constructed. In this sense, the formalism
binds to graph theory, where those closed paths are known as Hamiltonian cy-
cles. Multicenter delocalization is seen within this approach as the result of at
least one closed circuit for which the product of transition amplitudes does not
vanish. An example with the p12p23p34p41 cycle is shown in Scheme 10.

1 2

3 4

p12

p23

p34

p41

Scheme 10: A Hamiltonian circuit in a four center system

Either in terms of Sa’s or pab’s, the multicenter index results from orbital
interference. Returning to the triplet state of H2 or to He2, δab = 2pabpba, and
its vanishing is due to the destructive interference of the σg and σu components:
pab = cagc

b
g + cauc

b
u = 1/2 − 1/2 = 0. Notice that, again, if only the g or the u

channel is populated the delocalization is different from zero.
This can be immediately generalized. Since the manifold of n orbitals are

orthonormal, one has 〈χ|χ〉 = C〈φ|φ〉C† = I, where I is the unit matrix, |χ〉 ≡
(|χ1〉 . . . |χn〉), and |φ〉 ≡ (|φ1〉 . . . |φn〉). However, in the ZDO approximation,
the identity 〈φ|φ〉 = I holds. Hence, it follows that C is unitary. If all the n
orbitals of one of the manifold are occupied, then pab is the scalar product of
two columns of C, and vanishes for any pair ab. A full manifold implies zero
delocalization indices of all orders.

This is also the basis for the hole-particle symmetry already presented. If

all but m orbitals (n−m) are fully occupied, then pab(n−m) =
∑(n−m)
i cai c

b
i =

−∑m
i=(n−m+1) c

a
i c
b
i = −pab(m). All delocalization measures of the 2(n − m)

electron system can be obtained from a negative transition amplitude computed
from the 2m unoccupied holes. Notice that the multicenter index will change
sign if the number of centers is odd. This is exactly the behavior that was found
on examining the 3c,4e Pimentel-Rundle model.

Now we consider an nc,2e cyclic system formed by one totally symmetric
orbital χ = 1

√
n
∑
a φa. There are n! different Hamiltonian cycles to consider
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with all amplitudes pab = 1/n. Then δ(a, b, . . . , n) = 2n!/nn. For large n we can
use Stirling’s approximation ln(n!) ≈ nln(n)−n to show that ln(δn) ≈ −n, and
that the multicenter index decays exponentially. This is the result of the product
rule of probability theory, and has usually been put forward as a drawback of

these and similar formalisms. If this is a concern, the n-th root of δn or κn, δ
1/n
n

or κ
1/n
n , scales like O(n0), at the expense of losing, for instance, the extensivity

property.
It is also relevant to point out that for a general cyclic system with equivalent

nodes, pab will not depend on the particular ab pair that is chosen. All the
multicenter indices are determined in this case by a single parameter pab.

Let us work out these ideas on the π skeleton of benzene, modeled from six
equivalent 2pz orbitals. A possible description of the manifold is

χ1 = 1√
6
(φ1 + φ2 + φ3 + φ4 + φ5 + φ6),

χ2 = 1√
12

(φ1 + 2φ2 + φ3 − φ4 − 2φ5 − φ6), χ3 = 1
2 (φ1 − φ3 − φ4 + φ6),

χ4 = 1√
12

(φ1 − 2φ2 + φ3 + φ4 − 2φ5 − φ6), χ5 = 1
2 (φ1 − φ3 + φ4 − φ6),

χ6 = 1√
6
(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here, χ2, χ3, and χ4, χ5 are double degenerate e orbital pairs, and the ground
state is the determinant formed by doubly populating the χ1, χ2, χ3 orbitals.
It is immediate to show that the ortho, meta, and para transition amplitudes
are p12 = 1/3, p13 = 0, p14 = −1/6. The null meta amplitude justifies the
vanishing of the meta delocalization index, which is a well known property
behind the experimental substitution pattern in benzene. The patterns of two-
center delocalization in alternant hydrocarbons have been studied before [38, 39],
and the decay rate of these has been related to electrical conductivity by recourse
to the modern theory of insulators [39, 40]. For the time being, it is clear
that only Hamiltonian cycles containing exclusively ortho and para steps will
contribute to the six-center delocalization index, δ6. There are only three types
of these that we label as a, b, anc c in the top part of Scheme 11, which contain
zero, three, or two para links, respectively.

There are 12, 24, and 36 equivalent permutations of type a, b, and c, respec-
tively (we can start each cycle on any of the six centers and traverse it clock-
or anticlock-wise). Each of the cycles of type a contributes with p6

12 = 1/729,
the b type of channels contributes with p3

12p
3
14 = −1/5832 each, and each cycle

of type c with p4
12p

2
14 = 1/2916. Adding everything together, δ6 = 4/81. In

standard chemical language, the a circuits are to be associated to Kekulé reso-
nance structures, while b, c to the Dewar ones. As it can be checked, the first
contribute double than the second to the 6-center index. Notice, incidentally,
that the ortho two-center DI is immediately obtained to be 4 × (1/3)2 = 4/9,
very close to the standard 1/2 value usually accepted for the π contribution to
the bond order in benzene, and that the para DI, which has been successfully
used as a measure of aromaticity [14], is equal to 1/9.

With the help of the orbitals χ1, χ2, and χ3 sketched above it is also easy
to write down the six determinants involved in Eq. 2 that are needed to obtain
the three non-equivalent alpha probability distributions shown in the bottom
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a b c

a b c

Scheme 11: Non-vanishing Hamiltonian circuits (top), and non-equivalent alpha
electron distributions (bottom) in benzene.

part of Scheme 11. The a type has p(1, 1, 1, 0, 0, 0) = 1/72, while the b and c
types display probabilities equal to 1/18 and 1/8, respectively. There are 6, 12,
and 2 equivalent resonance structures belonging to each type. On constructing
the direct product with the beta distribution to build the full EDF it is clear
that the largest probability spin-resolved resonance structure is that with the
fully paired arrangement (↑, ↓, ↑, ↓, ↑, ↓), that shares the same probability as the
(0, 2, 0, 2, 0, 2) and (2, 0, 2, 0, 2, 0) ones.

5.1 All the states from an electron configuration

We close this section by analyzing how the present approach may shed new light
on the role played by bonding indices in chemical bonding theory. We choose the
square planar D4 configuration of H4, and build a set of four orbitals from the
1s manifold. Our presentation is also valid for the π skeleton of cyclobutadiene.
In the ZDO approximation,

χa1 = 1
2 (φ1 + φ2 + φ3 + φ4),

χe1 = 1
2 (φ1 + φ2 − φ3 − φ4), χe2 = 1

2 (φ1 − φ3 − φ4 + φ6),
χb1 = 1

2 (φ1 − φ2 + φ3 − φ4).

We examine the states coming from the a2
1e

2 configuration. These include a
triplet and three singlets. The MS = 0 components are,

3A2 = 1/
√

2(|χa1 χ̄a1χe1 χ̄e2 | − |χa1 χ̄a1χe2 χ̄e1 |),
1A1 = 1/

√
2(|χa1 χ̄a1χe1 χ̄e1 |+ |χa1 χ̄a1χe2 χ̄e2 |),

1B1 = 1/
√

2(|χa1 χ̄a1χe1 χ̄e2 |+ |χa1 χ̄a1χe2 χ̄e1 |),
1B2 = 1/

√
2(|χa1 χ̄a1χe1 χ̄e1 | − |χa1 χ̄a1χe2 χ̄e2 |),
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and differ in the open-shell e2 structure. None of them are single determinants,
but it can be shown [20] that the EDF in these simple multideterminant cases
can also be obtained from back of the envelope calculations. If Ψ =

∑
r crDr,

whereDr is a Slater determinant, then p(S) = N∑rs crcs
∑
{kj}∈SN det

[
S
b(kj)

i(r)j(s)

]
,

where now the overlap integrals are between orbital i in determinant r, and or-
bital j in determinant s. This is a slightly more cumbersome to work out than
in our previous examples, but it can still be done by hand.

It is not difficult to show that the four states display the same pα or pβ

distribution. Ordering the centers anticlockwise, pα(1, 1, 0, 0) = 1/8, pα =
(1, 0, 1, 0) = 1/4. There are four and two equivalent structures of the first and
second kind, respectively. Since we do not have a single determinant description,
the full EDF p 6= pα ⊗ pβ .

1

2 3

4 1

2 3

4

p = 1/32× 16 p = 1/32× 8
(1/2) (1/4)

1

2 3

4

p = 1/8× 2
(1/4)

-1/8 0 -3/64

Scheme 12: 3A2 full EDF for a planar D4 system. The κ2, κ3, and κ4 values
are shown as numbers within the squares. The probability of each arrangement
as well as the multiplicity of each structure are shown below, together with the
total contribution of all structures of each kind (in parenthesis).

Scheme 12 shows the EDF for the triplet state. Notice that the central
and right structures can be reached from the leftmost one by a vicinal shift
(jump) of one electron. All bonding indices in this case can also be obtained
from the MS = +1 component of the triplet, which is the single determinant
3A2 = |χa1 χ̄a1χe1χe2 |. Its delocalization pattern can be separated into an alpha
part and a beta part. The first is equivalent to a hole delocalized in χb1 , and
the second to an electron delocalized in χa1 . We can thus understand why κ3

vanishes, since the hole and the electron κ3 annihilate each other in the three
center case. Both, however, add to the two- and four-center indices. Using our
transition amplitudes rule, δ2 and δ4 are immediately shown to be equal to 1/4.

The 1A1 EDF is shown in Scheme 13. In this state the four-center index has
changed sign. There are no completely paired (↑, ↓, ↑, ↓) spin structures, and the
value of the diagonal two-center delocalization index δ(1, 3) is negative, −1/4.
This provides the first confirmation that negative delocalization indices may be
found in real chemical systems. We stress that the consequences of these and
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p = 1/32× 4 p = 1/8× 2
(1/8) (1/4)

1

2 3

4

p = 1/32× 16

(1/2)

-3/8 0

1

2 3

4

p = 1/32× 4

(1/8)

+5/64
+1/8

Scheme 13: 1A1 full EDF for a planar D4 system. All notation as in Scheme 12.

other ideas contained in this work should be carefully checked in the future. The
third structure counting from the right in Scheme 13 is equivalent to the first in
Scheme 12, and again, we can reach all the others from it through one electron
shifts. The probability of two unoccupied centers, vanishing in the triplet, is
here different from zero.

Table 2: Classification of the a2
1e

2 states by means of the set of κn values.

κ12 κ13 κ123 κ1234
3A2g -1/8 -1/8 0 -3/64
1B2g -3/8 +1/8 0 -3/64
1A1g -3/8 +1/8 0 +5/64
1B1g -1/8 -1/8 0 +5/64

Another interesting point regards the classificatory power of the set of κn
values. Table 2 shows that a specification of the different values of κ2 and κ4

fully identifies the state of the H4 system. The generality of this statement
should also be investigated. Finally, a real CAS[4,4] D4h calculation with the
GAMESS [41] code employing its TZV basis set in the 1B2g state provides
an equilibrium H-H distance of 1.121 Å and the following cumulant values:
κ12 = −0.326(−0.375), κ13 = +0.013(+0.125), κ123 = −0.0084(0.000), κ1234 =
−0.018(−0.047). The figures in parenthesis are those provided by our ZDO
modelling. This demonstrates that negative δ2 are here to stay.

6 From EDFs to chemical bonding

We now move to consider the inverse problem. Given an EDF, computed from a
(possibly general) wavefunction, we want to extract chemical information from
it. Namely, from the discrete probability distribution providing the (spinless or
spin-resolved) probabilities of finding a partition of the N electrons into the m
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centers of a molecule, we would like to obtain the set of n-center independent
bonds that best describe the EDF.

In a sense, this problem is similar to that of approximating optimally a dis-
crete probability distribution by a dependence relationship among the variables
upon which it depends. This is an important problem in statistics. In 1968,
Chow and Liu [42, 43] used dependence trees and mutual information measures
to offer a possible solution. Since then, it has become clear that the general
problem is NP-hard (i.e. harder to solve than those that can be solved by a
nondeterministic Turing machine in polynomial time), and many techniques,
including Bayesian networks, Markov chains and recently, machine learning al-
gorithms have been used to tackle it [44, 45]. It is far from our aim to discuss
how these techniques can be applied here. We will simply show that in many
cases the chemical information encoded in the EDFs can be easily extracted.

Accepting some constraints, the problem can be easily formalized. Imagine
that we only contemplate a description in terms of two-electron bonds, which is
usually a valid approximation in most cases. Let us also restrict to the spinless
case for simplification. Then, as we already showed, we look for partitioning
the EDF p as a product of n = N/2 nc,2e components: p =

⊗
i p

i
n, where

pin is an n-center probability distribution in which we must specify the set of
n centers in which the nc,2e bond is delocalized, as well as their n(n + 1)/2
probability components. In many systems only 2c,2e links will be relevant, so
we will just need to find which pairs of centers hold 2c,2e links and what type
of 2c,2e interaction each of these links will be (as specified by its p2).

Without recourse to advanced statistical techniques we can identify a number
of independent steps in proposing a solution. We need to find, on the one hand,
whether 2c,2e bonds are enough or whether we need multicenter (i.e. n > 2)
bonding. On the other, we must identify the centers involved in each multi-
(including two-) center link. We will first show that, indeed, the locality of
interactions can be probed easily. Then we will examine how to grasp some
information on the other two problems.

6.1 Checking statistical (in)dependence

The full spinless EDF must fulfill Bayes’ chain rule. Let us, as usual, label the
centers of a system a, b, . . . ,m. Bayes’ rule allows us to write, in general, the
joint probability distribution in terms of marginals and conditional probabilities,

p(na, . . . , nm) = p(na)p(nb|na)p(nc|nanb) . . . p(nm|na . . . n(m−1)),

where p(na) is the one-center marginal probability of finding a given number
of electrons in center a, and p(ni|njnk..) is the conditional probability of find-
ing ni electrons in center i provided that nj , nk, . . . electrons have been found
in center j, k, . . . . The conditional probability is computed by p(ni|njnk..) =
p(ni, nj , nk, . . . )/(p(nj)p(nk) . . . ).

If we now use our chemical intuition to assume a dependence structure for
the center (or group) electron populations, as exemplified in Scheme 14, where
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p = p(na)p(nb)p(nc|na)p(nd|nc)

Scheme 14: An example of Bayes’ rule from chemical assumptions.

dashes are to be interpreted both as causal relations between populations and
as chemical bonds, then we expect that, for instance, the populations of centers
a and b (or those of d and c) be statistically independent. Thus, the chain

p = p(na)p(nb|na)p(nc|nanb)p(nd|nanbnc)p(ne|nanbncnd)

can be significantly simplified since p(nc|nanb) = p(nc|na), p(nd|nanbnc) =
p(nd|nc), and p(ne|nanbncnd) = 1 due to the constraint that the total electron
population is equal to N , so that if we know that na, nb, nc, nd electrons are
found in the a, b, c, d centers, then the population of e is fixed and the conditional
propability is equal to one.

We can apply these ideas to a simple example. We will take the Hartree-Fock
data in Table 1 regarding the H2O (Ha-Ob-Hc) molecule. Using Bayes’ rule,
we approximate p = p(na)p(nc|na)p(nb|nanc) ≈ p(na)p(nc) if the two H atoms
are not bonded and show independent populations. The H atom marginals
(Ha is equivalent to Hc) can be easily obtained by summation. There are only
three non-negligible populations with p(0) = 0.6444, p(1) = 0.3130, and p(2) =
0.0414. If our statistical dependence tree assumption is correct, then the full
EDF contained in the Table can be reconstructed from just two parameters (the
sum of the marginals should be one). The comparison can be found in Table 3.

As expected, the approximation works rather well, and allows us to draw a
plausible chemical graph from plain statistics. The two H atoms are not bonded
in a first approximation. We stress that in this approach there is no hypothesis
whatsoever as to what kind of statistical dependence exists between the H and
the O atoms. If two independent O-H bonds are superimposed, then we already
showed that the number of parameters can be reduced to one λ asymmetry
term.

A more systematic approach on how to draw the chemical graph can by
devised through the use of the cumulant moments κn or mutual information
measures lile I2. The latter are entropy-like quantities that vanish in the case
of independence of two random variables:

I2(n1, n2) =
∑
n1,n2

p(n1, n2)ln

(
p(n1, n2)

p(n1)p(n2)

)
.
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Table 3: Exact QTAIM EDF for a HF//6-311G(d,p) calculation in H2O to-
gether with that approximated by assuming independence of the Ha and Hb
populations. Only inequivalent probabilities are shown.

n(Ha) n(O) n(Hc) p(exact) p(approx)
a b c
0 10 0 0.4133 0.4153
1 9 0 0.2032 0.2017
1 8 1 0.0971 0.0980
2 8 0 0.0274 0.0267
1 7 2 0.0126 0.0130
2 6 2 0.0002 0.0017

The mutual information can only be zero if the joint probabilities are repro-
duced by the product of the marginals, i.e. if the random variables are inde-
pendent. Computing all the possible I2 provides information about the degree
of dependency among the set of variables. For instance, in our water case,
I(a, b) = I(b, c) = −0.3414, and I(a, c) = −0.00031. This shows that, to a good
approximation, the H atoms are not to be considered bonded. Dash chemical
graphs can easily be drawn from I2 tables.

6.2 Grasping the graph structure

It is our opinion that the non-additivity of the I2 descriptors severely precludes
their general use. Cumulants provide similar information and give direct chem-
ical insight. A simple algorithmic recipe to identify the chemical graph has al-
ready been explored in terms of interatomic exchange-correlation energies [46],
the energetic correlates of δ2. Its equivalence in the present context is simple: (i)
obtain δ2 values between all pairs of centers; (ii) cluster their values in groups;
(iii) draw dashes for all pairs belonging to the largest δ2 cluster.

Scheme 15 shows how this is applied to the C2H4 case, with a QTAIM
EDF computed from a GAMESS [41] HF optimization with the TZV(d,p) basis
set. The DIs for the C-C, and C-H bonded interactions are 1.895 and 0.981,
respectively. The C-H non-bonded DI is 0.008, and the non-bonded H-H DIs
are 0.037 (geminal), 0.007 (cis), and 0.013 (trans). No statistical technique
is needed to find manually two clusters of values. Actually, the values of the
secondary cluster can be interpreted in terms of stereoelectronic effects, this
being not important here.

The DI(C,C) = 1.895 value indicates that there are several electrons de-
localizing between the two C atoms. A näıve identification of the bond order
with DI would tell us that we have two 2c,2e bonds. However, we should be
careful with this type of assignment, particularly in polar interactions. Simple
EDF manipulations shed light on this. In the ethylene case, for instance, we
can perform an EDF calculation if we divide the system into two CH2 groups.
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Scheme 15: Grasping the C2H4 graph structure from δ2. See the text for details.

Table 4 shows the results.

Table 4: QTAIM EDF for a HF//TZV(d,p) calculation in C2H4. The system
has been partitioned into either two equivalent CH2 groups, A,B, or into a H
and C2H3 components, C,D, respectively.

nA nB p nC nD p
8 8 0.3650 1 15 0.4882
9 7 0.2476 0 16 0.2610
7 9 0.2476 2 14 0.2412
6 10 0.0687 3 13 0.0122
10 6 0.0687
5 11 0.0031
11 5 0.0031

It is readily seen that to a good precision, the methylene groups are able
to exchange two pairs of electrons, so their populations vary from 6 to 10.
Similarly, the H atoms exchange basically a pair of electrons, their populations
staying between 0 and 2. Moreover, in the symmetric CH2−CH2 partition, the
probability distribution is almost binomial. The distribution corresponding to
two pure 2c,2e bonds would provide, by direct product, probabilities equal to
6/16 = 0.375, 4/16 = 0.25, and 1/16 = 0.0625 for the (8, 8), (7, 8), and (6, 10)
structures, respectively. Similarly, the C-H link is seen to correspond rather well
to a non-polar 2c,2e distribution. A simple strategy thus leads to the conclusion
that the EDF can be very well represented by the graph shown in Scheme 15,
with an almost non-polar double C-C bond and slightly polar C-H links. Both
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the graph structure and the set of nc,2e bonds have been uncovered without
any other help but the exam of the EDF statistics.

The present approach can be generalized, if necessary, to include nc,2e links.
The simplest option is a top-down approach, identifying first the maximum num-
ber of centers implied in multicenter bonding and then descending the ladder
down to 2c,2e links.

Let us put this to work in a clear three-center bonding case, the cyclo-
propenyl cation C3H +

3 , calculated at the DFT/cc-pVTZ level. To simplify as
much as possible, we can distinguish three CH interacting groups, which we
label as a, b, and c. At the pseudo-SD level, we distinguish two independent 10
electron alpha or beta distributions. In a first approximation we can take for
granted that two of them are localized in each CH group, corresponding to the
carbon core and the C-H bond. This leaves 4 electrons to delocalize through the
C3 skeleton. If we suppose each σ C-C link to be pure, non-polar, and indepen-
dent of the two others, it is easy to check by direct product that pα for these
three ideal non-polar bonds give rise to pα(2, 1, 0) = 1/8 (six equivalent of these
exist), and pα(1, 1, 1) = 2/8. If we now add a pure 3c,1e alpha contribution, we
arrive by direct product at (only inequivalent terms shown) pα(3, 1, 0) = 1/24,
pα(2, 2, 0) = 1/12, pα(2, 1, 1) = 1/6.

Table 5: QTAIM alpha EDF for a DFT//cc-pVTZ calculation in C3H +
3 . The

system has been partitioned into three equivalent CH groups a, b, c.

na nb nc p(exact) p(approx)
4 3 3 0.1639 0.1667
4 4 2 0.0810 0.0833
5 3 2 0.0427 0.0416
6 2 2 0.0022 0.0000

It is rather clear that our approximation reproduces rather well the distribu-
tion, as shown in Table 5. From our present point of view, this structure would
be recovered from computing first the cumulants. Separating again the system
into the three a, b, c coupled CH groups, κ3(a, b, c) = 0.220, δ(a, b) = 1.513.
This tells immediately about a large three-center component.

An unbiased analysis would start with the computation of the full spinless
EDF of the system. Assuming that no four-center bonding exists, we may just
obtain the several multicenter DIs among pairs and trios of atoms. For the
sake of simplicity, let us denote the carbon atoms with capital letters A,B,C
and their linked H counterparts with small letters, a, b, c, respectively. It turns
out that the net charges of the C and H atoms are, respectively, 0.063 and
0.270 au. This implies a rather polar C-H link. The several two-center DIs are:
δ(A,B) = 1.432, δ(A, a) = 0.873, δ(A, b) = 0.040, δ(a, b) = 0.002. Finally, the
three-center DIs are δ(A,B,C) = 0.600, δ(A,B, a) = 0.019, δ(A, b, c) = 0.001,
δ(A, a, b) = 0.001, δ(A,B, c) = 0.018, and δ(a, b, c) = 0.000.

From these data, we would reconstruct easily the standard chemical graph
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with C-H and C-C bonds plus a very large three-center contribution. This last
contribution can not only be due to a standard 3c,2e π bond, since the third
order cumulant among the C atoms is larger than that of a pure 3c,2e link
(4/27 ≈ 0.148). We have to conclude that a small σ three-center term is also
present in the system.

6.3 Partial EDFs

The complete (spinfull or spinless) EDF of a system contains a large amount of
information about the statistical dependence or independence of atomic popu-
lations. However, as we have noticed, obtaining appropriate chemical models
from them is not easy. Another simple approach to getting model parameters
from the computed distributions is through the analysis of partial EDFs.

Let us illustrate this procedure with the H2O example. Given the EDF of
Table 3 we have shown that an immediate analysis of the two- and three-center
DIs (δ(O,Ha) = 0.648, δ(Ha,Hc) = 0.008, δ(Ha,O,Hc) = 0.017) leads to consider
this system in terms of two equivalent 2c,2e OH polar bonds. How we do obtain
their q, f parameters (see Subsection 3.2) or, equivalently, what their 2c,2e local
(partial) EDF is has not a unique answer. A general optimization solution will
be offered in Section 7.

The simplest solution, that would be to consider the EDF provided by a
Ha-OHc partition, leads to a biased vision, since it includes not only the Ha-O
delocalization but also the Ha-Hb one, which in this case is very small. Moreover,
this recipe cannot be applied to cycles. Anyway, doing so in H2O gives rise to a
δ(Ha,OHc) = 0.656 (the sum of the previous DIs) and to a two-electron EDF:
p(0, 10) = 0.645, p(1, 9) = 0.314, and p(2, 8) = 0.042, which can of course be
read in q, f coordinates easily.

As Scheme 5 shows, the small value of δ(Ha,Hc) implies that, statistically
speaking, only a subset of the oxygen’s electrons delocalize over each of the Ha,
Hc atoms. Let us call them naO and ncO. Now imagine that we consider only
those structures in the total three-center EDF in which the population of the Hc
atom is fixed. This blocks the O-Hc delocalization channel, in Bayesian networks
parlance. All fluctuation of the O atom population is then due to the Ha-O
delocalization, and its partial EDF can be easily obtained by renormalizing all
the fixed ncO probabilities so that they add to one. In a sense, we take snapshots
in which, given that the Hc population is fixed, so is ncO. This blocked-channel
technique is very useful, but not unique. As δ3 is small but not zero, the
partial EDF depends slightly on the chosen ncO value. This can be used for
chemical purposes to understand how a chemical bond depends on the electron
distribution of its neighbors. A weighted average of the different distribution
according to the probability of finding a given ncO may also be defined.

Using Table 3, we can select n(Hc) = 0, 1, 2. It is clear that for the sake of
precision we should not trust much the results obtained from n(Hc) = 2, but that
will not be a concern here. The renormalized EDF for the Ha-O interaction is
obtained for each of these blocked structures easily. For instance, taking n(Hc) =
0, we have, as expected, three non-negligible structures, (0, 10, 0), (1, 9, 0), and
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(2, 8, 0), which correspond to a pair of electrons delocalizing over the Ha-O pair,
i.e. to the Ha-O 2c,2e link. Adding their probabilities, we recover p(n(Hc) =
0) = 0.644, and renormalizing each of them by this value we get for the n(Hc) =
0-blocked Ha-O EDF: p(0, 10) = 0.6418, p(1, 9) = 0.3157, and p(2, 8) = 0.0425.
These have to be interpreted as the (0, 2), (1, 1), and (2, 0) components of a
simple 2c,2e EDF.

Table 6: Partial QTAIM EDFs for a HF//6-311G(d,p) calculation in H2O ≡
Ha-O-Hc for the Ha-O pair. See the text for details.

n(Hc) n(Ha) n(O) p
0 0 2 0.6418

1 1 0.3157
2 0 0.0425

1 0 2 0.6496
1 1 0.3103
2 0 0.0401

2 0 2 0.6601
1 1 0.3028
2 0 0.0371

avg. 0 2 0.6450
1 1 0.3135
2 0 0.0415

Table 6 contains the three different partial Ha-O distributions that we can
get from Table 3. Notice that the Ha-O bond depends slightly on the number
of electrons that have been blocked in the Hc atom. As expected from chem-
ical grounds, when the Hc atom is negatively/positively charged and thus the
oxygen bears a cancelling positive/negative net charge, the latter atom becomes
more/less electronegative, thus the Ha-O bond becomes more/less polarized to-
ward O. Since the probability of the blocked channel is known (in this case, the
marginals for nc = 2, 1, 0,respectively) we can also average each partial EDF
with its marginal probability to get an average 2c,2e distribution.

The procedure sketched here is easy to generalize. Let us consider a R1−A−B−R2

fragment for which we want to isolate the A−B partial EDF. We can block both
the R1 and R2 groups by fixing their populations, n(R1), n(R2). If the R1−A,
A−B and B−R2 links are assumed statistically independent, then by blocking
n(R1), n(R2) we effectively avoid communication of A with R1 and of B with R2.
Denoting the populations of R1, A, B, and R2 as n1, na, nb, and n2, respectively,
we define the n1, n2-dependent A−B partial EDF probabilities as

p(ña, ñb)
n1,n2 = p(n1, na, nb, n2)/p(n1, n2) ∀ na, nb at fixed n1, n2.

In this expression, ña = na + n1, ñb = nb + n2 are total electron counts that
may be used as proper references for the A-B fragments. For instance, ñ(O) =
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n(O) + 8 in Table 6. The averaged partial EDF thus becomes

p̃(ña, ñb) =
∑
n1,n2

p(n1, n2)p(ña, ñb)
n1,n2 =

∑
n1+na=ña,n2+nb=ñb

p(n1, na, nb, n2),

which is seen to be nothing but the EDF that we would obtain by grouping
together R1−A and B−R2 as two fragments and examining their distribution
function. In the water molecule case, the average distribution in Table 6 is
nothing but the Ha-(OHc) EDF, that as previously noticed includes Ha-Hc
delocalization. The reason why this is so is easy to unmask. For instance,
when n(Hc)= 2 in Table 6, the (0, 8, 2) structure can be interpreted both as
coming from either a Ha atom that has delocalized its electron to the oxygen
and an oxygen that delocalizes its OHc pair into the Hc atom, or as an spectator
oxygen and a Ha atom that delocalizes its electron into Hc, i.e, as a direct Ha-Hc
delocalization.

There is no general solution to this problem. If we would like to avoid these
or similar R1−R2 direct transfers we must exclude cyclic delocalizations, like
Ha donating to Hc that donates to O which in turn donates to Ha. If this is a
good approximation, then taking the partial EDF for neutral (or reference) R1,
R2 fragments minimizes the impact of direct R1−R2 transfers, for the only way
for these two fragments to maintain their initial populations is a cyclic electron
movement. In the H2O case, we would take the n(Hc) = 1 partial EDF as
defining the Ha−O bond.

7 Fitting EDFs

At the beginning of the previous Section we identified two problems that needed
to be solved before considering seriously how to extract chemical information
from a given EDF. We have now shown how to discern the centers that are
involved in strong links and where and among which centers to look for mul-
ticenter interactions. Fortunately, the quality (negligible or not) and quantity
(single, multiple bonding) of any of these nc,2e links can be extracted from the
values of the several cumulants κn.

Now we examine a simple recipe to shed light on what we can expect on the
general problem of modelling an EDF. We will not recourse to the advanced
statistical techniques or machine learning methodologies that are needed to
appropriately tackle this problem, but we will use instead our previous insights
coupled to standard minimization procedures. In line with the manuscript, we
restrict to a general presentation, leaving any implementation details for future
works.

Let us assume that an EDF and a molecular structure are provided. The fit-
ting algorithm contains the following steps: (i) Compute all relevant cumulants
κn’s starting with the largest multicenter interaction expected. If three-center
bonds are expected, for instance, compute κ3 among all trios. Using the magni-
tude of κ3, identify the centers involved in three-center bonds. (ii) Descend the
n ladder until the κ2 values between any pair of centers have been exhausted.
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Identify all two-center bonds, including their multiplicity, and draw the chemical
graph. (iii) Build the model EDF as a direct product of the nc,2e interactions
that have been found. Each of the factors of the product depends on model
variables. For instance, in a 2c,2e link we need the q, f parameters. Feed the
EDF builder with appropriate starting values for all of them. (iv) Use a robust
minimizer to achieve, in a least squares sense, an optimum set of parameters
that best describes the full exact EDF.

Although the above algorithm is still fed manually, it is sufficient for our
purpose here: showing how to attack, albeit in a simple manner, this difficult
problem. We have implemented a module within the EDF code [22, 47] that
minimizes the least squares discrepancy of the computed EDF from that of a
model direct product using the above ideas.

Using our water molecule example, and noticing that both κ3 and δ(Ha,Hc)
are very small, we may decide to construct a model with two equivalent 2c,2e
links, each characterized by a q, f pair. In this way, the oxygen atom bears 6 lo-
calized electrons and two two-center bonds so that p10 = p2(Ha,O)⊗p2(Hb,O)⊗
i(p1)6, and we optimize the q, f parameters against the full EDF of Table 3.
The optimum parameters are q = 0.601 and f = −0.015. The product EDF is
found in Table 7

Table 7: Comparison of the exact and fitted QTAIM EDF for a HF//6-
311G(d,p) calculation in H2O. The optimum parameters are qopt = 0.601 and
fopt = −0.015. Only inequivalent probabilities are shown.

n(Ha) n(O) n(Hc) p(exact) p(fitted)
0 10 0 0.4133 0.4139
1 9 0 0.2032 0.2024
1 8 1 0.0971 0.0989
2 8 0 0.0274 0.0271
1 7 2 0.0126 0.0133
2 6 2 0.0002 0.0002

It is easily checked that the reconstructed EDF improves slightly the one
modeled in Table 3. This is done at the expense of introducing a small negative
correlation factor that is used to absorb the neglected Ha,Hc delocalization. As
demonstrated above, this product model provides a vanishing δ(Ha,Hc). The
final quadratic deviation is rather small, 5× 10−6

Another simple example is provided by the CH4 molecule. We use this time
a valence CAS//TZV calculation that includes most of its static correlation. We
again use three- and two-center cumulants to demonstrate that only the C−H
links are relevant in a first approximation and construct a (p2(C-H))4 ⊗ (p1)2

model with only one irreducible bond. Table 8 compares the exact and fitted
spinless EDF.

Despite the crudeness of the model, and as we saw, the EDF is well re-
produced. Interestingly, the average populations show opposing polarities. The
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Table 8: Comparison of the exact and fitted QTAIM EDF for a CAS[4,8]//TZV
calculation in CH4. The optimum parameters for the C−H 2c,2e link are qopt =
0.0062 and fopt = 0.0805. Only inequivalent probabilities are shown.

n(C) n(Ha) n(Hb) n(Hc) n(Hd) p(exact) p(fitted)
6 1 1 1 1 0.08592 0.08519
7 1 1 1 0 0.03533 0.03673
5 2 1 1 1 0.03499 0.03575
6 2 1 1 0 0.01704 0.01542
8 1 1 0 0 0.01285 0.01584
4 2 2 1 1 0.01167 0.01501
7 2 1 0 0 0.00724 0.00664
5 2 2 1 0 0.00681 0.00647
6 2 2 0 0 0.00343 0.00279
3 2 2 2 1 0.00316 0.00630
8 2 0 0 0 0.00272 0.00286
4 2 2 2 0 0.00223 0.00271
10 0 0 0 0 0.00122 0.00294
2 2 2 2 2 0.00069 0.00264

exact and fitted n̄(C) are 6.025 and 5.986 respectively. The positive net charge of
the QTAIM carbon atom is a well known feature that has been criticized, since
the standard Pauling electronegativity scale suggests opposite polarity. Here
we show that if we neglect the H−H delocalization we recover the traditional
polarity of the C−H bond, pointing to this non-standard exchange channel as
the culprit of the “wrong” QTAIM polarity.

The fitting procedure is able to unmask that the C-H bonds are positively
correlated, as expected. The f value in this case (0.081) has to be gauged, for
instance, with the full-CI result in the H2 molecule, where f = 0.151.

8 Conclusions

We have devoted this manuscript to present, in as close to a layman’s language
as possible, the statistical point of view in the theory of the chemical bond. This
is born from the very probabilitic rules of quantum mechanics as soon as the
electrons are associated to atoms. Since the electron number operator does not
commute with a partial (atomic) Hamiltonian, the conclusion that the atomic
electron population fluctuates follows immediately. If this fluctuations are con-
nected with exchange, which has been many times pointed out as the root (or
glue) of bonding [9], then an easy to grasp link among the fluctuation of the
atomic electron populations, electron delocalization and chemical bonding ap-
pears. When two atoms are bonded, their populations fluctuate as the electrons
delocalize between them.

Since the probabilities of finding an integer, given number of electrons in the
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set of atoms comprising a molecule can be computed both for model as well as
for production-ready wavefunctions, the analysis of the probabilistic distribution
function, the EDF, provides a new, enlightening perspective of what a chemical
bond means.

The EDF approach to chemical bonding does work without explicit mention
to orbitals, although it can benefit from them. Actually, as we have shown, the
recourse to orbital images provides a privileged window into how some rooted
concepts in chemistry are related to the physics of bonding. Interestingly (this
has been known for years within a specialized community working in chemical
bonding in real space), the statistical moments of the electron distribution func-
tion measure nothing but the traditional bond orders of computational chem-
istry. Multicenter bonding from the statistical perspective is nothing but the
mutual interdependence of the electron populations of several (more than two)
atoms.

A simple mnemotecnic rule appears: if the populations of two atoms are
statistically independent, they are not (covalently) bonded. Similarly, only if
the populations of three centers cannot be disentangled, does a three-center
bond exist. As we have shown, the cumulants moments of the EDF easily
encode this information.

Much can be learnt from building EDFs from model wavefunctions. To that
end, the zero differential overlap approximation with a Mulliken projection has
proven very useful. This is simple enough to be taught in fresh inorganic or
organic chemistry courses, needing only from the standard model orbitals that
are found in every modern textbook. Using it we have shown the consequencies
of the Pauli principle in real space, forbidding explicitly that two same spin
electrons occupy the same atomic state thus shaping the behavior of the EDF.
Using basic algebra the Aufbau principle in diatomic molecules is also found
without effort. This leads to construct the approximate EDF of a molecule as
a lego-like product of bonds.

EDFs allow a new, insightful classification of n-center chemical bonds in
terms of a small set of parameters with clear physical meaning. We have only
examined in detail the two-center and three-center one- and two-electron bonds,
but it is not difficult to generalize to other possibilities. EDF classifications
uncover many new exotic bonding regimes that have not been explored so far:
bosonized bonds, in which electrons prefer to pair instead of separate themselves
as expected; negative bond order links, where electrons appear or disappear
simultaneously from two centers due to the presence of a third, etc. These
are not only of academic interest. As we have shown, they do appear in real
systems.

The use of EDFs also leads to uncovering the physical difference between
the traditional 3c,2e and the Pimentel’s 3c,4e bond. It is the different type of
fluctuation, not the presence of a second orbital, that distinguishes them. To
our knowledge, all these insights are new, and may open new avenues in the
theory of the chemical bond.

Once the basic relation between the EDF point of view and the standard
position has been clarified, we turned to show how to obtain chemical informa-
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tion from a real EDF, computed by whatever methodology. We have illustrated
that the problem requires advanced statistical techniques, out of the scope of
this presentation, but that much can be learnt from simpler methods. The eas-
iest way to uncover chemistry is to compute the several cumulant moments to
construct the chemical graph and to decide which atoms are bonded, and what
type of links exist among them. When this is done, two simple methods, the
partial EDF and the fitting techniques allow to obtain the parameters of the
different links into which we partition the distribution function.

Although the ideas here contained may in part be found interspersed in the
recent literature, no self-contained non-mathematical account of them was avail-
able. The statistical point of view provides a different perspective of chemical
phenomena, one in which many rooted chemical concepts like charge transfer,
electron localization and delocalization, resonance structures, polarity, etc, can
be directly imaged in terms of “snapshots” of the electron distribution. In these
snapshots, electrons lie in particular atoms, with different probabilities that
change in the course of a chemical process. We think that this perspective may
be very fruitful, and we encourage the community to take it into account. The
statistical approach is easy to teach and understand, admits from very simple
models all up to the most advanced electronic structure methods without chang-
ing its narrative, and provides a bridge between the molecular orbital paradigm
and the real space theories of chemical bonding. Both have been living rela-
tively isolated for a long time, and we hope that this work may contribute to
communicate both worlds better.
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Chemical Bonding (CB) can be understood from the point of view of the statis-
tics of the electron distribution without recourse to the orbital paradigm and can
be envisaged as a game in which atoms juggle electrons. Here we show how the
complete electron distribution function (EDF) allows us to reconstruct/interpret
basic concepts of CB theory, to classify all possible bonds of a given kind, and
provides an extensive set of chemical bonding indicators.
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