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Abstract

Real space tools are employed to show that the chemical bonding scenario used routinely

to understand ground states lacks the necessary flexibility in excited states. We show that even

for two-center, two-electron links the real space bond orders admit exotic values that have never

been reported. The nature of these situations is uncovered by using electron counting tech-

niques that provide an appealing statistical interpretation of bonding descriptors, together with

simple physical models. Greater than one as well as negative bond orders for a single bonding

electron pair are shown to emerge in situations where the electrons in the pair show a gregarious

(bosonic) instead of the usual lonely (fermionic) behavior. In the first case the gregarious pair is

intra-atomic, while the coupling is interatomic in the second. A number of examples are used to

substantiate our claims.
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Introduction

In the last years, the study and characterization of excited states (ESs) has become an increas-

ing area of interest due to its impact in a wide variety of fields including physics, chemistry, and

biology. [1] The technological role of ESs is also growing. The near future high efficiency photo-

voltaic devices, for instance, depends on the ability to manipulate not well understood processes,

like singlet fission. [2, 3] Similarly, many biological processes involve light absortion and light har-

vesting. [4, 5] In most cases, complicated setups, short life times, etc. make the experimental work

on ESs difficult. [4,6]

Under such circumstances, the availability of accurate theoretical models and tools to study

these states of matter becomes crucial. Recent methodological advances have gone a long way

towards this end, and together with rigorous techniques, like the equation of motion (EOM) method

and its variants, [7] lower cost procedures like the time-dependent density functional theory (TD-

DFT), [8] or the maximum overlap method (MOM), [9] have appeared. As it is usual in Chemistry,

however, as more and more accurate computations become feasible, the more diffuse the relation

between the results of calculations and the intuitive concepts of chemistry becomes, leaving room

for completely unexpected results. This is particularly true when chemical meaning is extracted from

calculations by using techniques explicitly taylored for ground states. An immediate example is the

naïve molecular orbital definition of bond order as a difference of occupied bonding and antibonding

states. As we move to ESs, where electron correlation is usually important, both the concept of

occupied as well as of bonding or antibonding state vanish in thin air.

Real space techniques in the theory of chemical bonding [10] provide a solution to these prob-

lems by using orbital invariant bonding descriptors. As we show, exploring excited states with them

considerably expands the chemical bonding scenario that is usually found in ground states.

In a previous work [11] we have already shown how to use the real space chemical bonding

toolbox to provide a new interpretation of archetypal elementary photophysical processes from an

energetic partitioning point of view. This was done by applying the interacting quantum atoms (IQA)

formalism. [12, 13] Now we analyze the electronic redistribution accompanying excitation phenom-

ena to uncover rather exotic bonding regimes not reported so far. We focus on how electrons

localize and delocalize in space. Returning to the bond order concept, a number of works have
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shown that bond order becomes a measure of two-center electron delocalization when transported

to real space, [14] and that it also conveys bond energy information. [15] A generalization of the

real space bond order descriptors, known as delocalization indices (DIs), to many center cases is

easy, [16–18] and multicenter delocalization indices (MCIs) or bond orders have shown their power

at rationalizing complex concepts such as aromaticity. [18–20]

The accessible numerical range of these descriptors is also known. For instance, the standard

covalent bond order (DI) [21] in a two-center only, two-electron (2c,2e) link must be positive and

fulfill 0 ≤ DI ≤ 2. Standard chemical intuition assigns a maximum bond order of one to such

situations and, in fact, no bonds with DI > 1 have been found in ground states. This is no longer true

in ESs, and interesting new bonding situations may appear which are easily classified and, more

importantly, rationalized, in real space. Similarly, when more than two centers exist, the DI may

become negative. All these possibilities will be instantiated and examined here, for the first time.

To do so we have decided to rest on physical models that provide a clear picture of the meaning

of these potentially mind-disturbing chemical situations. We have found that the Hubbard model, [22]

both in its repulsive and attractive flavors, is particularly suited to that end, mimicking the qualitative

behavior of actual computations. Although many space partitionings have been proposed in the

literature, [13] we will stick to that provided by the Quantum Theory of atoms in molecules (QTAIM).

[10]

We will first review briefly some basic aspects of our approach, including computational details of

our calculations. Then we will discuss results in some simple excited states of H2, turning to excimer

states in dihelium and charge transfer processes in LiF and LiH. This provides a scaffold that is used

to expand the landscape of bonding regimes by studying the H4 molecule in its D4h symmetry and

the conical intersection in ethylene.

Theoretical and methodological aspects

Much as naïve bond orders are related to counting electrons in specific states, bond order in real

space is interestingly linked to the statistics of electron counting, i.e. to the statistics of electron

distribution functions (EDFs). We thus include a succinct review of these ideas, together with a

minimal description of the Hubbard model.
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Bond orders and electron counting

An appealing picture of chemical bonding in terms of how the population of electrons in atoms

fluctuates is being developed. [23,24] Given an N–electron molecule and an exhaustive (up to a null

measure set) partition of the real spaceR3 into m regions Ω1, Ω2, . . . , Ωm (Ω1∪Ω2∪· · ·∪Ωm = R3),

the EDF is the statistical distribution function of the electron populations in the spatial regions, as

described by the set of probabilities p(n1, n2, . . . , nm) that exactly n1 electrons lie in Ω1, n2 electrons

in Ω2, . . . , and nm electrons in Ωm, the set {np} being comprised of integers satisfying n1 + n2 +

· · · + nm = N. In more formal terms, a real space region may be understood as an open quantum

system in a mixed state characterized by a fluctuating number of electrons, since the wavefunction

of the total system is not an eigenstate of the operator defining the number of electrons in domain

Ωi, N̂i. This means that Ni = 〈N̂i〉 =
∫

Ωi
dr ρ(r), the average number of electrons in Ωi, is not an

eigenvalue of N̂i, so that measuring the number of electrons in the domain will render values ni

ranging from 0 to N, the total number of electrons, with a defined set of probabilities, p(ni). This

is the one-fragment EDF for domain Ωi. In the general case, the multivariate electron distribution

function p(n1, n2, · · · , nm) is used.

The Ω 3D domains can be arbitrary, but when using QTAIM atomic basins a partition of the

N electrons of the molecule that assigns a given number of electrons to each of these regions,

S(n1, n2, . . . , nm) ≡ S({np}), or simply (n1, n2, . . . , nm) ≡ {np}, is called a real space resonance

structure (RSRS). If electrons are spin-seggregated, then we come to spin-resolved EDFs, and we

use a set of probabilities p(nα1 , n
β
1 , n

α
2 , n

β
2 , . . . , n

α
m, n

β
m) which provides extremely fine-grained informa-

tion about how electrons and their spins distribute in a molecule.

We have stressed [25] that all standard localization and delocalization descriptors used in real

space methodologies are nothing but the (multivariate) cumulant moments of the EDF. The average

population of a domain Ωi, the Ni introduced above, is obviously equal to Ni =
∑
{np} ni × p({np}) =∑

ni
nipi(ni). In a similar way we can obtain its variance, skewness, etc. If the variance of the

population of domain Ωi, var(ni) =
∑

i(ni − Ni)
2p(ni) vanishes, then its electron population does

not fluctuate, i.e. the electrons are localized. If it does, some of the electrons lying in Ωi may be

found in other domains, i.e. they delocalize, and the covariance between Ωi and another domain,

Ωj, will not vanish: cov(ni, nj) =
∑
{np}(ni−Ni)(nj−Nj)p({np}) 6= 0. The foundation of the statistical
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theory of the chemical bond lies in the deep relation between these moments (which are actually

cumulant moments) and the traditional bonding descriptors. [25] For instance, the Wiberg-Mayer

bond index [26,27] between centers i and j, δij = 2
∑

µ∈i,ν∈j(PS)µν(PS)νµ, which is constructed from

atom-centered (i) primitive functions (µ) and widely used, is immediately generalized in real space

to the two-center DI, which is nothing but the inter-domain covariance, DI(i, j) = δij = −2cov(ni, nj).

It is customary to call the diagonal i = j elements localization indices, LI(i) = λi = Ni − var(ni),

which provide effective measures of the number of electrons localized in domain Ωi. Since the sum

of variances and covariances vanishes (all population fluctuation has to go somewhere), a sum rule

appears, and N =
∑

i λ
i +

∑
i>j δ

ij. Using further order statistical moments of the EDF, multi-center

fluctuation measures (multi-center delocalization indices) can also be defined. [16–18]

It is also possible to partition the DI into independent channels through a diagonalization involving

a further order density that leads to a set of one-electron eigenfunctions called natural adaptive

orbitals (NAdOs). Their occupation numbers add to δij. [28] NAdOs provide an appealing partition

of the bond order into terms which may be associated to bonding contributions.

In recent years, several rigorous bond-energy bond-order (BEBO) relations have been uncov-

ered using real space descriptors. [29–31] It has been shown, for instance, that within the IQA

framework the first order (dominant) electrostatic and covalent energy contributions to the interac-

tion between atoms i and j can be written as Eij
els ∼ − ιij

Rij
, Eij

cov ∼ −1
2
δij

Rij
, where ιij = −QiQj is an

ionic bond order defined from the atomic net charges. An appealing electrostatic model of chemical

bonding can be built from these relations. [31]

The statistical link between the fluctuation of electron populations and the standard energetic and

bond order descriptors used in real space paves the way to scanning fully the properties of bond

indices through simple models. An example of how this can be done has already been presented.

[21] In a two-center, two-electron (2c,2e) system there are only three RSRSs: (2, 0), (1, 1), (0, 2),

where we label how many electrons lie in each domain. The EDF space is thus two-dimensional,

since p(2, 0) + p(1, 1) + p(0, 2) = 1, and all bond indices become fully mapped in this 2D space.

A convenient coordinate system is constructed with the probability that any of the electrons lie in

one of the basins, which we call p and provides a measure of heteropolarity, and a correlation

factor −1 ≤ f ≤ 1 that determines how the electronic motion is correlated. f = 1 means that an

electron is completely excluded from one domain if the other is already in it (positive correlation) and
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f = −1 implies that the two electrons are always found together within the same domain (negative

correlation). The correlation factor here defined plays the same role as that used in density matrix

theory. The (p, f) pair describes fully a 2c,2e link at this coarse-grained level: p(2, 0) = p2−p(1−p)f,

p(1, 1) = 2p(1− p)(1 + f) and p(0, 2) = (1− p)2 − p(1− p)f.

With this parametrization, the delocalization index becomes δ = 4p(1 − p)(1 − f). In standard

weakly correlated bonds with positive f ≈ 0, the EDF becomes binomial, and δ peaks at δ = 1 for a

purely covalent homopolar link with p = 1/2. As correlation, f, or polarity, p, increases, δ decreases.

Moreover, for non-correlated links with f = 0, ιij = 1 − δij so, in agreement with standard wisdom,

the ionic and covalent bond orders are inversely correlated.

Deviations to this canonical framework appear as f strays significantly from zero. Strong positive

correlation induces localization (decreases δ) and this justifies that alleged multiply (up to quintuply

or sextuply) bonded metal dimers [32] display much lower DIs than these naïve electron counts, for

instance. Another virgin territory out there to explore lies in f < 0 regions. As we will show here,

they are actually found in ESs.

Negatively correlated bonds imply a bosonization of the electron system: electrons do not avoid

each other, but on the contrary try to delocalize together. In our example, the most extreme 2c,2e

case with δ = 2 occurs when p(0, 2) = p(2, 0) = 1/2 and p(1, 1) = 0, i.e. when there is a resonance

between the two valence bond ionic structures. Notice that we will be using the label ionic in two

different senses: valence bond ionic resonance and charge transfer ionicity. In the first sense there

is no overall charge transfer.

As allowing f to become negative may bring new bonding situations to the fore, increasing the

number of centers expands the bonding landscape considerably. Besides permitting many-center

electron delocalization, multicenter bonding is a discipline on its own, the presence of a third center

introduces the possibility of negative DIs. In diatomics this is not possible: cov(ni, nj) is negative

semidefinite, for increasing the population of one center implies decreasing it on the other thanks

to particle number conservation. This is no longer true when a third atom appears, and weird

fluctuations may arise in which increasing the population of a center (positive fluctuation) is also

accompanied by an increase in the number of electrons of the other. This implies some type of

concerted electronic dance involving the third center. We will also report this new behavior here.

Within the EDF formalism, each RSRS {np} has a distinct contribution to any given bonding
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descriptor like δij: δij({np}) = −2(ni − Ni)(nj − Nj). This contribution is weighted by the probability

of the RSRS to give the final DI, δij =
∑
{np} δ

ij({np})p({np}). In this sense, a RSRS may be

understood to favor or oppose the final average bonding descriptor. In a homodiatomic with centers

a, b, for instance, the neutral RSRS with equal number of electrons in each atomic domain (na =

Na = nb = Nb = N/2)) does not contribute to δab. Only non-neutral structures in which electrons are

delocalized add to the DI. Similarly, for a heterodiatomic in the charge transfer (CT) ionic limit, e.g.

a LiF molecule in which the average atomic populations are close to Li+ and F−, the fully CT ionic

RSRS will not contribute appreciably to δ, and only those in which electrons are transferred back to

Li will do.

The Hubbard model in molecules

The Hubbard model [22] was proposed in solid state physics as possibly the simplest lattice model

able to describe the metal-insulator transition. This is done through a modulation of the extent of

electron delocalization, achieved through an energetic penalty parameter U that difficulties electrons

from occupying the same lattice site. Despite its simplicity, analytical solutions are only known in the

one-dimensional case, [33] and thanks to the rich physics it embodies, it has been thoroughly used

and generalized in condensed matter physics.

In the standard Hubbard Hamiltonian each lattice site i can host up to two opposite spin electrons

(in a single effective orbital). At half-filling, i.e. when there are as many electrons as sites, electrons

can hop between (opposite spin) singly occupied nearest neighbors. The hopping ability is controlled

via a site coupling parameter t. In second quantized form, H = −t
∑
〈i,j〉,σ(c

+
iσcjσ+c+jσciσ)+U

∑
i ni↑ni↓,

ciσ creates σ-spin electron at site i, ni↑, ni↓ are spin-resolved electron number operators, and the

〈i, j〉 sum contains only nearest neighboring i, j sites. It is usual that U, the on-site repulsion, be

a semipositive definite parameter. This is the repulsive Hubbard lattice, where r = U/t acts as a

dimensionless correlation strength. At U = 0 the model collapses onto the tight-binding or Hückel

approximation, known to all chemists, whereas as U tends to infinity the electrons fully localize at

their sites. We have already noticed [34] that the standard order parameter used to locate a possible

metal-insulator transition, D = 〈ni↑ni↓〉, is nothing but p(2), the probability of double occupancy of

a site within the EDF formalism, and that a two sites Hubbard system has been successfully used
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as an analogue for all the singlet and triplet CI states of dihydrogen in a minimal basis. In this way,

the tools of the theory of chemical bonding in real space can be explored in other realms, offering

valuable information about how strong Coulomb correlation induces electron localization.

Although less known, U can be made negative, in what it is known as the attractive Hubbard

model. [35] Now there is an energetic reward for electrons to pair up at sites, leading to a bosoniza-

tion of the electron system. It is rather clear that the sign and magnitude of U, or of r, are intimately

related to the correlation factor f defined above, and that the Hubbard model contains all the ingre-

dients needed to simulate 2c,2e bonds and to mimic the behavior of more realistic systems.

Computational Details

To provide convincing proofs of our claim that most, if not all, of the weird statistical electron distribu-

tions that can be envisioned from EDFs can actually be found in excited states, we have performed

model (Hubbard) and high level calculations in simple systems, some of them from our previous

work focused on energy transfer. [11]

Calculations were done as follow. The Hubbard model wavefunctions were obtained using the

PySCF [36] suite. Lattice-coarse density matrices were extracted and analyzed. For the electronic

structure calculations we have employed the full configuration interaction (FCI) and multi-reference

configuration interaction with single and double excitations (MRCI-SD) levels of theory. Details on

the MRCI-SD computations can be found in a previous article. [11] Briefly, the reference state was

constructed as an equal weight state averaged wavefunction (SA-CASSCF) with the d-aug-cc-pVDZ

[37] basis set. The active spaces are (2 electrons, 10 orbitals) in the case of H2, (4,4) for He2, (4,6)

for LiH, (6,6) for LiF and (2,2) for C2H4. For ethylene, the minimum energy path (starting from the

Franck-Condon region) for the first valence excited state was obtained at the XMS-CASPT2/cc-

pvdZ level, and subsequently, single point MRCI calculations were carried out. In the H4 system FCI

calculations were done in the Ag representation of the point group D2h with the aug-cc-pvdz. [37] The

MRCI-SD and XMS-CASPT2 electronic structure calculations were respectively performed using

Molpro [38] and BAGEL; [39] PySCF [36] was used for the FCI level.

The density matrices provided by the electronic structure codes were fed into the PROMOLDEN

[40] code to obtain atomic overlap matrices (with the lattice or QTAIM partition). Electron distribution
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functions were obtained with our in-house code EDF [23] and natural adaptive orbitals (NAdOs) with

DENMAT, [41] another in-house code.

Results and Discussion

We devote this section to comment on both model and actual electronic structure calculations in a

few exemplifying systems. We refer the reader to the supplementary material (ESI) for comprehen-

sive Tables, as well as for a simple comparison with standard molecular orbital results, particularly

as natural occupation numbers are regarded. We will start by discussing several dihydrogen states

together with the two-sites Hubbard model at half filling. This will serve us to examine the chemical

space of a homodiatomic 2c,2e interaction. We will then shift to heterodiatomics, studying charge

transfer processes induced by avoided crosssings. Negative delocalization indices will be found in

an interesting exploration of the D4h states of H4 and, finally, a less academic example of conical

intersection in ethylene will be presented.

The 2c,2e homodiatomic case: H2 and the two-sites Hubbard solution.

Following our previous work, [11] EDFs and bonding descriptors across the potential energy sur-

faces (PES) of the X1Σ+
g (S0), the B1Σ+

u (S1), the double minimum E,F1Σ+
g (S2) and the b3Σ+

u (T1)

states of H2 have been examined. S0 and T1 have been extensively analyzed before, [42, 43] but

are included for completeness. Although all the B1 and E,F states dissociate to H(1s)+H(2l), only

the E state is directly correlated to this limit, while the B1 state and the F minimum correlate to the

H+ + H– and are thus considered to have a clearly valence bond ionic character. This was clearly

found from our IQA energetic point of view. [11] It is this valence bond ionic or zwitterionic charac-

ter the one we are interested now. At the H+ + H– dissociation limit, which is not attained due to

several avoided crossings, the two electrons are either found on the left or right domains, so that

p(2, 0) = p(0, 2) = 1/2, p(1, 1) = 0, and δij = −2 cov(ni, nj), the DI equals 2.0, doubling the limit

for normal 2c,2e bonds, which is one. In a normal link with positive (or null) correlation factor f, the

maximum value for δ = 4p(1− p)(1− f) is attained when p = 1/2, f = 0.

Fig. 1 shows the LI and DI values for the ground state two-sites Hubbard solution at positive and
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negative U values. The triplet state is not shown since double occupancy is forbidden in this case,

so that its DI vanishes. Notice that being p = 1/2, f = 1 − δ, and p(2, 0) + p(0, 2) = δ/2, so that

the Figure contains information of all these quantities at the same time. The repulsive U/t region is

well known. At the U = 0 tight binding limit the solution is a single determinant, equivalent from the

delocalization point of view to the Hartree-Fock model, δ = 1, the correlation factor f vanishes, and

the two electrons are statistically independent. This gives rise to a symmetric binomial probability

distribution, i.e. p(2, 0) = p(0, 2) = 1/4, p(1, 1) = 1/2. As U/t tends to +∞ and the on-site repulsion

dominates, the electrons localize, f → 1 and the DI vanishes.
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Figure 1: Localization (2λ, green) and delocalization (δ, purple) indices for the half filling two-sites
Hubbard model. The localization index has been multiplied by a factor of two, so that 2λ+δ = N = 2
at any U/t.

More interesting are the attractive Hubbard results. At negative U, where on-site double occu-

pancy is incentivized, the LI and DI curves exchange roles with respect to those in the repulsive

model. As U/t tends to −∞ the electrons pair-up, the valence bond resonance dominates so that

p(1, 1) and the LI vanish, and the variance of the EDF takes a maximum value. Notice that in this

resonance bond, δ = 2 for a single pair of electrons, so that the generalization of the bond order

concept by means of DIs includes these new situations naturally. The two curves in the Figure inter-
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sect at U/t = 0, where the total weight of the ionic resonance (50%) equals that of the ionic covalent

one.
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Figure 2: Evolution of the probability of each RSRS for the different states of H2 with distance.
For convenience, the structure p(2, 0) is multiplied by a 2 factor (p(2, 0) + p(0, 2)). Structures are
identified by their dissociation limit: the (1, 1) tends to 1, while the (2, 0) tends to 0. States are
distinguished by color: S0 in purple, S1 and S2 in green and blue, respectively, and T1 in orange.

Fig. 2 shows results from the MRCI-SD calculations in the H2 states analyzed in this work. The

DI in this homodiatomic case is simply δij = −2 [2p(2, 0)(0− 1)(2− 1)] = 4p(2, 0). As stated, the

behavior of the DI in the S0 and T1 states is well known, the former decaying sigmoidally while

the latter goes to zero exponentially. This property is useful in the classification of bonded and

non-bonded interactions. [44]

The first relevant difference between the S0 or T1 states and the excited singlets S1 and S2 is

the much longer range of the interactions in the latter, in agreement with our previous results. The

EDFs of both the S1 and S2 states are almost indistinguishable from dissociation down to about

3 Å. At very large distances both behave as normal states, decaying to neutral distributions where

p(1, 1) = 1. As the atoms approach each other they interact very strongly, and at a considerably

large internuclear distance, about 5.7 Å, the p(0, 2) + p(2, 0) curve crosses the p(1, 1) in the two
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states. The B1Σ+
u S1 state persists, from that distance to the shortest one used in our simulations,

in an anomalous distribution with a total ionic resonance weight (p(0, 2) + p(2, 0)) larger than 50%

and a DI greater than one. Even at its energy minimum, located at = 1.27 Å, δ = 1.30. We stress

how easily the inversion points determining whether zwitterionic or normal states predominate are

located using EDFs. The E,F1Σ+
g is resonance ionic from 5.7 to about 1.7 Å, where its behavior

turns back to normal. Since the F energy minimum occurs at 2.32 Å, while the E one is located at

R = 1.01 Å, the E electronic distribution is not zwitterionic, in agreement with common wisdom. The

DIs at the E,F minima are 0.92 and 1.50, respectively.

The H2 case just examined shows without doubt that DIs greater than one for a 2c,2e case

are certainly possible. In this simple case a chemist would immediately associate them to ionic

resonances. From a more physicist-like perspective they would be mapped to an attractive Hubbard

model, a scenario related to the bosonization of pairs of electrons. We think that these real space

descriptors may be important in developing chemical insight in fields like superconductivity or in

providing independent tests of the nature of purportedly new types of bonding, like the charge-shift

bond. [45,46]

He2

The lowest lying excited states of He2 have been studied thoroughly over the years. [47, 48] We

have considered the lowest lying excimer singlets, S1 (A1Σ+
u )) and S2 (C1Σ+

g ), that dissociate to

He(11S0)+ He(21S0), and the first triplet, T1 (A3Σ+
u ), that dissociates to He(11S0)+ He(13S1). These

three states display deep energy minima at 1.047, 1.099, ad 1.052 Å, respectively. As we showed in

our previous report, [11] the IQA energetic point of view readily uncovers the entangled nature of

the resonances at dissociation as well as the strong covalent bonding as measured by exchange-

correlation energies VAB
xc in excess of 100 kcal/mol.

Fig. 3 contains the EDFs of all the states. At all but the smallest distances only the (2, 2), (3, 1)

and (1, 3) structures are populated significantly. As in the S1 and S2 excited states of dihydrogen,

the interaction between the two atoms is very long ranged, and the EDF deviates noticeably from

the (2, 2) dissociation limit even at 5 Å. Both S1 and S2, which converge at dissociation, have

indistinguishable distributions (and energies) at distances larger than 3.5 Å, where they start to
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Figure 3: Evolution of the EDF in the excimer states of He2. The probabilities of the (3, 1) and
(4, 0) RSRSs have been multiplied by two, accounting for the total (3, 1) + (1, 3) or (4, 0) + (0, 4)
components of the distribution. Structures are identified by their limiting behavior: (2, 2) tends to 1,
while (3, 1) tends to 0. The (4, 0) structure remains negligible except at very low distances. States
are distinguished by color: S1 in purple, S2 in green and T1 in blue.

deviate. Several intra-atomic rearrangements take place at smaller distances which are not reflected

on the interatomic interactions. S2 shows a minimum in the probability of the (3, 1), (1, 3) RSRSs at

about 2.2 Å, distance at which a maximum in its potential energy curve is found. As we see from the

EDF, this is due to inhibited delocalization, very likely due to its interaction with another state.

If the (4, 0), (0, 4) structures are neglected, the EDFs of the three states fall at short distances

onto the binomial distribution corresponding to two delocalized electrons, as in H2. In fact, the DIs of

the S1, S2, and T1 states at their equilibrium configurations are 1.00, 0.97, and 0.96, respectively, a

bond order equal to one. However, this distribution should actually be read as that coming from two

2c,1e bonds. We think that all standard bonds should be understood in terms of nc,1e contributions,

an idea that will be pursued elsewhere. Briefly, a Lewis pair is usually the result of the Fermi hole

around one electron leaving room so that an opposite spin partner can occupy it. The two electrons

seem to dance together, although they are basically independent statistically. A typical 2c,2e link is

thus better seen as two independent 2c,1e bonds. In the present case two different delocalization
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channels open when one of the atoms is excited, as shown in the left panel of Fig. 4. These lead to

the exchange of the excitation from one atom to the other, each of them contributes approximately

0.50 to the total DI in any of the states. The two main NAdOs in the T state, found on the right panel,

are seen to be σg,1s- and σg,2s-like, as expected, contributing to the DI 0.476 and 0.437, respectively.

A similar situation is found in the two singlets.

1s

2s

0.476 0.437

Figure 4: The two two-center, one-electron bonds in the T1 state of He2 at its equilibrium distance.
Left, scheme showing the two independent delocalization channels. Right, |φ| = 0.036 au isosur-
faces of the two main NAdOs of the system. The contributions of each NAdO to the DI is also
shown.

The 2c,1e charge transfer limit: LiF and LiH

We have examined the 11Σ+ and 21Σ+ states of LiF and LiH. The formation of the LiF molecule

involves an avoided crossing ocurring at about R = 6.64 Å coupled with an electron transfer of 0.94

e towards the F atom. At dissociation the S0 and S1 states tend to neutral atoms and to the Li+, F–

pair, respectively, and are known as the covalent and ionic states. They are interconverted at the

avoided crossing, in a transition that occurs suddenly, within a very narrow distance window. The

equilibrium distance of the ground state is located at Req = 1.6 Å.

The evolution of the EDF is plotted in Fig. 5. There are only two RSRSs contributing non-

negligibly to the EDF except at small distances: the neutral (3, 9) and the charge transfer ionic

(2, 10) ones. We find absolutely remarkable that the avoided crossing can be neatly located from

the contact point of the neutral and ionic states at p = 1/2. Notice that both charge resonances,

as exemplified by H2, and charge transfers can be equally found. Even more interesting is the fact

that from the dissociation limit to R ≈ 5 Å the S0 and S1 EDFs are almost exact mirror images.
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The (2, 10) component in one state is equal to the (3, 9) component in the other and viceversa. This

means that whatever happens in the ground state is mirrored in the excited state, and that as charge

transfer starts in one direction in S0, exactly the same charge transfer, in the opposite direction, is

found in S1. One and the same parameter, e.g. Q(Li), controls the evolution of both states. Only

for distances smaller than 5 Å do the two states start to diverge. We stress that the EDF behavior is

correlated to standard molecular orbital indicators although, in our opinion, the EDF offers a much

richer view of chemical processes. For instance, we include in the ESI the evolution of the natural

orbital occupancies for this and some other of our examples.
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R(Li-F) (Å)

Figure 5: Evolution of the EDF in LiF. The left population is that of the Li atom. Structures are
identified easily: p(2, 10) for S0 and p(3, 9) for S1 tend to 0 at large distance, while p(3, 9) for S0 and
p(2, 10) for S1 tend tend to 1 in the same limit. p(1, 11) remains negligible in both states except at
the lowest distances. States are distinguished by color: S0 in purple and S1 in orange.

The one-parameter one-electron transfer nature of the ionic-covalent transition in this system

is clearly evidenced in Fig. 6, where the DI of both states is plotted against the LiF internuclear

distance. It is again remarkable that δLiF for the S0 and S1 states are hard to distinguish visually in a

wide region around the avoided crossing point, in which the DIs of both states are equal and equal

to 1/2. We thus have two states with the same delocalization behavior.
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A simple 2c,1e model sheds light on why this is so. Since only the (2, 10) and (3, 11) RSRSs are

important, we may envision an electron flowing from the Li atom toward the F moiety in the S0 state

as we approach the crossing from dissociation and an electron flowing from F− to Li+ in the S1 state.

If the probability that this mobile electron is found in the Li atom is called π, then p(2, 10) = 1 − π

and p(3, 11) = π for S0, while p(2, 10) = π and p(3, 11) = 1− π for S1. This provides δ = 2π(1− π)

in both cases. Given that π (or 1 − π) can also be interpreted as the charge transfer, the model

provides a quadratic coupling between Q and δ.
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Figure 6: Evolution of the delocalization index in LiF. The S0 and S1 states are plotted in purple and
orange, respectively.

The LiH case is similar, but includes a number of complications stemming from the low electron

affinity of H, which gives rise to a sequence of avoided crossings that impede the dissociation of

the S1 state to the ionic limit. Actually, a full configuration interaction calculation on the first four 1Σ

roots (see Fig. S1) shows that the Coulombic tail of the ionic Li+−H– state crosses with S3 (which

dissociates to 1s23p1 −2 P0 Li and 1s −2 S H), S2 (dissociating to 1s23s1 −2 S Li and a 1s −2 S H)

S1 (evolving to 1s22p1 −2 P0 Li and 1s −2 S H) and S0. The last covalent-ionic avoided crossing

occurs at a considerably lower internuclear distances (in our computation, at about 3.4 Å) than in

LiF, so that the performance of the one-parameter model worsens. Fig. 7 shows the EDF of the S0
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and S1 states from our MRCI-SD calculation, which displays a good agreement with the FCI one

for these two states, with one and two avoided crossings, respectively. Now a very clear crossing in

S0 is found between 3 and 4 Å that takes the the (2, 2) RSRS to fully dominate at shorter distances,

confirming the charge-transfer ionic nature of the LiH ground state. This is close to, although not

coincident with the EDF crossing in the S1 state, at about 3.7 Å. However, if we increase R, a

maximum (minimum) in the (2, 2) ((3, 1)) RSRSs develops that leads to a second crossing at 5.1

Å. The valence state of the Li moiety in the S1 state thus evolve from 2s1 at short distances, to 2s0

(ionic) at intermediate range to 2p1 at dissociation. This can be fully corroborated through a NAdOs

analysis, which will not be shown here.
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Figure 7: Probability of each RSRS for the S0/S1 states of LiH. The S0/S1 probabilities are shown
in purple/orange. The probability of the (4, 0) RSRS is negligible except at very low distances. In
both states, the probability of the (3, 1) and (2, 2) RSRSs tend to 1 and 0 at dissociation,respectively.

Expanding the landscape: H4 and the four-sites Hubbard model.

We will now examine the influence that the existence of more than two centers has on the statistics

of the electron distribution. We will avoid the possibly simplest system, H3, since several other

factors, particularly the occurrence of conical intersections, contribute to blur the overall image. We
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turn then to a symmetric moiety with four sites, which will be examined both at the Hubbard model

level and after actual electronic calculations in the D4h geometry of H4.

Fig. 8 contains a scheme with the atomic labelling used together with the non-equivalent RSRSs

of H4. Only Hubbard compatible structures are shown with maximum doubly occupied sites. This re-

striction is no longer true in the H4 CAS calculations, but all RSRSs with triply or quadruply occupied

H atoms have very low, negligible probabilities, and will not be considered.

Figure 8: Atomic labelling and non-equivalent electron distributions for the four sites Hubbard model
and the H4 molecule. Maximum site occupancy is restricted to two (see the text). Empty, red, and
black circles indicate zero-, singly and doubly occupied sites, respectively.

There are three open-shell singlets, with symmetries A1g,B1g, and B2g, and one A2g triplet state

that can be formed from the a2
1ge2

g ground state configuration in H4. Only the triplet can be described

at the single determinant level. In the tight binding approximation, the four MS = 0 states can be

written as linear combination of two determinants with coefficients determined by symmetry, and

their EDFs and bonding indices determined algebraically. The probability distribution of the two

alpha (or the equivalent two beta) electrons in these four MS = 0 states is equal: the probability

that the two electrons are adjacent (B-like in Fig. 8) is 1/8, and the probability that they occupy non-
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adjacent nodes is 1/4. It is thus the different correlation pattern between the opposite spin blocks

that distinguishes the four-electron EDFs in the four states. As seen in Table 1, the two-, third-, and

four-center cumulants of the distribution discriminate perfectly among the states.

Table 1: two- to four-center cumulant moments of the EDF in the four MS = 0 states of the a2
1ge2

g

configuration of H4 obtained in the tight binding approximation.
State κ12 = −δ12/2 κ13 κ123 κ1234
3A2g −1/8 −1/8 0 −3/64
1B2g −3/8 +1/8 0 −3/64
1A1g −3/8 +1/8 0 +5/64
1B1g −1/8 −1/8 0 +5/64

The EDFs of the Hubbard solution are not continuous at U/t = 0 due to the degeneracy of the

singlets. The Hubbard ground state is 1B1g at positive correlation factors, while it is the 1A1g state

at negative U/t. Since these correspond to very different electron distributions, the EDF jumps at

U/t = 0. Fig. 9 shows the contribution of the A,B,C and D structures to the EDF in the attractive and

repulsive Hubbard regimes. The E structure is not populated in any of the 1B1g,
1 A1g states. Fig. 10

shows the evolution of the LIs and DIs.

In the repulsive regime the r → ∞ limit leads to a purely neutral H4 structure with p(C) = 1.

As r decreases to the tight binding case delocalization sets in, although in a very peculiar way: no

A structures are found. In this process, the LI decreases from 1 to 5/8, while the δ12 and δ13 DIs

reach the same limiting value, 1/4, although at different velocities. The rate of decrease of δ12 is

clearly larger. The behavior of the 1A1g state in the attractive region is completely different. As

r → −∞ only valence bond ionic structures remain, and p(A) = 1/3, p(B) = 1/12. Taking into

account the two and four equivalent distributions of type A and B, respectively, the probabilities of

finding the system in any A or B structure tend to 2/3 and 1/3, respectively. These are exactly the

results of an equiprobable statistical mixture of the three possible ways in which two independent

H+ ↔ H− resonances can be set up in the H4 system: (1 ↔ 2) ∧ (3 ↔ 4), (1 ↔ 4) ∧ (2 ↔ 3)

and (1 ↔ 3) ∧ (2 ↔ 4). The LI of any of the H atoms vanishes, so we have a maximum variance

situation, as in the H+ ↔ H− limiting case of H2. It can be readily shown that A and B structures

appear in the (1 ↔ 2) ∧ (3 ↔ 4) and (1 ↔ 4) ∧ (2 ↔ 3) cases, but that no B RSRSs occur in the

(1↔ 3)∧(2↔ 4) arrangement. This leads to a predominance of A resonances in the r→ −∞ limit.

In the two equivalent A structures the electrons are found together in non-adjacent nodes, shifting
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Figure 9: Probability of each RSRS for the four site Hubbard model. Notice that the multiplicities of
the A,B, and D structures are 2,4, and 8, respectively. The probabilities shown have been multiplied
by these numbers.

simultaneously from two electrons in the 1 and 3 nodes to two electrons in 2 and 4. This induces

a positive non-adjacent covariance. If a positive fluctuation of the population is found in node 1, a

positive fluctuation also occurs in node 3, and viceversa. The δ13 = δ24 delocalization index has

become negative. Actually, if we imagine a system in which only the A RSRSs are populated (each

of the two equivalent possibilities with probabilities 1/2), the adjacent DI would be equal to 2 and the

non-adjacent DI equal to −2. This is actually the r→ −∞ limit of the Hubbard 1B2g state.

These negative DIs correspond, in physical terms, to two coupled pairs of electrons that delocal-

ize together. The concerted movement, however, may actually involve only two instead of four elec-

trons. A model with just two electrons on nodes 1,3 with probability 1/2 shifting to 2,4 with p = 1/2

also displays negative non-adjacent DIs. Overall, given a single pair of electrons, the anomalous

DI> 1 or DI< 0 situations involve bosonization. In the first case it is an intra-domain (intra-atomic)

pair that delocalizes simultaneously to another site, while an interatomic pair of intra-atomic pairs is

involved in the second case.

In short, standard weakly correlated two-center chemical bonds imply one-electron delocaliza-
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Figure 10: Localization and delocalization indices in the four sites Hubbard model. The ground state
is 1B1g/1A1g for positive/negative U/t values.

tion between two sites. This leads to a DI which lies between 0 and 1/2. In the f & 0 case the Fermi

hole of this electron leaves room for an opposite spin one to occupy its same spatial region, leading

to the standard Lewis pair. These two behave in an effective independent way, so the DI of the

2c, 2e link is smaller or equal to one. Contrarily, a minimum of two electrons are needed to explore

new bonding landscapes. Their bosonized behavior may lead to concerted intra- or interatomic

delocalization of the pair, associated to larger than one, or smaller than zero DIs, respectively.

As before, we have explored the possibility of finding these exotic behaviors in actual systems.

The ground state of the H4 molecule is a B1g state. [49] We have performed aug-cc-pVDZ/FCI

calculations on the two first roots of each of the B1g and A1g symmetries. The energy profiles, with

two clear conical intersections, are found in Fig. S2.

Since the attractive Hubbard A1g state shows negative δ13 values even at low r values, we have

examined in detail the first A1g root, which displays a minimum at about Re = 1.17 Å. As evinced

by Fig. S2, the barrier at R ≈ 2 Å is due to an avoided crossing with the third A1g state. Fig. 11

shows the computed DIs and LIs. The first A1g state dissociates to a neutral 4H moiety, but the just

mentioned avoided crossing makes it acquire a clear zwitterionic character at smaller distances that
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justifies the negative value of δ13 at Re, which reaches a minimum value of −0.06 at R ≈ 1.30 Å.

The neutral character is recovered at even smaller distances after the conical intersection with the

second state. This interesting behavior is even more clear after examining the EDF.
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Figure 11: Localization and delocalization indices in the FCI calculation of the lowest 1A1g state of
H4.

Fig 12 shows the evolution of the probability of the six main RSRSs of the lowest 1A1g state.

Notice how the onset of delocalization as R is shortened couples the decrease of the weight of the

neutral C structure with the increase of that of D, much as in the repulsive Hubbard model, and

how at R ≈ 2.0 Å after the avoided crossing, the A structure appears, being third in rank as in the

attractive Hubbard results shown before. The intersection with the second A1g root at a distance

close to the Re has a big impact on the probability distribution. δ13 becomes positive again through

the exchange. It is thus the crossing with states that dissociate into ionic resonances that forces the

appearance of negative DIs in neutrally dissociating states.
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Figure 12: Evolution of the EDF in the FCI calculation of the lowest 1A1g state of H4 with the shortest
internuclear distance R.

The conical intersection in C2H4

In our previous work, [11] we have examined the energy redistribution at the minimum energy conical

intersection associated with the twisted-pyramidalized geometry of ethylene. We now analyze the

EDFs along the minimum energy path (MEP) of the first valence excited state (V). The main geomet-

rical changes are the torsion and pyramidalization of the methylene fragments, and to a lesser extent

the H,H scissoring and the C-C streching/compression, in agreement with previous reports. [50] The

barrierless MEP (Fig. S1) connects the Franck-Condon region with the conical intersection seam

which involves the ground state (N). Although several Rydberg states are superimposed on the initial

portion of the MEP, they were omitted for simplicity from the present discussion.

The analysis of the EDFs along the MEP provides detailed information about the main changes

in electronic structure from the excitation region to the point where the crossing between the V and N

surfaces takes place. Figs. 13 and 14 show the evolution of the CH2−CH2 DI and EDF contributions.

It stands out clear that all relevant electronic redistribution between the two groups occur during the

twisting phase up to the conical intersection at MEP ≈ 4.21 au. The correlated DI of the ground
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state is 1.63, a typical value for a double bond. Interestingly, the DIs of both the V and Z states are

considerably greater than that of S0, pointing to a clearly zwitterionic component. The EDFs evince

that the probability of the (8, 8) RSRS of the V and Z states are significantly smaller than that of the

ground state, and that the contrary is true for the (6, 10) and (10, 6) RSRSs. Interestingly, the single-

electron exchange (7, 9) and (9, 7) RSRSs are almost unaltered during the twisting phase. This

implies that one out of the two links has remained basically unaltered, while the other has shifted to

the f < 0 regime as shown in the following. We have approximately decomposed the EDF of the V

state at the N equilibrium geometry, with δ = 2.31, into two independent links. [21] This leads to two

symmetrical two-center two-electron links. The first one with f = 0.06 is a normal bond, while the

second, with f = −0.29 and δ = 1.29 is clearly bosonized.
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Figure 13: Evolution of the DIs between the methylene groups of the N, V, and Z states in ethylene
along the IRC described in the text. All data in au.

It is also interesting to remark, although we will not examine it in more detail, that after the Z/V

intersection, during the pyramidalization step, the two methylene fragments cease to be equivalent,

and that a rather clear charge separation from one to the other is observed, particularly in the Z

state, a behavior that has been referred to as sudden polarization. [51]
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Figure 14: EDF of the CH2−CH2 groups in the N (red), V (blue), and Z (green) states of ethylene
along the IRC described in the text. All data in au. The lower bunch describes the (6, 10) and (10, 6)
pairs of RSRS, the middle bunch the (7, 9) and (9, 7) pairs, and the upper one the neutral (8, 8)
structure.

Conclusions

We have shown in this work how the investigation of real space descriptors and electron counting

techniques may be used to enlarge our knowledge about the types and nature of the chemical bonds

found in excited states.

Electron distribution functions provide the full statistical distribution of the electron populations in

real space regions. When an atomic partition like that provided by the QTAIM is chosen, as we have

done here, it has been shown before that basically all modern chemical bonding descriptors can be

interpreted in terms of the statistical fluctuation of the electron populations. We have focused on

one and two-center bond indices, like the localization (LI) and delocalization (DI) indices. By using

physical models it is shown that the full landscape of bond orders, for instance, is considerably

larger than imagined, and that even for two electron systems, positive but greater than one, or

even negative DIs, are in principle possible. Both cases are related to a strong coupling of pairs

of electrons, which behave and delocalize like a single pair. This implies a kind of gregarious, i.e.
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bosonic, behavior of the electronic system.

The DI greater than one case has been related to valence bond ionic resonances, or zwitte-

rionic states, which abound in excited states in which two intra-atomic strongly coupled electrons

delocalize simultaneously. We have demonstrated the existence of δ > 1 situations for two-electron

systems in several excited states of the hydrogen molecule which are modeled within an attrac-

tive two-sites Hubbard model. This indicates that the bosonization of an electron pair is a process

that can be readily observed in simple chemical systems. A more interesting case of this kind of

bosonization, the excited states of ethylene, shows that this finding is not only of academic interest.

We have also shown that strong standard bonds, like those in excimers (some excimer states

of He2 have been used as examples) may hide two different 2c,1e delocalization channels. This is

easily uncovered through the use of natural adaptive orbitals. Similarly, avoided crossings between

neutral (covalent) and charge transfer (ionic) states in highly ionic molecules like LiF or LiH have also

been examined, uncovering how in extreme cases they correspond to mirror states with respect to

electron jump that exhibit the same bond orders.

Finally, negative DI bonding patterns demand the existence of a third center or site. We show

that a cyclic four sites repulsive/attractive Hubbard model gives rise easily to negative DIs between

non-adjacent, i.e. diagonal, nodes. It corresponds, physically, to a pair of strongly coupled electrons

lying on two different sites that delocalize together (to the other diagonal in the four sites square).

FCI calculations in one excited state of the H4 molecule corroborate the existence of these exotic

situations.

This closes the loop with two electrons. We have the following simplified scenario. In the weak

correlation regime, an electron may delocalize to an available site (domain) leading to a 2c,1e link

with positive DI, strictly smaller than 1/2. Another opposite spin electron may occupy its Fermi hole

to form a standard Lewis pair, which should be understood as two independent 2c,1e links leading

the 2c,2e paradigm with a DI smaller than one. If two electrons are strongly coupled with positive

correlation this leads to localization and bonding inhibition (associated to a Mott transition in the

thermodynamic limit). If the pair is coupled through negative correlation, it may behave as a unit

lying on one site that delocalizes to an available domain (a zwitterionic pattern) giving rise to a

DI greater than one, or the pair may reside in two different sites, delocalizing together to available

regions. In this case we find negative DIs.
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Further analyses as the number of centers and/or coupled electrons increases are obviously

possible. We think they should clearly be investigated.
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