
A review of feature selection methods in medical
applications

Beatriz Remeseiroa, Veronica Bolon-Canedob

aDepartment of Computer Science, Universidad de Oviedo
Campus de Gijón s/n, 33203 Gijón, Spain

bCentro de Investigación CITIC, Department of Computer Science, Universidade da
Coruña

Campus de Elviña s/n, 15071 A Coruña, Spain

Abstract

Feature selection is a preprocessing technique that identifies the key features of a

given problem. It has traditionally been applied in a wide range of problems that

include biological data processing, finance, and intrusion detection systems. In

particular, feature selection has been successfully used in medical applications,

where it can not only reduce dimensionality but also help us understand the

causes of a disease. We describe some basic concepts related to medical applica-

tions and provide some necessary background information on feature selection.

We review the most recent feature selection methods developed for and applied

in medical problems, covering prolific research fields such as medical imaging,

biomedical signal processing, and DNA microarray data analysis. A case study

of two medical applications that includes actual patient data is used to demon-

strate the suitability of applying feature selection methods in medical problems

and to illustrate how these methods work in real-world scenarios.
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1. Introduction

Supervised learning is among the most active fields in machine learning. It

involves training a predictive model with a set of samples that includes the target

outputs so that once the model is trained, it can deduce the output for samples

that have not been observed yet. Depending on the output type (discrete or

continuous), this problem is categorized as classification or regression.

The data used by supervised learning algorithms can typically be interpreted

as a matrix composed of samples (rows) and features (columns) that define the

data. Machine learning algorithms typically require a sufficiently large number

of samples because a small number of samples can lead to overfitting and reduced

generalization capacity. However, they do not require a large number of features

because of reasons associated with curse of dimensionality [1] that concerns itself

with the problem of analyzing high-dimensional datasets that do not occur in

low-dimensionality settings. To overcome the curse of dimensionality, which is

related to the difficulty of optimization performed by exhaustive enumeration

in product spaces, the dataset needs to be reduced. This is achieved by finding

a matrix that has fewer columns and is similar to the original one. Because

this matrix is composed of a smaller number of features, it can be used more

efficiently than the original matrix. Dimensionality reduction can be defined as

the process of finding matrices with fewer columns.

Feature selection is one of the techniques used for dimensionality reduction;

in this technique, relevant features are selected, and irrelevant and redundant

features are discarded [2]. A reduction in input dimensionality can improve

performance either by decreasing the learning speed and model complexity or

by increasing generalization capacity and classification accuracy. The selection

of suitable features can also reduce the measurement cost and improve the un-

derstanding of the problem. In some cases, the impact of feature selection is

impressive; for example, in microarray data analysis, it is possible to use just 2 of

7,129 features to improve classification performance (see the Leukemia dataset

in [3]).
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Because of the advantages mentioned earlier, feature selection is being ac-

tively applied in real-world problems, mostly classification and regression prob-

lems. Feature selection has been successfully used to solve problems in different

fields that include microarray analysis, image classification, facial recognition,

and text classification [4]. One of the most productive and emerging fields in

feature selection and machine learning applications is medicine, where the goal

is not only to reduce the dimensionality of the problems but also to reduce the

costs involved; such as the extraction of information from images [5], or under-

standing the reasons behind disagreements regarding disease diagnosis among

image-analysis experts [6].

We provide an extensive review of feature selection methods applied in

medicine in the last five years that, in some cases, were used to develop ad hoc

for solving specific problems. First, we describe the main medical areas where

feature selection has been applied—specifically, medical imaging, biomedical

signal processing, and DNA microarray data—and follow up with recent devel-

opments in each area. Then, we describe an application of feature selection to

two real-world medical problems involving image analysis and demonstrate the

improvements resulting from the application of feature selection.

The rest of this paper is structured as follows. Section 2 provides necessary

background on medical applications for machine learning experts who may not

be familiar with certain concepts. Section 3 describes basic feature selection

concepts and the most popular techniques. Section 4 describes recent medical

applications that have benefited from feature selection. Section 5 describes a

case study of two medical applications. Finally, Section 6 concludes the paper.

2. Medical applications

In the digital era, people are able to generate and store data at an unprece-

dented rate. This explosion in available data for further analysis is as evident

in medicine as it is elsewhere. Numerous artificial intelligence methods have

been applied in various medical problems with the aim of automating time-
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consuming, and often subjective, manual tasks implemented by practitioners in

diverse specialties. In this section, we briefly overview the medical terms used

in this paper, early initiatives, medical datasets, and relevant studies.

2.1. Terms

Data used in machine learning applications can be classified into two main

categories. The first is structured data: traditional datasets that can be stored

in a matrix such that each row corresponds to a sample, and one or more

columns include the value to be predicted. The second is unstructured data:

for example, waves representing sound, text, or images. Generally, machine

learning algorithms can be applied directly to structured data, whereas a pre-

liminary feature extraction step is necessary for unstructured data. Now, we

describe three main types of medical data: two different types (two-dimensional

and one-dimensional) of unstructured data represented by medical imaging and

biomedical signal processing, and one type of structured data, namely DNA

microarray data.

2.1.1. Medical imaging

Medical imaging is a very active field in image analysis and pattern recogni-

tion. It entails the application of various image analysis methods that include

image classification or segmentation to medical images [7] such as X-rays, com-

puted tomography (CT) scans, magnetic resonance images (MRI), retinogra-

phies, and ultrasound images. Figure 1 shows some representative examples.

(a) (b) (c) (d)

Figure 1: Examples of different medical images: (a) chest X-ray [8], (b) colon CT section [9],
(c) brain MRI section [10], and (d) retinographic image [11].
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Many methods have been proposed for performing automatic analysis of

digital medical data for screening [12], diagnosis [13], and treatment purposes

[14]. These methods often focus on the extraction of features; that is, the

computation of image properties such as color, texture, or shape. However, some

features may be redundant or irrelevant for a given medical problem, particularly

when using general purpose methods or a combination of techniques. This fact,

in addition to the large dimensionality of data (high-resolution medical images),

make the use of feature selection methods indispensable.

2.1.2. Biomedical signal processing

Biomedical signal processing automates the measurement and analysis of

biological signals in medicine that most frequently include brain signals (elec-

troencephalograms, EEG), heart signals (electrocardiograms, ECG), and muscle

signals (electromyograms, EMG). Figure 2 shows a representative example of

biomedical signals.

Figure 2: Example traces of heart rate variability: healthy heart (left), and myocardial in-
farction (right). Source Wikimedia Commons.

Biomedical signals have been automatically analyzed for diagnostic [15],

monitoring [16], and rehabilitation purposes [17]. Researchers in this field have

focused on developing new signal processing techniques that provide practition-

ers with real-time data for clinical decision-making. Depending on the particular

application, these methods include the representation of biosignals by means of

Fourier and wavelet basis functions and auto-regressive parameters. This rep-

resentation can be viewed as a feature vector that can be further analyzed to

identify the most representative features and to reduce the dimensionality of
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the final dataset.

2.1.3. DNA microarray data

Biomedicine has been a popular field in machine learning in recent years

mainly because of the large amount of data that can be extracted from genetic

tissues. In particular, the emergence of DNA microarray datasets has led to the

emergence of a new and active area of research in bioinformatics and machine

learning. For machine learning purposes, microarray data is usually treated as

structured data characterized by having very few samples (often under 100) but

many features (in the order of thousands). Handling such a large number of

features for just a few samples is a challenge for machine learning researchers

because of the possibility of “false positives” that can arise by chance (when

constructing the prediction model or when selecting the relevant features or

genes) [18]. The literature [19] has demonstrated that only a few of these large

number of features or genes present in a DNA microarray are relevant for the

purpose of resolving a given classification problem. In such a scenario, feature

selection is indispensable for two reasons: to eliminate redundant and irrelevant

features and to help experts detect underlying relationships between gene ex-

pression and a given disease. Figure 3 shows an example of a typical feature

selection process applied to microarray data.

2.2. Early initiatives

Artificial intelligence researchers began to tackle medical problems several

decades ago, and the result has been the publication of numerous papers based

on applications in the three medical areas mentioned above (medical imaging,

biomedical signal processing, and DNA microarray data).

Image analysis began to be used for medical purposes in the late 1960s. CT

scanning was invented around the same time and continues to be considered

one of the most promising areas for medical image analysis [20]. Image analysis

has been applied to many different medical conditions, including cancer [21]

and retinal diseases [22], and for different purposes, including screening [23]
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Figure 3: Typical feature selection process applied to microarray data. Source Wikimedia
Commons.

and diagnosis [24]. Biomedical signal processing dates from around the same

time. Several methods have been applied to the analysis of EEG [25], ECG

[26], and EMG [27] signals. DNA microarrays started to emerge in the 1990s.

General approaches extract initial measurements of gene expressions and then

apply supervised learning to classify the data. One of several applications is to

cancer microarray data classification [28, 29].

2.3. Medical datasets

Public datasets are of utmost importance in testing innovative approaches

against state-of-the-art approaches. Several repositories of benchmark datasets,

referring to different medical problems, have been made publicly available. Table

1 lists some examples.

The available datasets include unstructured data (such as images and sig-

nals) or a set of features extracted from those data, or both. As stated in

Section 2.1, machine learning algorithms can be applied directly in the latter

case, whereas, in the former case, some prior feature extraction is required.

The UCI Repository includes datasets that are particularly useful for general

7



Table 1: Representative datasets used as benchmarks for various medical problems.

UCI Machine Learning Repository – University of California Irvine
[On-line] http://archive.ics.uci.edu/ml/

Image Databases at the Image Sciences Institute – Utrecht University
[On-line] https://www.isi.uu.nl/Research/Databases/DRIVE/

INSPIRE Datasets – University of Iowa Health Care
[On-line] https://medicine.uiowa.edu/eye/inspire-datasets

VOPTICAL Databases – Universidade da Coruña
[On-line] http://www.varpa.es/research/optics.html#databases

PhysioBank Databases – National Institute of General Medical Sciences, National
Institute of Biomedical Imaging and Bioengineering
[On-line] https://physionet.org/physiobank/database/

BCI Competitions – Technische Universität Berlin
[On-line] http://www.bbci.de/competition/

ArrayExpress – European Bioinformatics Institute
[On-line] http://www.ebi.ac.uk/arrayexpress/

Gene Expression Omnibus – National Institutes of Health
[On-line] http://www.ncbi.nlm.nih.gov/geo/

Cancer Program Datasets – Broad Institute:
[On-line] http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi

Lung Image Database Consortium image collection (LIDC-IDRI) – National
Cancer Institute, Foundation for the National Institutes of Health, Food and Drug
Administration
[On-line] https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

Kent Ridge Biomedical Data Set Repository – Institute for Infocomm Research
[On-line] http://research.i2r.a-star.edu.sg/rp/

Kaggle Datasets and Competitions, – Different institutions share their datasets
of a great variety of problems, including medicine and healthcare
[On-line] https://www.kaggle.com/

machine learning; some of them correspond to various medical problems (for

example, cervical cancer and liver disorders).

These datasets have been used in many other research papers, among which

we will mention only a few examples. Datasets from the UCI repository, includ-

ing hepatitis, liver, and thyroid, have been used to evaluate the performance of

a new framework for cost-based feature selection [30]. Sasikala et al. [31] ana-

lyzed the impact of selecting significant features on accurate diagnosis, making

use of medical datasets obtained from the UCI and Kent Ridge repositories.

Regarding specific diseases or fields of study, INSPIRE and DRIVE are very
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popular datasets for retinal imaging and have been used for problems such as

artery and vein classification [32], while VOPTICAL databases have been used

for the diagnosis of diseases such as evaporative dry eye or meibomian gland

dysfunction [33].

2.4. Related work

Other reviews of medical applications can be found in the recent literature.

However, to the best of our knowledge, no study has focused on analyzing

the effectiveness of feature selection for medical datasets. Studies that have

specialized in medical imaging include reviews of image segmentation applied

to breast ultrasound [34] and of biomedical image retrieval systems [35]. Other

studies have focused on specific diseases: for example, cancer diagnosis [36] and

Alzheimer’s disease [37].

Within the field of signal processing, studies include a review of biomedical

signal and image processing for biomedical engineering and clinical procedures

[38] and works focused on specific types of biomedical signals: for example, EEG

[39], ECG [40], and EMG [41].

Several studies have reviewed microarray data classification [42, 43] and

some of them have described the application of feature selection to this problem

[44, 45, 46].

3. Feature selection

When dealing with a large number of input features, a typical solution is

to use specific techniques to reduce the dimensionality of the original problem,

which also sometimes improves learning performance. Dimensionality reduc-

tion techniques are typically divided into feature selection and feature extrac-

tion methods. The main difference between them is that feature extraction

combines the original features and creates a set of new features, while feature

selection selects a subset of the original features, as depicted in Figure 4. Both

techniques have advantages and disadvantages [47]. One of the strong points
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of feature extraction is that, because the new set of features is usually smaller

than that resulting from feature selection, the discriminative power is better.

For this reason, feature extraction is more useful for visualization, being typi-

cally used in fields such as image analysis, signal processing, and information

retrieval. However, a disadvantage is that combinations of features may have

no physical meaning, so feature extraction is not a good approach in respect of

readability, interpretability, and transparency—characteristics necessary for the

development of trustworthy artificial intelligence [48]. Feature selection, which

builds a subset of the original features, is advantageous when interpretability

and knowledge extraction are crucial, as in medicine, although sometimes this

comes at the cost of losing some accuracy. Because our work is based on medical

problems, we will focus on feature selection.

Feature extraction
system

Feature selection
system

Figure 4: Illustrative example of feature extraction versus feature selection.

Depending on the output, feature selection methods use either individual

evaluation (also known as feature ranking) or subset evaluation of features. In

the former, features are assessed individually and assigned a weight that reflects

their relevance. In the latter, candidate feature subsets are evaluated using a
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given measure, so as to select the best feature.

Feature selection methods are also classified into filters, embedded methods,

and wrappers, depending on the relationship with the learning method [2]. Fil-

ters are independent of any learning method, because the focus is on the general

characteristics of the data. Because of their independence from the induction

algorithm, they are not computationally costly and have a good generalization

capacity. Wrappers and embedded methods both require a learning method to

perform feature selection. For wrappers, an induction method evaluates candi-

date subsets of features. While interaction with the classifier makes wrappers

more computationally costly than filters, they tend to perform better. Embed-

ded methods lie between filters and wrappers, because selection is part of the

training process for the induction method. The search for the best subset of

features is performed during the training of the classifier (for example, while

optimizing weights in a neural network) and, for this reason, embedded meth-

ods are less computationally costly than wrappers. There is also a tendency to

mix algorithms, as in the case of hybrid methods, which usually combine two or

more feature selection algorithms of different conceptual origins in a sequential

manner. A typical example is to first apply a less computationally costly filter

to remove some features and then use a more computationally costly wrapper

for fine-tuning.

Most of the new feature selection methods that appear are filters, although

we can find representative methods for all three categories. The large number of

feature selection methods now available therefore complicates the choice of the

best method for a given problem. Below, we describe state-of-the-art methods

that have become popular among researchers; some of these methods are used

for our case study in Section 5.

• Correlation-Based Feature Selection (CFS) [49] is a multivariate filter

method that chooses subsets of features that themselves are uncorrelated

but show high correlation with the class.

• Consistency-Based Filter [50] is a multivariate technique that also selects
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subsets of features, but selects them according to the degree of consistency

with the class, and then uses an inconsistency criterion to determine an

acceptable data reduction rate.

• INTERACT [51] is an algorithm executed in two steps: first computing

the symmetrical uncertainty of all features, and ordering features accord-

ingly, and then individually evaluating the variables by their consistency

contribution, so as to select only those whose consistency contribution

exceeds a predetermined threshold.

• Information Gain (InfoGain) [52] is a simple univariate filter that com-

putes the mutual information for each attribute and class, and then pro-

duces an ordered ranking of all of the features.

• ReliefF [53] is a popular multivariate filter (an extension of a previous ver-

sion called Relief [54]) based on nearest neighbors. It works by randomly

selecting samples and searching for nearest neighbors from the same class

(missing all others). The values of the selected sample are compared with

the hits and misses, and then the relevance score for each feature is up-

dated. A useful feature should have values that are similar to examples

from the same class and different from examples from the other classes.

• Recursive Feature Elimination for Support Vector Machines (SVM-RFE)

is an embedded method [55] that, as it trains an SVM classifier in an

iterative process, selects features and eliminates the least important ones

according to the weights in the SVM solution.

• Lasso regularization [56] is an embedded method based on the `1-norm of

the coefficient of a linear classifier w, such that:

penalty(w) =

m∑
i=1

|wi| (1)

and
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ŵ = min
w

c(w, X) + α penalty(w) (2)

where c(·) is the classification objective function, penalty(w) is a regu-

larization term, m is the number of features, and α is a regularization

parameter to control the trade-off between the c(·) and the penalty [57].

Some of the coefficients of the learned classifier w may equal zero and, be-

cause each coefficient wi is associated with a feature fi, feature selection

is achieved by retaining features with non-zero coefficients.

Feature selection has proven to be a successful preprocessing tool for ma-

chine learning problems. However, as mentioned, choosing between the growing

number of selection methods available is difficult. In a previous work [58], sev-

eral state-of-the-art feature selection methods were reviewed in terms of their

ability to solve common problems such as correlation and redundancy, data non-

linearity, noise in the input features, noise in the target class, and (as happens

with microarrays) having a number of features much higher than the number of

samples. Table 2 summarizes guidance for practitioners [58] depending on the

problem to be solved.

Table 2: Recommendations for specific feature selection methods for different scenarios [58].
More stars indicate better behavior.

Method Correlation/ Non- Input Target No. Features >>
Redundancy linearity Noise Noise No. Samples

CFS ? ? ? ? ? ? ? ? ? ?
Consistency ? ? ? ? ? ? ? ?
INTERACT ? ? ? ? ? ? ? ? ?
InfoGain ? ? ? ? ? ? ? ? ?
ReliefF ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
mRMR ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

SVM-RFE* ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

SVM-RFE** ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? –
Wrapper SVM ? ? ? ? ? ? ? ? ? ? ?
Wrapper C4.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
* Linear kernel
** Non-linear kernel
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4. Recent work: 2015 to present

In this section, we review some of the feature selection methods applied to

medical imaging, biomedical signal processing, and DNA microarray data in the

last five years.

4.1. Medical imaging

Medical imaging has transformed health care, with research efforts yielding

benefits such as improved patient care and earlier diagnosis. Image analysis

techniques can be applied to various real-world scenarios with promising results.

However, because medical datasets usually have a large number of features

but few samples of a particular disease, preprocessing using feature selection

becomes almost mandatory.

Advances in brain imaging enable practitioners to see inside the living brain,

and automatic analysis of brain images is particularly useful. Several studies

have been conducted of MRI scans, which are frequently used for brain imaging.

One example is classification of MRI images of brain tumors [59], based on a

novel hybrid supervised feature selection method that selected the most rele-

vant features from an extracted set that included shape and density features.

The experimental results demonstrated this hybrid feature selection method to

outperform other supervised algorithms.

MRI also allows observation of structural changes in the brain resulting from

neurodegenerative diseases, for which a typical biomarker is the hippocampus.

Automatic methods for accurate and reproducible delineation of the hippocam-

pus structure are usually voxel-based approaches that extract several local fea-

tures for each voxel. A study [60] that compared different feature selection

techniques (filters, wrappers, and embedded methods), applied to a set of 300

extracted features per voxel, demonstrated no degradation in performance when

the number of features per voxel was significantly reduced.

MRI and positron emission tomography (PET) are commonly used for the

diagnosis of Alzheimer’s disease. To diagnose this disease from automatically

14



analyzed MRI and PET images, one study [61] applied multitask learning and a

feature selection method based on relational information, that uses the `2,1-norm

regularization as part of the objective function, with the experiments yielding

good results in comparison with state-of-the-art methods. Another study used

features computed from MRI images in an endeavor to discriminate between

different cognitive states related to Alzheimer’s disease [62]. Feature selection

methods and random forest were used to select the most suitable features from

different brain areas, and ensemble classification was applied to obtain the final

predictions, with the results demonstrating the capacity of the selected features

to identify biomarkers for Alzheimer’s.

Another common medical imaging application is the analysis of chest CT

scans. For lung disease diagnosis, a feature selection method to select the most

relevant signs from CT images [63] was based on using the Fisher criterion and

genetic optimization, to evaluate subsets of features to find the optimal subset.

The computational efficiency of the method was demonstrated in experiments,

which also demonstrated better accuracy than using the whole set of features.

Another novel feature selection method [64] was applied to classifying CT images

of fibrotic interstitial lung disease. The algorithm, used in conjunction with two

different classifiers, selected features extracted from texture analysis, based on

their robustness to variations in CT technical settings. The results demonstrated

the method to be highly effective in varied CT conditions, because classification

performance was not compromised after removing irrelevant features.

A growing interest is prostate image segmentation, for which a semi-automatic

method has been described [65] that consists of two novel algorithms for trans-

ductive feature selection and regression. Experiments on data from prostate CT

images demonstrate the suitability of the method, with results improving on the

state-of-the-art. MRI images have also been used for prostate image segmenta-

tion [66], based on a supervised segmentation method that uses feature selection

to detect relevant features from a dictionary consisting of texture properties ob-

tained from MRI images. Preliminary results reported good performance and

a more rapid segmentation process. Yet another prostate-focused study [67]
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described a novel feature selection method that combines SVM and recursive

feature elimination with an absolute cosine filter: SVM-RFE(AC). Applied to

prostate histopathological images, the method selected non-redundant features

for different tissue components.

Eye images have been widely analyzed to detect and diagnose various dis-

eases. Glaucoma, considered to be one of the main factors causing blindness,

can be detected early on using a computational decision support system. One

approach to glaucoma detection (specifically, to detect primary angle-closure

glaucoma), based on optical coherence tomography (OCT) images, used the

rank combination (RC) method [68]. The top-ranked features were identified

by various feature selection methods, and a rank combination determined the

most discriminating features. Experiments demonstrated that the feature sub-

set resulting from application of this method yielded more competitive results

than individually applied filter methods.

Another eye disease is retinopathy of prematurity (ROP), an important cause

of childhood blindness. Diagnosis from eye fundus images is subjective, so there

is great variability between clinicians. A study to analyze the reasons for this

inter-expert variability, using machine learning methods [6], used feature selec-

tion methods to select the features that seemed to be relevant for each expert

and applied similarity measures to the features relevant to each. The study

improved diagnostic accuracy and achieved standardization among clinicians.

The quality of eye fundus images, commonly used in ophthalmology, plays

a key role in any automatic method. An objective quality assessment approach

has been described [69] that applied different feature selection techniques (CFS,

consistency-based filter, and INTERACT) to the selection of the most relevant

texture features extracted from eye fundus images; this approach resulted in a

reduced number of features without compromising accuracy.

Dry eye syndrome (a known public health problem) is diagnosed by ana-

lyzing tear film lipid layer patterns. A computer-aided system to support dry

eye diagnosis (CASDES) [33] defines tear film maps using color and texture

features, which enables evaluation of the prevalence and distribution of inter-
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ference patterns observed in the tear film lipid layer. To reduce computational

requirements (memory and time), an ad-hoc approach based on the CFS filter

was used, with experiments demonstrating that reducing the number of features

did not degrade performance and allowed real-time analysis. The influence of

eye color on tear film classification was analyzed elsewhere [70] using feature

selection; by identifying relevant features according to each type of eye, this

outperformed previous approaches.

4.2. Biomedical signal processing

Biomedical signals are analyzed and measured in clinical medicine for pre-

vention, diagnosis, and monitoring purposes. Given the amount of data, and the

importance of interpretation, feature selection methods have many interesting

applications in this area.

The electrical activity of the brain is reflected in EEG signals, which have

been demonstrated to be very useful in studies of the brain, with various signal

processing techniques applied to their analysis for a range of diseases, includ-

ing sleep-related disorders. In a study that focused on the classification of

K-complexes (a type of waveform found in EEG signals) [71], a feature selection

approach was applied to amplitude and duration measurements (which are the

features used to classify waveforms), with CFS achieving maximum accuracy

using just 36% of the whole feature set.

The brain-computer interface (BCI) technique allows communications be-

tween users and systems with no intervention by muscles or external devices.

The idea is to acquire brain signals to analyze electrical changes. A novel

technique has been described to select optimal combinations of features for a

functional near-infrared spectroscopy BCI [72]. This hybrid approach success-

fully used genetic algorithms and SVM to determine combinations of just two

and three features. Another new hybrid method, based on particle swarm opti-

mization (PSO) and a novel neighborhood rough set classifier (NRSC) has been

successfully applied to multiclass classification, resulting in a suitable feature

set that achieved high classification accuracy [73].
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ECG signals to detect heart abnormalities and cardiovascular diseases can

be obtained in a noninvasive way. To classify ECG patterns on the basis of

selecting optimal feature subsets, a technique based on a genetic algorithm has

been developed [74]. The genetic algorithm was modified with a variable-range

searching strategy, and an SVM was used to classify the patterns. The dimen-

sionality reduction achieved with this method resulted in better performance

than other well-known methods, such as sequential forward selection (SFS) and

sequential backward selection (SBS).

EMG signals are used to evaluate and record the electrical activity pro-

duced by active muscles and their neural strategies. To assess the relationship

between features extracted from EMG signals and target classes in rehabilitation

robotics, the coefficient of determination (R2) value computed from a one-way

analysis of variance was used [75] to select the most relevant EMG features,

demonstrating the suitability of the R2 value for feature selection. One study

used an SFS algorithm to determine the most relevant EMG features for the

prosthesis field [76], with experiments demonstrating the SFS method to be an

efficient feature selection algorithm to classify hand and finger movements.

For the purpose of pain-based emotion classification, many types of signals

have been used, including ECG and EMG signals [77]. Key sources of infor-

mation were determined using an interpretable feature selection protocol based

on a topologically informed chart. The results led to the conclusion that ECG

features are functionally equivalent to the combination of EMG signals and skin

conductance levels.

4.3. DNA microarray data

Researchers working with microarray datasets started to apply feature selec-

tion methods to reduce dimensionality almost from the outset. As mentioned in

Section 3, the most popular feature selection methods are filters, because they

are independent of the learning method and are less computationally costly than

other approaches. This is particularly important when dealing with microarray

data, because the small number of samples may cause data overfitting, which
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makes the use of wrappers inadvisable. Most recent feature methods developed

for, or applied to, microarray data are filters. For example, modifications of the

minimum redundancy maximum relevance (mRMR) algorithm were developed

specifically to cope with microarray data. One such modification is Temporal

Minimum Redundancy – Maximum Relevance (TMRMR) [78], which is claimed

to be able to handle multivariate temporal data without previous data flatten-

ing. This is done by using F-statistics, to compute the relevance of each gene,

and dynamic time warping to deal with redundancy.

Genetic algorithms are widely used to deal with microarray data. A re-

cently proposed hybrid feature selection method includes the state-of-the-art

CFS in the first phase, followed by improved-binary particle swarm optimization

(iBPSO) [79]. The method, evaluated for 11 benchmark microarray datasets,

obtained promising results in respect of both classification accuracy and dimen-

sionality reduction. Among evolutionary computation techniques, bacterial-

inspired algorithms have recently gained popularity for feature selection. In

one study, feature selection driven by a bacterial colony optimization algorithm

reduced computational complexity, while improving search capacity, even for

discrete optimization problems [80]. In another study, two hybrid feature selec-

tion algorithms that combined a wrapper and a filter based on binary differential

evolution yielded competitive results in comparison with results for nine state-

of-the-art methods [81]. Yet another study proposed a hybrid feature selection

algorithm combining mutual information maximization with an adaptive genetic

algorithm (AGA) [82]. As explained above, genetic algorithms are very widely

used in this domain, particularly in combination with other methods, in the

form of hybrids.

Embedded methods are popular because they perform feature selection and

classification simultaneously. A modification of Lasso for tumor classification in

two-class and multiclass datasets has recently been proposed [83]. Nonetheless,

the high dimensionality of microarray data frequently means that wrappers and

embedded methods cannot be used. This issue inspired an attempt to reduce

SVM-RFE time consumption by proposing an improved version of RFE called
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RFE with variable step size (VSSRFE) [84]. The idea is to use a large step that

decreases in size as the number of selected features decreases. The same study

also proposed a more efficient implementation of SVM, called large-scale linear

SVM (LLSVM), which, when combined with VSSRFE, results in a competitive

and rapid feature selection method. Another approach to reducing computation

time is to use distributed feature selection [85], based on a framework that

distributes the data by features in disjoint subsets and then merges the results of

the base feature selectors. Compared with standard centralized approaches, the

framework, tested with five state-of-the-art filters on eight microarray datasets,

obtained impressive reductions in computation time while maintaining (or even

improving) classification accuracy.

5. Case study

In this section, we describe two applications of feature selection in real-world

medical imaging problems that yielded promising results.

5.1. Datasets

The first dataset was composed of 34 images to diagnose ROP, a major

cause of childhood blindness that mainly affects infants with a low birth weight.

For diagnosis, clinical experts usually consider two issues related to the retina:

arterial tortuosity and venous dilation. For the purpose of image analysis, in-

formation regarding these two features was extracted based on blood vessel

information and using either points or segments. To represent each image, we

calculated statistical measures including the minimum, maximum, and mean.

From the 34 images diagnosed by 22 experts, 66 features were extracted (see

further details in [6]).

The second dataset was composed of 105 images to diagnose evaporative dry

eye (EDE), a multi-factorial disorder causing eye redness and discomfort that

is experienced by a high percentage of people of different ages. People with dry

eyes find it difficult to perform common activities, such as reading or working on
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a computer. Because of its multi-factorial nature, a large number of diagnostic

tests are employed as part of the clinical routine. One is visual assessment of

lipid layer patterns and their categorization into four grades [86]. An automatic

method to perform this clinical test [87] is based on color and texture as image

properties. The best results were obtained when co-occurrence features were

extracted as texture information, and the Lab color space was used. Despite

the good results, the time needed (38 s) to compute the necessary features was

excessive, thereby preventing clinical use of the proposed methodology. The

dataset contains 588 features that were extracted from the 105 images using the

Lab color space and the co-occurrence features technique [88].

5.2. Results

For ROP, we developed an automatic diagnostic system based on the appli-

cation of feature selection prior to classification [6]. For classifiers, we selected

four popular algorithms belonging to different families (SVM, C4.5, Naive Bayes,

and k-NN), which are available in Weka [89]. For feature selection methods, we

used six state-of-the-art algorithms: CFS, INTERACT, InfoGain, CFS, Reli-

efF, and SVM-RFE. Table 3 shows the classification results after selecting the

relevant features for determining whether the image represented ROP. We also

present the results for no feature selection (No FS) in the first row.

Table 3: Classification error obtained using leave-one-out cross-validation. Best results are in
bold.

Method C4.5 NB k-NN SVM
No FS 29.41 11.76 38.24 20.59
CFS 35.29 14.71 26.47 20.59
Cons 32.35 14.71 32.35 20.59
INTERACT 32.35 14.71 26.47 17.65
InfoGain 29.41 20.59 29.41 17.65
ReliefF 35.29 11.76 35.29 11.76
SVM-RFE 29.41 14.71 26.47 17.65

For EDE, and aiming to reduce computation time, we observed that several

statistics needed to be computed to extract the textural features. However,
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since the corresponding time varied, this caused substantial time variations de-

pending on the choice of a particular feature. We therefore applied a feature

selection method that considered the time cost of the features and only selected

those features that have maximum relevance and also reduce the corresponding

cost [90]. To allow users to fine-tune the trade-off between relevance and cost,

we made it possible to change the value of a parameter called λ (higher values

corresponded to larger weights for cost) in the optimization function. The pro-

posed approach was used together with three popular feature selection methods,

namely, ReliefF, CFS, and mRMR.

Table 4 shows ReliefF results for the points that form the Pareto front:

that is, the points that achieved either the minimum classification error or the

minimum cost when classified with a SVM. Because ReliefF is a ranker method,

a threshold is required; in this case we opted to retain the top 25, 35, and 50

features, as shown in the first column of the table. The second column indicates

the values of the parameter λ, while the third and fourth columns represent

the classification error and time for each combination of number of features and

value of λ. As the table shows, SVM produced the lowest classification error

(6.64) with the 50 top-ranked features, with λ = 0, meaning that time cost was

not considered at all. The best time cost result was achieved for the 25 top-

ranked features, for any value of λ, but error increased by at least 3.72%. An

optimal solution that compromised between error and time cost resulted from

the 35 top-ranked features and λ = 1, for which the error was 7.55% (not much

greater than the minimum error) and the time cost was 7.11 ms (significantly

better than the 47.98 ms for the combination that achieved the minimum error).

5.3. Discussion

Both cases demonstrate the suitability of feature selection as a preprocessing

step. For ROP diagnosis, and for all classifiers, there was always at least one

feature selection method that equaled, or improved on, the test error when

no feature selection was applied [6]. As for EDE diagnosis, while previous
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Table 4: Classification error (%) and time (ms) using 10-fold cross-validation for the Pareto
front points. The best results are in bold.

Features λ Error Time

25

0.75 10.36 3.50
2 10.55 3.50
5 14.36 3.50
30 15.18 3.50

35

1 7.55 7.11
2 11.36 7.04
5 13.18 7.00
25 16.09 7.00

50

0 6.64 47.98
1 9.36 10.62
2 9.36 10.62
25 14.27 10.62
30 14.36 10.62

approaches that did not apply feature selection achieved promising accuracy,

the time required to train the system was unacceptable for real-time clinical

routine use. The analysis thus demonstrates that feature selection techniques

can lead to a significant reduction in computation time, making the methodology

suitable for clinical use to diagnose EDE.

6. Conclusions

In this study, we reviewed recent approaches to medical applications of fea-

ture selection; we showed that feature selection is a useful preprocessing tool that

not only reduces the number of input features, thereby saving on future data

collection but also helps practitioners in understanding the underlying causes of

certain diseases.

We considered three main types of medical applications, namely medical

imaging, biomedical signal processing, and DNA microarray data, wherein fea-

ture selection methods are commonly used to solve problems associated with

these types of medical applications. For each category, we provided brief back-

ground information, described early initiatives, listed widely used repositories
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of medical data, and examined recent studies on applications. We also demon-

strated the suitability of applying feature selection in two real-world ophthalmol-

ogy problems. In one case, feature selection outperformed previous classification

results; in the second case, feature selection reduced the computation time re-

quired to extract the image features that had previously prevented the real-time

use of a computer-aided system.

With regard to future scope, it is important not to overlook the emerging

Big Data scenario wherein millions of samples and features need to be simul-

taneously dealt with. The state-of-the-art feature selection methods were not

developed under that assumption; thus, most of them are unable to handle vast

datasets. Therefore, it is imperative to develop more sophisticated feature se-

lection methods (for example, parallel programming) that can tackle Big Data.

Another issue to be considered is that real-time feedback is of paramount impor-

tance; this suggests that online feature selection methods are required, which is

still a challenge for researchers.
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