Literature Review on Database Design
Testing Techniques

Abdullahi Abubakar Imam"2®¥ @, Shuib Basri', Rohiza Ahmad',
and Maria T. Gonzalez-Aparicio”

' SQ2E Research Cluster, Computer and Information Sciences Department,
Universiti Teknologi PETRONAS,

Bandar Seri Iskandar, 32610 Seri Iskandar, Perak, Malaysia
aiabubakard3@gmail. com,
{abdullahi_g03618, shuib_basri,
rohiza_ahmad}@utp. edu. my
2 Ahmadu Bello University, Zaria, Nigeria
3 Computing Department, University of Oviedo, Gijon, Spain
maytega@uniovi.es

Abstract. Database driven software applications are becoming more sophisti-
cated and complex. The behavior of these systems solely depends on the data
being used. Whereas this data has now become so massive, varyingly connected,
distributed, and stored and retrieved with different velocity, era of big data. To
make these systems operate in every anticipated environment with the required
usability, durability and security, they are subjected to rigorous testing using the
available Software Testing Techniques (STT). This test is described as a process
of confirming correct behavior of a piece of software which consists of three
parts, namely, interface (GUI), back-end (codes) and data-source (database). The
purpose of this study is to identify and analyze existing STT in the context of
databases design structures. Primary studies related to ST were identified using
search terms with relevant keywords. These were classified under journal and
conference articles, book chapters, workshops, and symposiums. Out of the
search results, 23 Primary studies were selected. Database testing has been
significantly discussed in the software testing domain. However, it was dis-
covered that, existing software testing techniques suffer from several limitations
which includes: incompatibility with new generation databases, lack of scala-
bility and embedded SQL query detection issues. In addition, application of
existing techniques into a full-fledged software system has not been reported yet.

Keywords: Software testing - SQL databases - NoSQL databases -
Software quality

1 Introduction

© Springer Nature Switzerland AG 2019
R. Silhavy (Ed.): CSOC 2019, AISC 984, pp. 1-13, 2019.
https://doi.org/10.1007/978-3-030-19807-7_1

maytega@uniovi.es

)

Check for
updates

As software applications get more complex and intertwined and with increasing usage
of massive and varieties of data from different sources, cybercrimes and varieties of
platforms, it is more important than ever to have a durable, robust, secured and con-
sistent database system [1]. Similarly, methodologies that are adopted to make sure that



2 A. Abubakar Imam et al.

database driven applications being developed are absolutely tested and meet their
specified requirements need to be vigorous and flexible such that software applications
can be screened to successfully operate in every anticipated environment with the
required usability and security [2]. If software is deployed and database operations such
as Create, Retrieve, Update and Delete (CRUD) are performed without testing the
application’s database performance, security and reliability, the company risks a crash
of the entire system, internal logical structure deteriorations or broken insertions,
deletions or updates [3].

According to Sree [4], Software Testing (ST) can be defined as a process of
identifying defects from a software, isolating them, and subjecting (sending) them for
rectification. On the words of [5], software testing is a process of providing information
about the quality of system to stakeholders by investigating the system under test. The
process ensures that there is no single defect associated to the product through testing
any of the three main software components, namely; interface, codes and database. For
these reasons among others, techniques such as black box, white box and gray box
testing came into view to test software applications through the user interface or
internal logical structure or both respectively. Also, approaches to particularly test the
SQL database driven applications were proposed since analyzing codes only is
insufficient for threats detection and mitigation [6, 7].

Although these approaches have proven useful in detecting problems associated
with software design and implementation and SQL database operations as well as
security problems such as SQL injection and cross-origin attacks, they should be
adjusted to detect specific vulnerabilities database driven software applications [7].

In this article we analyzed and compartmentalized the existing studies with respect
to software testing techniques in the context of database design structure. Primary
studies related to ST were identified using search terms with relevant keywords. These
were classified under journal and conference articles, book chapters, workshops, and
symposiums. Out of the search results, 23 Primary studies were selected. Database
testing has been significantly discussed in the software testing domain. However, it was
discovered that, existing software testing techniques suffer from several limitations
which includes: incompatibility with new generation databases, lack of scalability and
embedded SQL query detection issues. In addition, application of existing techniques
into a full-fledged software system has not been reported yet.

The remainder of this paper is structured as follows: Sect. 2 explains the method
adopted. Section 3 presents the results. Section 4 discussed the findings. Section 5
highlights some recommendations. Section 6 concludes the paper.

2 Research Method

In this section, the method adopted to conduct this research is presented. It consists of
research questions, literature sources and study selection process.

maytega@uniovi.es



Literature Review on Database Design Testing Techniques 3

2.1 Research Questions

To commence the investigation about the state of the art in this area, three research
questions were devised and put into words as follows:

RQ1 What are the existing software testing techniques, models or algorithms used to
assess the storage (database) component of software?

RQ2 How do the identified solutions detect the menace associated with database
design and what are their strengths and weaknesses?

RQ3 How to mitigate an existing technique to comprise the aspect of big data data-
source as part of the testing components of a software application?

2.2 Literature Sources

In this study, a comprehensive and detailed search was conducted using the electronic
libraries available such as Science Direct, Web of Science, IEEE Xplore, Springer,
Google Scholar and ACM. These libraries were used to search for the relevant mate-
rials across the globe. The search yield several categories of materials starting from
symposiums, conference proceedings, book chapters as well as journals papers.

2.3 Study Selection

Study selection is one of the key components of SLR and it’s done during or after search
process is completed, as such, a set of rules are engineered and applied to appropriately
select the right studies. The rules are, manuscript can only be selected if it’s:

e tackling any of the key words of this research.

e tackling any of the questions in this research or attempt to describe its nature.

e cither published or submitted to a journal or conference. Book chapters as well as
technical reports are also considered.
written in English or fully translated to English language.
related to topics such as SQL and NoSQL database evaluation and testing, software
engineering and applications, software testing, CRUD operations testing, open
source software development, teaching and education.

3 Results

The results of this study are presented in this section. These results are categorized into
two different categories. We started by presenting the results related to software testing
as a whole. In the second part, the results for SQL and NoSQL database testing are
presented.

3.1 Software Testing Techniques

The following table (Table 1) presented the available software testing techniques in a
summery form.

maytega@uniovi.es



4 A. Abubakar Imam et al.

Table 1. Testing techniques

Components testing Unit testing Verification White box Testing (Tests that
Module testing (Process are derived from knowledge

Integrated testing Sub-system Oriented) of the program’s structure and
testing implementation)
System testing

User testing Acceptance Validation Black Box Testing (Tests are
testing (Product derived from the program

Oriented) specification)

Components Unit, module, Verification Gray Box Testing (Test are

testing + Integrated system, sub- and derived from both the

testing + User system and validation knowledge of the program

testing acceptance testing structure and specification)

In black-box testing, errors such as halting and a testing dependent functions
independently, the functions may fail when the original sequence is changed at run time
during the execution of other functions. As such, it is indispensable to consider a
technique beyond black box testing.

However, white-box does not explicitly consider SQL statements which are
embedded in application programs. It treats SQL statements as black boxes. Com-
monly, SQL semantics are not intentionally included in the test cases. Therefore, it is
believed that, faults related to the internal database changes might be missed by tra-
ditional white box testing [8].

On the other hand, because gray-box testing technique is based on black-box and
white-box testing techniques, it inherits all the problems associated with its parents
(black-box and white-box) without exclusions. Although it combined several func-
tionalities in one place, it is measured tedious, cumbersome and time consuming.

In view of the above, it can be concluded that the authors focus mainly on testing
software applications through the user interface by adopting black box technique while
others gave much emphasis to the coding side where white box technique is most
suited. Alternatively, some authors believe that when the two techniques are combined,
more reliable testing can be achieved. However, all these techniques and their asso-
ciated works are only concentrating on the software itself while neglecting its data-
source which contributes significantly to the quality and performance of any database
driven software application. The following section presents the existing approaches for
testing design structure of SQL and NoSQL databases driven applications.

3.2 SQL and NoSQL Database Testing

Table 2 below presents the approaches used to test the database driven software
applications with respect to SQL and NoSQL databases.

In consideration of the related works on SQL database testing, it can be concluded
that relational/traditional database have received considerable attention where several
techniques with various approaches are reported. However, these techniques are either

maytega@uniovi.es



Literature Review on Database Design Testing Techniques 5

Table 2. SQL & NoSQL database testing approaches

Author & Techniques/Solution Strength Weaknesses
Year
Tsumura Plain Pairwise No predicates —Limited test cases

et al. (2016)

Coverage Testing
(PPCT) and Selected
Pairwise Coverage
Testing (SPCT)

Uses few elements is
SQL query

Only RDBMS

Hamlin and
Herzog
(2014)

SPAR Test Suite
Generator (STSG)

Test suits are generated
automatically

Supports benchmarking
and correctness-
checking

—Relies on user
specifications

—Only RDBMS

—No model checking

Setiadi and

Data consistency

Data inconsistency

~Only RDBMS

Lau (2014) framework based on detection —Through GUI only
system specifications —Starts after the
execution of
applications
Zou (2014) Cloud storage area Distribute data among —Only RDBMS
the available —Data privacy &
computing devices security
Sarkar, Novel framework Reusing existing DB —Only RDBMS
Basu, and called iConSMutate states —No constraints
Wong Generate test cases solving
(2014) automatically —No model checking
Marin Data-agnostic Coverage model and —OLAP
(2014) framework for test fault model for OLAP -RDBMS
automation cubes
Uses record-and-replay
Setiadi and Structured model that Derive the data —Only RDBMS

Lau (2014a)

enables the automatic
generation of
consistency rules

consistency rules from
business rules, system
specifications and
database schema

—Can’t apply on
existing system
—Single repository

Grechanik, Novel approach for Based database —Only RDBMS

Hossain, and | Systematic Testing in deadlocks —No data privacy

Buy (2013) Presence of Database —No constraints
Deadlocks solving
(STEPDAD)

Pan, Wu, The use of mutation Ability to detect faults —Only RDBMS

and Xie scores to test the fault- in real world database

(2013) detection capabilities applications

McCormick MutGen to generate Ability to kill the —Only RDBMS

II et al. test for mutation testing | mutant

(2012) for database Detect DB constraints

applications

maytega@uniovi.es

(continued)



6 A. Abubakar Imam et al.

Table 2. (continued)

Author & Techniques/Solution Strength Weaknesses
Year
Ron, Comparative study of Proved NoSQL Awareness of NoSQL
Shulman- NoSQL DBs based security vulnerabilities injections only. No
peleg, and NoSQL injections measures
Ibm (2016)
Gonzalez- Context-aware model Trade-off analysis Monitors the
Aparicio for CRUD operations between availability & execution of CRUD
et al. (2016) consistency of NoSQL | operations for best
DBs selection of NoSQL
DBs only
Bhogal and Comparison study of NoSQL DBs evaluated | Volume, Velocity and
Choksi NoSQL databases based on variety of veracity not
(2015) data considered
Truica et al. Performance evaluation | Ability to analyze Compared 3
(2015) on CRUD operation for | features of document document oriented
NoSQL databases oriented databases DBs (mongoDB,
couchDB, &
Couchbase) only
Klein et al. Method to perform NoSQL databases are Not testing any BD
(2015) technology selection evaluated in a specific variable
among NoSQL DBs context Used to select
NoSQL DB only
Abramova, Analysis of scalability Ability to test put, get Focus on scalability
Bernardino, properties of cloud and scan operations only
and Furtado serving NoSQL engine
(2014)

Naheman Comparison between Performance testing on | Comparison between
(2013) NoSQL and SQL DBs, HBase SQL & NoSQL DBs
and between NoSQL only

products

embracing white-box technique (i.e. codes) or providing solutions that can work with
SQL based database designs only. Also, the solutions are independent of software
applications, so, operations like CRUD, security, database connection and data access
schemas incorporated with application codes are not verified, thus incomplete testing of
software.

Oppositely, it can be seen (from Table 3) that NoSQL databases are described as
poor in the areas such as consistency, reliability, technical support and
hardware/software compatibility which proves the use of BASE rather than ACID.
Because of its complexity, insecurity, distributed nature of data stores and very high
storage capacity, there is need to confirm its design, codes and implementation properly
before system deployment [22, 23]. Though, techniques or approaches that focus on
testing the big data (NoSQL) database driven software applications are yet to be
reported.

maytega@uniovi.es



Literature Review on Database Design Testing Techniques 7

Therefore it remains challenging to produce an algorithm, method, technique or
model that can be used to test software applications with big data category of data-
source, in particular, to be able to test big data (NoSQL) databases driven software
applications with respect to NoSQL dependent variables such as CRUD loading time,
security, data models, privacy, scalability and variability among others [23]. This is
highly imperative as the databases are becoming larger and complex [20].

4 Results and Discussion

According to [24, 25], database testing refers to the analysis of database system’s
performance, consistency, availability, reliability and security. This test is usually
independent of the application and is done to verify the ACID or BASE properties of a
database management system. It consists of process that are layered in nature such as
business layer, user interface layer, database itself and most importantly data access
layer which deals directly with the database. Data access layer is the layer that is used
for testing strategies like quality assurance and quality control. There are four stages to
test database, namely: (1) Set fix, (2) Test run, (3) Outcome Verification and, (4) Tear
down [24]. The solutions proposed for database testing are categorized based on SQL
and NoSQL databases some of which are discussed below.

4.1 SQL Database Testing Techniques

This Define Relational databases are based on a set of principles to optimize perfor-
mance which are derived from Consistency, Availability, Partition tolerance
(CAP) theorem [26]. ACID which stands for Atomicity, Consistency, Isolation, and
Durability, is a principle based on CAP theorem and used as set of rules for relational
database transactions [26].

In line with Subsection 2.1.2 of this section where white-box testing is discussed,
[8] believed that the same technique can be extended to cover database aspect of
software applications. As such, WHODATE approach for database testing is proposed
to semantically reflect SQL statements in the test case. As shown in the following
figure, SQL queries are transformed into the traditional white box testing for test case
generation. This is only applicable to SQL based databases as shown in Fig. 1.

At first, SQL queries are retrieved and passed to transformation unit where the
queries are translated to best suit the format of white box technique. Thereafter, the
white box generates its test cases as usual.

While [16] proposed the use of mutation scores to test the fault-detection capa-
bilities of the real world database applications such as MySQL, SQL server and Oracle.
Using this approach, sample schemas are selected from databases, and then queries
from the schemas are run against the mutation operators. On the contrary, MutGen was
introduced to generate test for mutation testing on database applications [15]. It
incorporates weak-mutant-killing constraints in the code which queries mutant-killing
constraints into the transformed code. This is done to kill the mutants by generating
program inputs and sufficient database states. In contrast, [12] believed that the higher
the mutation score the better because it indicates higher quality in identifying

maytega@uniovi.es



8 A. Abubakar Imam et al.

programming errors, thereby produced iConSMutate to generate test cases which will
reuse the existing database state for database applications to improve quality in codes
coverage and mutant detection. It should be noted that the mutant concept is only
applicable to relational databases rather than the NoSQL databases.

SQL Ti
Queries Qu‘:nnzs Test
SQL Trans
=2 =
SQL Trans
Queries Queries
SQL Trans
=3
DBMS with DBMS with
embedded transformed

Fig. 1. WHODATE approach for SQL statement transformation

It is also discovered that After-State Database Testing (ASDT) can be used to detect
data inconsistency in traditional databases only [10]. It is a black box based framework
that uses design choices and system specifications to test the consistency state after the
execution of the application. Using ASDT, a structured model that enables the gen-
eration of data consistency rules from business rules, database schema and system
specifications. Its main aim is to minimize the use of resources and efforts in ASDT.

On the word of [6], multi-dimensional databases (OLAP cubes) can be tested when
compared with record-and-replay technique using show-case. The solution is called
data-agnostic which works together with coverage model and fault model for OLAP
cubes. This is only applicable to multi-dimensional databases.

Contrariwise, since test suits are often produced and used for testing purposes, [9]
produced SPAR Test Suite Generator (STSG) to automate the process of generating
test suits used by SQL style database systems. Ground-truth answers are incorporated
in the produced test suite. This approach supports benchmarking and correctness-
checking on SQL based databases.

In [1] believed that avoiding the use of predicates while testing databases can yield
more promising results. In substitute, two approaches were proposed: Plain Pairwise
Coverage Testing (PPCT) and Selected Pairwise Coverage Testing (SPCT). These
approaches use parameters selected from elements in the SQL SELECT and they are
only applicable to SQL queries.

In consideration of the related works on database testing, it can be concluded that
relational/traditional database have received considerable attention where several
techniques with various approaches are reported. However, these techniques are either
embracing white-box technique (i.e. codes) or providing solutions that can work with
SQL based database designs only. Also, the solutions are independent of software

maytega@uniovi.es



Literature Review on Database Design Testing Techniques 9

applications, so, operations like CRUD, security, database connection and data access
schemas incorporated with application codes are not verified, thus incomplete testing of
software.

4.2 NoSQL Database Testing Techniques

NoSQL (not only SQL) is a trending term in modern data stores that accommodate big
data; it refers to non-relational databases that rely on different storage mechanisms such
as document store, key-value store, columner and graph [7].

Unlike the SQL databases that based on ACID, Not Only SQL (NoSQL) focuses on
BASE principle in order to have robust and correct database with huge amount of data
[7, 26]. BASE stand for Basically Available, Soft state, Eventually consistent. BASE
follows CAP theorem and two of three guarantees must be chosen if the system is
distributed (Brewer [27]).

[7] discovered that, the aforesaid NoSQL databases are highly vulnerable to cross-
origin attacks. Since NoSQL databases use different query languages which make SQL
injections irrelevant, attackers find a new opportunity to insert malicious code easily.
Therefore, it’s recommended to prevent all possible attacks via careful code and
database examination before complete system deployment. Although the existing tools
and techniques have proven useful in detecting SQL injection attacks, they should be
adjusted to detect the specific NoSQL database vulnerabilities [7].

However, it is believed that, CRUD operations can be used to test data availability
and consistency of each of the NoSQL databases. Hence [17] proposed a context-aware
model for CRUD operations to monitors the execution of CRUD operations for best
selection of NoSQL databases. Although this will give programmers the chance to
make appropriate choice that corresponds to the client needs, it does not have the
capability of detecting any erroneous practice in the logical structure of the application
code that communicates with the designed database. Errors such as functions call order
cannot be detected.

In the work of [18], a comparison was conducted between the NoSQL databases
based on data variety as one of the 5, 6 or 7 Vs of big data. While in [19] the
comparison was made between the document oriented NoSQL databases (MongoDB,
CouchDB, and Couchbase) for asynchronous replications on CRUD operations. The
outcome of the test was compared with famous relational databases such as
Microsoft SQL Server, MySQL, and PostgreSQL to measure the scalability and flex-
ibility of systems. Nevertheless, the two inventions were only making comparison
between the existing SQL and NoSQL databases not the design principles of particular
database driven software application.

In contrast, [20] considered all the NoSQL data models (key-value, column, doc-
ument, graph) in testing a particular healthcare system requirements. One database was
considered from each of the NoSQL data model category (Riak, Cassandra and
MongoDB) with exception of graph as it does not support horizontal partitioning.
A systematic method to perform this technology selection is proposed to evaluate the
products in the specific context of use which do not focus on database design principles
violations.

maytega@uniovi.es



10 A. Abubakar Imam et al.

It is reported that existing NoSQL databases are not matured enough [22], which is
why it is necessary to examine all the NoSQL database features based on system
requirements before selecting one [23]. In [22], performance testing was conducted on
the NoSQL databases, HBase in particular, for relationship mapping between number
of column families and performance.

Table 3. Comparison between NoSQL and SQL Databases Naheman [22]

NoSQL databases SQL databases
Read & write concurrency | Fast Slow
Data storage Mass storage General storage
Expansion mode Horizontal expansion | Vertical expansion
Consistency Poor Good
Reliability Poor Good
Availability Good Good
Expansion costs Low High
Maturity Low High
Programmatically Complex Simple
Data mode Free Fixed
Human overhead Relatively high Medium
Technical support Poor Good
Upgrade costs High Low
Hard/software compatibility | Poor Good
Flexibility Good Poor

It can be seen that NoSQL databases are described as poor in the areas such as
consistency, reliability, technical support and hardware/software compatibility which
proves the use of BASE rather than ACID. Because of its complexity, insecurity,
distributed nature of data stores and very high storage capacity, there is need to confirm
its design and implementation properly before system deployment [22, 23].

5 Findings and Recommendations

In general, this research has produced several findings as presented in Sects. 3 and 4.
However, for quick reference, some findings are summarized as follows:

e Database Logical Structure: A technique that will detect incorrect logical imple-
mentation of CRUD operations and security measures based on the predefined
functional and non-functional requirements is needed.

e Auto-problem solving technique: A technique that will suggest proper approach of
restructuring CRUD operations and security measures based on the best practice.

e A technique that will propose structural amendments for better system performance
and better data security approach.

maytega@uniovi.es



Literature Review on Database Design Testing Techniques 11

e No indexing of files: the use of Btree selection concept to group and sample
appropriate files out of the pool of distributed file will not only make the testing
accurate but it will also make the testing process faster.

e Slow processing: there is need to establish a new approach for sorting files from
smallest to the largest to enhance records searching capabilities during test.

e Security: existing techniques need to be revisited for security problems such as SQL
injection and cross-origin attacks [7].

Erroneous database design: As data becomes huge, the loading time gets affected
proportionately [6]. So, there is need to test software applications with varieties of data
sizes to confirm the correct behavior of a system.

6 Conclusion and Future Focus

In this article we analyzed and compartmentalized the existing studies with respect to
software testing techniques in the context of database design structure. Primary studies
related to software testing were identified using search terms with relevant keywords.
These were classified under journal and conference articles, book chapters, workshops,
and symposiums. Out of the search results, 23 Primary studies were selected. Database
testing has been significantly discussed in the software testing domain. However, it was
discovered that, existing software testing techniques suffer from several limitations
which includes: incompatibility with new generation databases, lack of scalability and
embedded SQL query detection issues. In addition, application of existing techniques
into a full-fledged software system has not been reported yet.

Acknowledgment. This paper/research was fully supported by Ministry of Higher Education
Malaysia, under the Fundamental Research Grant Scheme (FRGS) with Ref.
No. FRGS/1/2018/ICT04/UTP/02/04.

References

1. Tsumura, K., Washizaki, H., Fukazawa, Y., Oshima, K., Mibe, R.: Pairwise coverage-based
testing with selected elements in a query for database applications. In: 2016 IEEE Ninth
International Conference on Software Testing, Verification and Validation Workshops,
pp. 92-101 (2016)

2. Inflectra, B.: Software Testing Methodologies (2016). https://www.inflectra.com/Ideas/
Topic/Testing-Methodologies.aspx. Accessed 01 Jan 2016

3. Reza, H., Zarns, K.: Testing relational database using SQLLint. In: Proceedings - 2011 8th
International Conference on Information Technology: New Generations, ITNG 2011,
pp. 608-613 (2010)

4. Sree, U.: Software Testing Life Cycle: Defects and Bugs (2016). https://olaiainforarch.
wordpress.com/. Accessed 11 July 2016

5. Berger, D., Frohlich, P.: Software testing techniques. Power Point Lecture, 20 pages (2016)

6. Marin, M.: A data-agnostic approach to automatic testing of multi-dimensional databases. In:
Proceedings of - IEEE 7th International Conference on Software Testing, Verification and
Validation, ICST 2014, pp. 133-142 (2014)

maytega@uniovi.es



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Abubakar Imam et al.

. Ron, A., Shulman-Peleg, A., Puzanov, A.: Analysis and mitigation of NoSQL injections.

IEEE Secur. Priv. 14(2), 30-39 (2016)

. Chan, M.Y., Cheung, S.C.. Testing database applications with SQL semantics. In:

Proceedings of 2nd International Symposium on Cooperative Database Systems for
Advanced Applications, March, pp. 363-374 (1999)

. Hamlin, A., Herzog, J.: A test-suite generator for database systems (2014)
. Setiadi, R., Lau, M.F.: Identifying data inconsistencies using after-state database testing

(ASDT) framework. In: Proceedings of the International Conference on Quality Software,
pp. 105-110 (2014)

Zou, J.: Research and application of testing technology of the cloud computing database. In:
Proceedings - 2014 IEEE Workshop on Electronics, Computer and Applications, IWECA
2014, pp. 699-702 (2014)

Sarkar, T., Basu, S., Wong, J.: IConSMutate: concolic testing of database applications using
existing database states guided by SQL mutants. In: Proceedings of 11th International
Conference on Information Technology: New Generations, ITNG 2014, pp. 479-484 (2014)
Setiadi, R., Lau, M.F.: A structured model of consistency rules in After-State Database
Testing. In: 38th IEEE International Computer Software and Applications Conference
Workshops, no. 2, pp. 650-655 (2014)

Grechanik, M., Hossain, B.M.M., Buy, U.: Testing database-centric applications for causes
of database deadlocks. In: Proceedings - IEEE 6th International Conference on Software
Testing, Verification and Validation, ICST 2013, vol. 191242, pp. 174-183 (2013)

Pan, K., Wu, X., Xie, T.: Automatic test generation for mutation testing on database
applications. In: 8th International Workshop on Automation of Software Test (AST),
pp. 111-117 (2013)

McCormick II, D.W., Frakes, W.B., Anguswamy, R., McCormick, D.W.: A comparison of
database fault detection capabilities using mutation testing. In: 2012 ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM), pp. 323—
326 (2012)

Gonzalez-Aparicio, M.T., Younas, M., Tuya, J., Casado, R.: A new model for testing CRUD
operations in a NoSQL database. In: 2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA), vol. 6, pp. 79-86 (2016)

Bhogal, J., Choksi, I.: Handling big data using NoSQL. In: Proceedings - IEEE 29th
International Conference on Advanced Information Networking and Applications Work-
shops, WAINA 2015, pp. 393-398 (2015)

Truica, C.0O., Radulescu, F., Boicea, A., Bucur, I.: Performance evaluation for CRUD
operations in asynchronously replicated document oriented database. In: Proceedings - 2015
20th International Conference on Control Systems and Computer Science, CSCS 2015,
pp. 191-196 (2015)

Klein, J., Gorton, 1., Ernst, N., Donohoe, P., Pham, K., Matser, C.: Performance evaluation
of NoSQL databases: a case study. In: Proceedings of the 1st Workshop on Performance
Analysis of Big Data Systems, pp. 5-10 (2015)

Abramova, V., Bernardino, J., Furtado, P.: Testing cloud benchmark scalability with
cassandra. In: 2014 IEEE World Congress on Services, pp. 434—441 (2014)

Naheman, W.: Review of NoSQL databases and performance testing on HBase. In: 2013
International Conference on Mechatronic Sciences, Electric Engineering and Computer,
pp. 2304-2309 (2013)

maytega@uniovi.es



23.

24.

25.

26.

217.

Literature Review on Database Design Testing Techniques 13

Cai, L., Huang, S., Chen, L., Zheng, Y.: Performance analysis and testing of HBase based on
its architecture. In: IEEE 12th International Conference on Computer and Information
Science (ICIS), 2013 IEEE/ACIS, pp. 353-358 (2013)

Henry, K.: Database System Concepts. Macgraw-Hill, New York (2010)

Silberschatz, S., Korth, Sudarshan: Database System Concept: Homogeneous Distributed
Databases. Cent. Wiskd. Inform., pp. 19.3-19.125 (2007)

Abramova, V., Bernardino, J.: NoSQL databases: MongoDB vs cassandra. In: Proceedings
of the International C* Conference on Computer Science and Software Engineering ACM
2013, pp. 14-22 (2013)

Brewer, E.: CAP twelve years later: how the ‘rules’ have changed. Comput. (Long. Beach.
Calif) 45(2), 23-29 (2012)

maytega@uniovi.es



