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Abstract 

A first step towards the construction of a quantum force field for electron pairs in direct 
space is taken. Making use of topological tools (Interacting Quantum Atoms and the 
Electron Localization Function), we have analysed the dependency of electron pairs 
electrostatic, kinetic and exchange-correlation energies upon bond stretching. Simple 
correlations were found, and can be explained by considering electron pairs from the 
homogeneous electron gas perspective. The model is applicable to various bonding 
regimes: from homopolar to highly polarized and even to non-conventional bonds. Overall, 
this is a fresh approach for developing real space-based force fields including an exchange-
correlation term. It provides the relative weight of each of the contributions, showing that 
in common Lewis structures the exchange correlation term in between electron pairs is 
negligible. However, our results show that classical approximations progressively fail for 
delocalized electrons, including lone pairs. This theoretical framework justifies the success 
of the classic Bond Charge Model approach in solid state systems while it explains the fact 
that these models are barely used for open structures. Finally, this approach opens the door 
towards the development of a quantitative energy model based on the ELF topology. 



 

Introduction 

The main goal of theoretical chemistry is understanding the inherent link between the 
atomic composition and observable macroscopic properties. This connection can be easily 
described in terms of interacting potentials, which directly relate the geometric 
configuration with the energy of a given system. In the development of such Force Fields 
(FF), the change in energy upon bond length, angles and torsional angles variation is 
analyzed and adjusted to reproduce physically sound trends. 

This is usually done following simple atomic models. For example, bond lengths are 
commonly analyzed in terms of Hooke’s law, where potential and kinetic energy balances 
are parametrized to adjust to experimental/computational results.1,2 Nonetheless, in many 
cases, chemical behavior is determined by non-classical terms (e.g. exchange or 
correlation), which are not easily encoded in these potentials. In order to include this 
information, one can resort to an accurate quantum description of the system through the 
Schrödinger equation. However, in quantum terms, the local composition-properties 
relationship is not bidirectional anymore. The description of a quantum system is global; 
hence the relationship between the atomic components and the final properties is blurred. 
Obtaining the properties from the atomic composition can be done right away, yet the 
arduous inverse connection is still the focus of many inverse design approaches.3 Albeit 
“chemical intuition” can provide a qualitative general picture, and modern wavefunction 
analysis methods (energetic partitions, topological approaches, etc.)4-6 can rationalize 
specific aspects of chemistry, general bidirectional schemes providing atomic 
configuration-energy relationships are still scarce.7,8 In other words, it is still necessary to 
develop new models and concepts for understanding the contribution of each atom or 
functional group in the energy of the system.9 

 
Figure 1. VSEPR geometries for a) H2O; b) BeCl2; c) CH3-NH2; and d) XeF4. 

I’M NOT SURE THIS FIGURE IS NEEDED 

The problem with atomic models is that they usually require parametrization for 
different coordination numbers. However, this is not so if we recognize the relevant of the 
electron pair unit. Before the advent of formal force fields, the use of mere electrostatic 
reasoning among electron pairs allowed for the first time to predict molecular structure, in 



what is nowadays known as the Valence Shell Electron Pair Repulsion (VSEPR) theory, 
see Figure 1.10 More refined models where kinetic energy is also taken into account were 
developed afterwards. We postulate that the VSEPR theory can be used as a foundation to 
quantitatively link compositions and energies in simple terms while including relevant 
quantum features. The utility of electron pairs as the basis of the representation11,12 lies on 
the fact that paired electrons behave very much like bosons. This means that Pauli 
correlation is minimized in a system composed by perfectly localized electron pairs, so that 
the exchange-correlation term (more difficult to disentangle with simple models) is 
minimal. These advantages have been exploited both in classical approaches, such as the 
Bond Charge Model (BCM),13,14 where only potential and kinetic energy terms are 
included, as well as in more updated formulations based on quantum mechanical 
calculations.[9] Of course, we then have to face the identification of electron pairs, and their 
parametrization. For that, the Interacting Quantum Atoms (IQA) energy decomposition 
scheme is very suitable, since it allows to obtain and quantify the different energetic 
contributions from real space partitions of the system.15,16 The advantages of the IQA 
scheme are showcased by its success in the study of different chemical phenomena, such as 
halogen and hydrogen bonding,17,18 and metal–ligand interactions.19 IQA is usually coupled 
to Quantum Theory of Atoms in Molecules (QTAIM) partitions, in order to associate 
energy terms to atomic contributions. In this sense, it is worth noting the previous work of 
Popelier et al., who developed the first protein FF based on the QTAIM topology.20 This 
framework also proved to be suitable for geometry optimizations when combined with 
machine learning approaches.21,22 However, since we want to focus on electron pairs, we 
will couple IQA to the Electron Localization Function (ELF) topology.23 The ELF is able 
to recover Lewis entities, as bonds and lone pairs, providing the classical VSEPR picture, 
and is thus the perfect starting point for our energy model, allowing to quantify (classic and 
quantum) interactions between electron pairs.24 

In this article we propose a first step in constructing a stretching energy model 
based on the ELF topology. To do so, we evaluate electron pair interactions through 
classical (kinetic and electrostatic) and quantum energy terms (exchange and correlation). 
The ease and chemical rigor with which model parameters can be obtained sets the 
foundations of a fresh approach to real space force fields. In addition, a careful analysis of 
the relative weight of classical and quantum energy terms is presented. Valuable 
implications in general force field development are also derived, as an attempt is made to 
identify the chemical bonds that require quantum terms among those that can be studied 
under a purely classical perspective. The resulting model is beautifully connected with 
previous “intuitive” models (e.g. VSEPR1, BCM25). It also sets the basis for connecting the 
ELF topology with the energy of the system, leading to a simple chemical model that 
attempts to answer the initial question: “how does each atom contribute to the energy of 
the system?”. This knowledge holds the key for the rational design of new materials with 
desired properties.  

 

Theoretical and computational Methods  

All energy scans and wavefunctions for ELF and IQA analyses were obtained by 
DFT calculations, using Gaussian 09 program package.26 We used B3LYP27,28 exchange-
correlation functional in conjunction with 6-31G(d) basis set.29,30 Stability checks were 



carried out with other functionals (PBE and PBE0)31–33 as well as Hartree-Focck in 
conjunction with bigger basis sets (6-311G(d,p), cc-PVDZ and cc-PVTZ).34 Results lead to 
the same behaviour, obtaining very similar fittings, while the computational cost increased 
considerably with the increase in the basis set size. These results are provided in 
Supporting Information. Hence, the small basis set was favoured. Bonding descriptors 
were computed at the B3LYP/6-311G(d,p) level to further ensure basis set convergence of 
the density at the bond critical points.  

The partition into localized electron pairs was carried out with the Electron 
Localization Function (ELF).23 The ELF core, 𝜒", can be interpreted as a measure of the 
excess of local kinetic energy due to the Pauli principle, relative to the homogeneous 
electron gas kinetic energy density.35 This core is mapped with a Lorentzian function (see 
eq 1), with values ranging from 0, when 𝜒"→∞ (in between perfectly localized pairs), to 1, 
when 𝜒"→0 (perfectly localized pairs - covalent bonds, lone pairs and internal atomic 
shells). 

𝜂(𝑟) = 	 *
*+,-.

    (1) 

The gradient of this function, ∇η, is used to induce a topological partition which 
divides the space into non-overlapping regions (basins) whose properties can be 
determined by integrating over the associated volume. Hence, if we are interested in, for 
example, lone pair populations, it suffices to integrate the electron density, r, over the 
corresponding region associated to the lone pair maximum. 

ELF studies were performed with a locally modified version of the TopMod 
program36 using the monodeterminantal B3LYP/6-31G(d) wavefunctions in conjunction 
with a tridimensional grid of 200 points in each direction. ELF plots were made with 
Chimera software.37,38  

The energies associated with topological basins can be calculated with the 
Interacting Quantum Atoms (IQA) energy decomposition scheme.39 The IQA approach 
provides unique and rigorous energetic terms that additively recover the exact energy of 
the system. Additionally, it is solely derived from the wavefunction of the system; hence 
the error in the total energy is solely determined by the quality with which it was 
calculated. Unlike many topological analyses, this method is not only suitable for 
stationary points (e.g. equilibrium geometries), as with virial related energy partitions, but 
also for non-equilibrium geometries. This feature is crucial for evaluating energy terms 
along bond elongations in geometry scans. 

Energy terms are calculated by partitioning the first and second-order density 
matrices with respect to real space partitions, usually QTAIM atomic basins. The 
decomposition for atomic basins A and B, is shown in eq 2. 

𝐸 = ∑ (𝑇33 + 𝑉6633 + 𝑉6733)8999999:999999;
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B
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Where 𝑇3	is the kinetic energy of electrons in atom A and 𝑉673C  represents the 
interaction between the electrons in A and the nucleus in B. This way, the total energy is 
divided in a sum of intra and interatomic contributions. Electron-electron interaction can 



be further divided into a classical (electrostatic term) contribution, 𝑉6H6I3C , and a non-
classical, 𝑉JK3C , which is the sum of exchange (X) and correlation (Corr) terms (see eq 3). 

𝑉663C = 𝑉6H6I3C + 𝑉JK3C = 𝑉6H6I3C + 𝑉J3C + 𝑉KLMM3C  (3) 

Following this scheme, each contribution to the total energy (intra and interatomic) 
can be expressed just like in classical approaches, as a sum of kinetic and electrostatic 
terms, plus a non-classical interatomic term, as shown in eqs 4 and 5. 

𝐸N7O6M3C = 𝑉KLPH3C + 𝑉JK3C     (4) 

𝐸N7OMQ3 = 𝑇3 + 𝑉KLPH33 + 𝑉𝑋𝐶𝐴𝐴	   (5) 

Where all electrostatic terms have been put under a common “Coul” index: 𝑉KLPH3C =
𝑉𝑛𝑛𝐴𝐵 + 𝑉𝑒𝑙𝑒𝑐𝐴𝐵 + 𝑉𝑒𝑛𝐴𝐵 + 𝑉𝑛𝑒𝐴𝐵  and  𝑉KLPH33 = 𝑉6H6I33 + 𝑉6733 + 𝑉7633 . 

IQA can also be applied to ELF partitions. When considering bonding basins (and 
valence in general) within the IQA partition, the nuclear terms presented in the previous 
equations become null (𝑉67CC = 0, 𝑉773C = 0, 𝑉673C = 0). Therefore, for a bonding basin “Bond” 
that interacts with a core basin representing an atom A, the different energy terms can be 
expressed as shown in eqs 6 and 7.  

𝐸N7OMQCL7Z = 𝑇CL7Z + 𝑉KLPHCL7Z + 𝑉JKCL7Z    (6) 

𝐸N7O6M3[CL7Z = 𝑉KLPH3[CL7Z + 𝑉JK3[CL7Z     (7) 

The original IQA implementation could only deal with HF wavefunctions; 
however, a recent development provides support for DFT-derived ones.16 IQA calculations 
were performed with PROMOLDEN.15,40 Since we are interested in developing an energy 
model accounting for interactions between electron pairs, we coupled IQA with the ELF 
topology. For this purpose, the original code was modified to perform integration tasks 
over ELF basins.24 The IQA-ELF approach provides an accurate reference that can be used 
to analyze the behavior of energy terms and for constructing energy potentials that take 
into account classical as well as non-classical terms. In the next sections, we will examine 
the dependency of these terms with respect to bond elongation and compare them with 
previous potentials. 

 

Results and Discussion 

1. The model 

As a starting point, the model was applied to a series of simple yet representative 
molecules in the CH3-X (X=CH3, NH2, OH, F) series. In order to develop energetic 
potentials, the C-X interatomic distance, R, was stretched around the equilibrium position, 
Req, approximately in the range [0.90 – 1.10] Req. Since we are resorting to small 
elongations, the use of a DFT approach is justified. The following standard ELF notation 
was used: V(C-X) represents the C-X bond, V(X) the lone pairs on X, C(Y) or simply Y 
designates the core of atom Y and so on. For the sake of simplicity, we will analyze the 
results for CH3-NH2 in detail, as an illustrative example with bonds and lone pairs. Similar 
results have been obtained for the all the molecules in the CH3-X test set, and are provided 
in Supporting Information. 



CH3-NH2 ELF basins and their populations are shown in Figure 2a. The evolution 
of ELF populations upon bond stretching (Figure 2b) follows the expected behavior, with a 
flux of electrons towards the lone pairs as the distance increases. In order to develop 
working equations for the stretching we need to understand the evolution of the main 
parameters during this process.  Bond charges and bonding basin size were found to 
change linearly with R (Figures 2b and 2c). Similar results for the complete CH3-X set are 
provided in Figures S1 and S2. 

 
Figure 2. a) CH3-X ELF basins (isovalue=0.8) and populations (equilibrium geometry). V(C-H) basins are 
shown in blue, V(C-C) and V(C-N) in green, and V(N) in orange. b) V(C,N) and V(N) populations as a 
function of the C-N bond distance; R2 = 0.982 for V(C,N) and 0.989 for V(N). c) V(C,N) and V(N) volumes 
as a function of the C-N bond distance; R2 = 0.631 for V(C,N) and 0.988 for V(N). 

In the following sections, interacting potentials for the kinetic, electrostatic and 
exchange correlation terms involving the C-X bond and lone pairs (valence) will be 
developed from the ELF-IQA partition. In all cases, the difference between the calculated 
IQA energy and the DFT obtained one (∆E) was used to evaluate integral accuracy. The 
error held roughly constant and lower than 1% of the total energy, as shown in Supporting 
Information, Table S1. 

 

Classical electrostatic interaction energy 

Since ELF basins are non-overlapping, the electrostatic interaction between them 
can be easily approximated by the coulombic interaction between single charges located at 
the barycenter of the basin charge density. We have carried out the test on the reference 
molecule, CH3NH2. The center of charge of the C-N bond only deviates 0.07 a.u. from the 
ELF attractor. This small difference is clearly negligible when compared to the bond 
length, 2.75 a.u. Hence, monopole electrostatics can be expected to reproduce reasonably 
well the electrostatic interactions, that is: 

𝐸6H6I3C ∝ ]B·]F

_
     (8) 

Where 𝑞N refers to the charge of the electron pair i (be it core, bond or lone pair). 
Hence, the overall electrostatic interaction should follow the classical interacting potential 
Eelec = B/R + C, where B and C are constants. For testing this hypothesis, we used ELF-
IQA to calculate the classical component of Eintra and Einter (see eqs. 6 and 7) for 
interactions between C-X bond (V(C,X)) and both, C and X (C(C) and C(X)), as well as 
interactions between X lone pairs (V(X)) and X (C(X)). Then, we represented these 
contributions against 1/R. Results for the interaction of valence basins in methanamine are 



shown in Figure 3 (see Figure S3 for results in all other molecules). As it can be seen, the 
linear regression fittings present very good correlation coefficients, with R2 being higher 
than 0.97 in all molecules, for both, intra and inter-basin contributions (see Figure S3). The 
good agreement confirms that the ELF maximum can be used to approximate a point 
charge behaviour, as well as the validity of eq 8 for intra-basin electrostatic energy. The 
electrostatic interaction inside a given basin is a bit more difficult to rationalize. Since 
chemical reorganizations affect the valence, this is specially relevant for bonds and lone 
pairs. Assuming a homogeneous electron gas-like distribution within electron pairs, it can 
be shown that a relationship similar to point charges holds (see S.I. for the development). 

Agreement is also maintained when charges are taken into account (see Figure S4). 
Overall, this indicates that we are facing a partition (ELF) which is meaningful at zero 
order from the electrostatic point of view.  

 
Figure 3. ELF-IQA computed classical electrostatic interaction energy (intra and inter) against 1/R for a) 
V(C-N) and, b) V(N) in the methanamine molecule. Regression coefficients: R2 = 0.978 for Eintra V(C,N), 
0.995 for Einter V(C-N)-C, 0.996 for Einter V(C-N)-N, 0.989 for Eintra V(N), and 0.994 for Einter V(N)-N. 

 

Kinetic energy 

To analyse the evolution of the valence kinetic energy, we can assume that the 
electron density in the low density region (i.e. bonds far from the core) can be described by 
a zero order development of the kinetic energy density (homogeneous electron density, 
𝑡(𝑟) = 𝑐b𝜌d/f). If we also take into account the linear evolution of charges upon stretching 
(Figures 2b and S2), we obtain a simple expression for the kinetic energy in valence basins 
(eq 9) (see S.I. for the development).  



𝑇 = gh]i/j

f
*
_F
.      (9) 

The expression provided in eq 9 depends on the bond basin radius (RB). In order to 
verify whether we can relate it with the C-X bond distance, we calculate RB as a function of 
R. For that, we subtracted the core radii41 to the interatomic distance. Since results show 
that RB (and RLP)	∝	R (see Figure S5), we can develop a working expression of the form: 
T	∝	R-2. The representation of the kinetic energy in the valence basins of CH3NH2, i.e. 
V(C,N) and V(N) are provided in Figure 4; fittings for other molecules being provided in 
Supporting Information (Figure S6). Overall, the agreement within the whole series of 
molecules leads to regression coefficients, R2, ranging from 0.984 to 1.00 for both bonds 
and lone pairs. This result evidences the validity of the previous expression for bond and 
lone pair kinetic energies. 

 
Figure 4. ELF-IQA computed bond kinetic energy against 1/R2 for V(C-N) and V(N) basins in CH3-NH2. 
Regression coefficients: R2 = 0.997 for V(C,N) and 0.984 for V(N). 

 

Exchange-Correlation energy 

Finally, let us examine the quantum mechanical contributions. Exchange-
Correlation interactions have been shown to follow a linear behaviour:42  

𝐸k[I3C ≈ −nBF

o_
     (10) 

Usually applied to QTAIM atoms, this leads to an exponential decay with distance 
affected due to 𝛿3C , the delocalization index which depends on the overlap. In the case of 
ELF partitions, we have found that 𝛿3C  has a linear behaviour (k/R) for interactions 
between bond and core basins in the range of distances considered (Figure S7). 
Accordingly, the effective expression for the exchange-correlation energy should follow eq 
11. Figure 5 shows the results for the amine, the fittings for all molecules being provided in 
Figure S8 of the Supporting Information. Very good regression coefficients, R2 > 0.99 in 
most cases, were obtained, confirming the validity of the previous reasoning and the 
derived dependencies. 

𝐸k[I3C ≈ −nBF

o_
≈ − q

_.
    (11) 



 
Figure 5. ELF-IQA computed exchange-correlation energies against 1/R2 for V(C-N) and V(N) basins with 
C and N in CH3-NH2. Regression coefficients: R2 = 0.998 for V(C,N)-C, 0.997 for V(C,N)-N and 0.988 for 
V(N)-N. 

Interplay of terms 

Previous results have important consequences that are highly relevant in both force 
field development and quantum chemical topology. Firstly, it confirms the ability of an 
electron pair force field (that includes chemical bonds as well as lone pairs) derived from 
topology to describe the system while leading to a well-behaved quantum contribution. 
This contribution is also easy to parametrize and to add to “classical” potentials.  

Secondly, the quantum mechanical exchange-correlation energy term is found to be 
noticeably smaller than the classical term for all systems in the dataset (see Figure 6). As 
an example, we provide the different contributions for methanamine in the equilibrium 
position. For the V(C,N) basins: TV(C,N) = 2.207 a.u., Eelec-intra V(C,N) = 0.825 a.u., Eelec-inter 
V(C,N)-C = -4.028 a.u., Eelec-inter V(C,N)-N = -5.723 a.u., Ex-c V(C,N)-C  = -0.044 a.u., Ex-c V(C,N)-N = -
0.058 a.u. For V(N): TV(N) = 3.281 a.u., Eelec-intra V(N) = 1.401 a.u., Eelec-inter V(N)-N = -9.379 
a.u., Ex-c V(N)-N = -0.138 a.u. 

It is interesting to note that exchange-correlation terms are two orders of magnitude 
smaller than classical terms for bonds. Nonetheless, they are only one order of magnitude 
smaller for the lone pairs. This reveals the greater relevance of quantum effects in the 
description of lone pairs, which can be neglected for covalent bonds but should be taken 
into account when developing accurate interacting potentials for lone pairs. Furthermore, 
this prevalence of quantum effects further justifies the explicit treatment of lone pairs in 
Force Fields, which are often simply included in atomic contributions. 



 
Figure 6. ELF-IQA energy terms for C-N bond in methanamine.  

 

As a final check, Table S3 shows that core energies (kinetic, electrostatic and 
exchange-correlation) remain constant upon elongation, so that they can be ignored in the 
construction of the interacting potential.  

 

2. Comparison with previous models 

Up to now, we have coupled IQA with the ELF topology to obtain the different 
interaction energy terms involving Lewis entities. According to the previous discussion, 
the total bond energy would be the sum of kinetic, electrostatic and exchange-correlation 
contributions, even though in most cases we can neglect this last one. Interestingly, this 
formulation is formally equivalent to the one provided by the Bond Charge Model (BCM). 
13 This approach is a simple albeit chemically intuitive model for calculating the energy of 
molecules (or solids). In particular, a homonuclear diatomic molecule, say A2, is 
represented as two cores with +q/2 positive charge, each of them interacting through a 
bond holding a charge of –q electrons (see Figure 7 top). The bond charge moves along the 
bond length (𝑅C), which is a fraction of the equilibrium interatomic distance (𝑅), 𝑅C = 𝜐𝑅. 
The total energy, which depends on the charge and the bond length, is the sum of three 
different contributions (eq 12, in atomic units). 

𝐸(𝑞, 𝑅) = 𝐸u + 𝐸* + 𝐸o = 2𝐸3 w
]
o
x − 𝐶 ].

_
+ D′ ]

_F
.    (12) 

Where 𝐸u is the core energy (equal to 2𝐸3 for a homonuclear molecule, with 𝐸3 
being the core energy of each atom), 𝐸* accounts for classical electrostatic interactions 
(core-bond and core-core) and 𝐸o represents the kinetic energy of the bond electrons 
moving along the bond length, 𝑅C. The model can also be expanded to heteronuclear 
systems, say AB, (see Figure 7 bottom) leading to equation 13. This expression is formally 
equivalent to the one obtained for homonuclear molecules.  



𝐸 = 𝐸3 + 𝐸C − 𝐶′
].

_
+ D′ ]

_F
.   (13) 

Originally, model parameters were obtained by fitting to experimental data.13,14 
However, it is remarkable that the BCM model has the same energy terms that have been 
analysed by means of ELF-IQA approach (with the exception of the exchange-correlation 
term, which is non-classical) and they present the same dependencies with R. The 
parallelism with the terms derived from our ELF-IQA energy model is thus evident: 

𝐸ILM6 = 𝐸3 

𝐸N7OMQCL7Z + 𝐸N7O6M3[CL7Z = −𝐶′
𝑞o

𝑅C
 

𝑇CL7Z = 𝐷′
𝑞
𝑅Co

 

𝐸kI ≈ 0 

The first three equations have been shown to work for our test set. As for the 
exchange-correlation contribution, a comparison of the scales of Figures 3 and 4 provides a 
first idea of the error. As previously stated, bond exchange-correlation terms are typically 
two orders of magnitude smaller than the other terms for bonds and one order of magnitude 
for lone pairs (see Figure 6).  

 

 
Figure 7. Bond Charge Model representation of a homonuclear molecule (top) and a heteronuclear one 
(bottom). 

It is important to note that this framework explains the previous success of the 
BCM model, as energy terms with a classical origin are the only ones that contribute 
significantly to the total energy of molecules where electrons are well-localized. It also 
justifies the success of ELF parameters linked to this model.43 Moreover, it explains why 
this model was of great success for extended solids in material science, while not so much 
applied for open (layers, chains) structures, where lone pairs are usually present. As we 
have seen, neglecting the exchange-correlation terms is straight forward for bonds (two 
orders of magnitude smaller than kinetic and electrostatic terms), but not so much for lone 



pairs (only one order of magnitude smaller). The next section will be devoted to the 
analysis of the limits of the IQA-ELF potential. 

 

3. Limits of the model 

Since the model is based on localized electron pairs, it is perfectly compatible with 
the description of covalent bonds. Accordingly, it may not suffice to capture other types of 
interaction. Several examples pertaining to distinct bonding regimes have been studied to 
estimate the range of applicability. On the basis of electron pair localization, it should be 
possible to predict the outlier cases where the IQA-ELF potential is not valid. The 
following systems have been addressed: BH3-NH3, BeH2-NH3, CH3-Li and Li2, as 
paradigmatic examples of dative covalent bond, non-covalent beryllium bond, ionic and 
metallic systems (see Figure 8).44,45 

 
Figure 8. ELF basins (isovalue=0.8) and populations for a) BH3-NH3, b) BeH2-NH3, c) CH3-Li, and d) Li2. 
Hydrogenoid, disynaptic and core basins are shown in blue, green and purple respectively.  

 

It was found that both dative and very polar bonds still follow the proposed 
dependencies for the IQA-ELF potential. Specifically, BH3-NH3 and BeH2-NH3 molecules, 
lead to linear regression coefficients, R2, for the classical, exchange-correlation, and bond 
kinetic energies higher than 0.97 for BH3-NH3 and 0.99 for BeH2-NH3 (see tables S3 and 
S4). The exchange-correlation contribution was also negligible in comparison with the 
classical energy terms, being two orders of magnitude lower, as in the CH3-X series. 
Similar results are obtained for CH3-Li. Interestingly, the C(Li)-V(C-Li) electrostatic term 
is smaller than the C(C)-V(C-Li) counterpart by almost one order of magnitude. This result 
suggests that this contribution is not energetically meaningful, which can be related with 
the partially ionic character of the bond, which leads to the bonding basin being much 
closer to the carbon than to the lithium core (0.829 Å for C vs 1.169 Å for Li). 

The proposed behavior of the energy terms does not hold for Li2. From the visual 
point of view, a rather remarkable feature is already identifiable in Figure 8d. The volume 
of the bond (where a non-nuclear maximum of the density appears) is much bigger than in 



previous cases (898.23 vs 17.91 Å3 in ethane). Moreover, the population in this basin also 
follows a different behavior upon stretching. It remains constant (between 1.81 and 1.83 e-) 
independently of the Li-Li interatomic distance. The resulting ELF-IQA kinetic, 
electrostatic and exchange-correlation energy terms are shown in Figure 9. It is noteworthy 
that all the terms are very small, of the order of 10-4 a.u., unlike the ones obtained for CH3-
X molecules, which were of the order of 101 a.u. (kinetic and electrostatic terms) and 10-1 
a.u. (exchange-correlation term). We can thus consider that the model works properly for 
all the molecules considered but Li2, for which the model is not suitable. 

 
Figure 9. Kinetic, classical (intra and inter) and exchange-correlation energy terms for Li-Li bond in Li2. For 
simplicity, energy values are multiplied by 104. 

 

Overall, the model is shown to be valid for partial covalency, while failing for 
metallic bonds (as the case of Li2). It should be noted that these two categories can be 
easily identified from properties derived from the electron density. Over the years, 
numerous attempts have been made to provide a distinct classification of the chemical 
bond from topological characteristics,46,47 with special emphasis on the metallic bond.48–50 
Complex descriptors, as the metallicity index (ξm) proposed by Ayers et al.50 have been 
used to further collect the character of bonds though topological measurements. This index 
is constructed to highlight regions of planar density, its expression being provided in eq. 
14.  

𝜉{/𝑟|I}1 =
f~�fh.�. j⁄

d
��M����

i/j

�.�(M���)
    (14) 

High values of ξm are indicative of metallic character (typically ξm >25 in solids), 
while weak metallic bonds are identified by ξm values between 1 and 5. When ξm is inferior 
to 1, the bonds present a non-metallic character. Bonds of all the previous molecules were 
characterized through their electron density, ρ(r), and its Laplacian, ∇2ρ(r) and the 
aforementioned derivative descriptor at the bond critical point. Given that local topological 
indices extrapolate the characteristics of a single point to a large chemical entity, a larger 
basis set has been used to guarantee converged densities and robustness. Results are 
presented in Table 1.  

Table 1. Topological characteristics of the selected bonds. Calculations performed at the B3LYP/6-
311G(d,p) level.  

Bond ρBCP (a.u) ∇2ρBCP (a.u) ξm,BCP* 
C-C 0.2378 -0.5315 -5.5182 



C-N 0.2611 -0.6700 -5.1158 
C-O 0.2556 -0.5042 -6.5602 
C-F 0.2332 -0.0217 -130.5568 
B-N 0.0993 0.4195 1.6314 
Be-N 0.0569 0.3374 0.8017 
C-Li 0.0438 0.2128 0.8205 
Li-Li 0.0134 0.0019 12.7803 

* ξm,BCP is not defined when ∇2ρBCP < 0, yet it can be calculated to exemplify the significant difference 
between bonds.  

First of all, it is clear that the limiting cases we chose lead indeed to positive 
Laplacians and larger values of ξm. The metallicity index for Li2 is much higher than for 
the rest of the essayed bonds, which correlates with the breakdown of our model. 
Furthermore, the results manage to partially justify the lesser degree of accuracy of the 
model for the B-N, Be-N and C-Li bonds, as they exhibit greater ξm indices and positive 
Laplacian values at their BCP. This feature can be related to their only-partial covalent 
nature. This leads to a parametrizable model for a very intuitive idea, for those cases where 
the charge is rather indistinctly delocalized over the system, point charges become a 
deficient model. Instead, bonds that are assigned as covalent by the charge accumulation 
found in their BCP can be assumed to be properly described by the model hereby 
presented.  

 

Conclusions and outlook 

We have presented a simple energy model based on the ELF topology for the 
stretching of bonds that explains the interaction between electron pairs while retaining their 
mechanoquantical character. Kinetic, electrostatic and exchange-correlation terms have 
been shown to follow simple dependencies that are akin to simple energy models. Electron 
pairs, as described by the Electron Localization Function, can be treated from 
homogeneous electron gas point of view. These models have been shown to work for 
different polarities (from homonuclear to highly polar bonds, including non-conventional 
bonds). Due to the failure of the electron-pair model, its applicability is limited for metallic 
bonds and can be expected to fail in highly delocalized bonding regimes. Simple local 
measures have been shown to identify the situations in which the model is not valid.  

Moreover, the energy model hereby introduced is able to explain the success of 
simple previous models, such as the Bond Charge Model, and its updated version the ELF-
BCM model.8 In these models, the quantum nature of electrons was neglected. Our test set 
shows that, in general, this contribution (represented by the exchange-correlation term) can 
indeed be neglected for bonds. Quantum contributions become more important in 
delocalized electrons, such as lone pairs. As lone pairs are of significant importance in 
many chemical systems that are usually modelled with Force Field approaches, we hereby 
justify the careful consideration of their position and electrostatic behavior. The definition 
of explicit lone pairs has already been considered in molecular mechanics modelling, be it 
mathematically or conceptually.51,52  

Notably, the development of such a model may have important implications in 
other closely related fields, as conceptual DFT (c-DFT).53 The existence of a simple 
equation for the system energy would allow to obtain molecular properties 



(electronegativity, chemical hardness, etc.) in a simple manner and starting from 
chemically meaningful concepts.54,55 As previously stated, another field on which this 
energy model may suppose a breakthrough is in Force Field development. In this respect, 
our model provides useful insight on non-classical terms and further justifies the design of 
Force Fields transcending the all-atom paradigm. Such Force Fields have already achieved 
remarkable success,56 and we expect to foster these novel modelling methods. The work 
herein presented also opens the doors towards the further development on energy models 
based on Quantum Chemical Topology. 
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