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Abstract

Betweenness relations are the mathematical formalization of the geometrical no-
tion of an element being in between other two elements. In this paper, we exploit a
well-known result representing a betweenness relation as a family of order relations
and analyse the corresponding family of induced (Alexandrov) topologies. In par-
ticular, the intersection of this family of topologies is proved to be the anti-discrete
topology and a necessary and sufficient condition for the supremum of this family
of topologies to be the discrete topology is provided. Interestingly, this condition
is proved to hold when dealing with a finite set. We end with a discussion on the
relation between the topology induced by an order relation or a metric and the
family of topologies induced by the betweenness relation induced by the same order
relation or metric.
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1 Introduction

The notion of a betweenness relation, which was first formalized by Pasch [21]
and further studied by Huntington [17] and Huntington and Kline [18], de-
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scribes when an element is in between two other ones. A betweenness relation
can be derived from many mathematical structures. For instance, Blumenthal
and Ellis [5], Chvátal [7], and Smiley and Transue [29] characterized between-
ness relations induced by (distance) metrics. Düvelmeyer and Wenzel [10],
Fishburn [12], Rautenbach and Schäfer [26], and Sholander [27] investigated
betweenness relations induced by order relations and related binary relations
such as weak order relations and semiorder relations. The particular case of
betweenness relations induced by lattices has been studied by Cibulskis [8],
Hedĺıková and Katrinák [16], Ploščica [25], and Transue [30]. Special attention
should be given to the discussion of Padmanabhan [20] on different kinds of
betweenness relations induced by the same lattice. Smiley [28] investigated
how betweenness relations induced by a real vector space, a metric or a lattice
on the same given set relate. In 2013, Bankston [1] introduced the notion of
a road system and analysed betweenness relations induced by a road system.
It is worth noting that all the works above consider different axiomatizations,
resulting in different associated semantics for the notion of a betweenness re-
lation. As will be further explained in the present work, the definition adopted
in [22] is here considered since it allows for an intuitive representation as a
family of order relations, thus linking the notion of “y being in between x and
z” and the notion of “z being farther from x than y”.

Quite recently, Pérez-Fernández et al. [23] exploited the geometrical properties
of a betweenness relation for defining the concept of a monometric, which is
closely related to that of a metric but substitutes the symmetry and the trian-
gle inequality by the compatability with a betweenness relation. This type of
function was shown to play an important role in the field of penalty-based data
aggregation since it is linked to the construction of many families of penalty-
based functions such as medians, centroids, centers and medoids [13]. This field
has historically focused on the aggregation of real numbers or real vectors or
on the more general setting of the aggregation of elements of a (bounded) par-
tially ordered set [9]. However, the aggregation of many new types of data that
do not fit within this historical framework (e.g., rankings [23] and strings [13])
is lately receiving increasing attention, probably due to the incessant amount
of data becoming available in this information era. For this very reason, some
of the present authors developed a more general framework for penalty-based
data aggregation embracing sets equipped with a betweenness relation as in-
teresting sets on which aggregation processes are performed [22].

In the historical setting of real numbers/vectors, continuity has been largely
acclaimed as a desirable (and even necessary) property for an aggregation
process ensuring that small changes in the objects to be aggregated do not
lead to big changes in the result of the aggregation [15]. Unfortunately, un-
like in this historical setting, there is still a gap in the study of the notion of
continuity of mappings on a set equipped with a betweenness relation. The
study of the continuity of penalty-based (aggregation) functions stimulates us
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to investigate some hitherto unexplored mathematical aspects of a between-
ness relation. In particular, since a set equipped with a betweenness relation
might not have a natural underlying topology, it is necessary to provide such
a structure with a topology generated by the betweenness relation. Admit-
tedly, topologies and betweenness relations have jointly attracted the atten-
tion of the scientific community, yet in different directions than in the present
paper. Just to name a few relevant works, Bankston studied the notions of
gap-freeness [2] and antisymmetry [3] of betweenness relations induced by the
topology of Hausdorff continua, Bankston et al. [4] investigated the continuity
behavior of betweenness functions, and Bruno et al. [6] analysed betweenness
relations in the context of (topological) category theory.

In the present work, we follow a different direction and start by representing
a betweenness relation in the sense of [22] as a family of order relations. We
analyse the corresponding family of induced (Alexandrov) topologies. More
specifically, we pay special attention to the intersection and the supremum of
these topologies, which turn out to be the anti-discrete topology for the former
and, in case some necessary and sufficient condition is fulfilled, the discrete
topology for the latter. The remainder of this paper is organized as follows.
We recall some basic notions and results related to topologies, metrics, pre-
order relations and betweenness relations in Section 2. A representation of a
betweenness relation as a family of order relations is presented in Section 3.
Section 4 is devoted to the presentation of the main results of the paper,
the section being divided into three subsections: Some basic properties of the
family of topologies induced by a betweenness relation are studied in Subsec-
tion 4.1; the intersection and supremum of these topologies are investigated
in Subsection 4.2; the relationship between the family of topologies induced
by the betweenness relation induced by an order relation or a metric and the
topology directly induced by the same order relation or metric is discussed
in Subsection 4.3. A discussion on the use of the (dual) Alexandrov topology
given by the lower sets rather than that given by the upper sets is addressed
in Section 5. We end with some conclusions and open problems in Section 6.

2 Preliminaries

Throughout this paper, X is always a nonempty set with |X| denoting its
cardinality. P(X) denotes the power set of X, i.e., the set of all subsets of X.
In the following, we recall some basic notions and results related to topologies,
metrics, preorder relations and betweenness relations.
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2.1 On topologies

A subset T ⊆ P(X) is called a topology [11] on X if it is such that ∅ ∈ T
and X ∈ T and it is closed under arbitrary unions (if {Ui}i∈I ⊆ T , then⋃
i∈I
Ui ∈ T ) and finite intersections (U ∈ T and V ∈ T , then U ∩ V ∈ T ).

Obviously, P(X) and {∅, X} are both topologies on X and are called the
discrete topology and the anti-discrete topology on X, respectively. A topology
T on X is the discrete topology if and only if every singleton {x} belongs
to T .

A subset B ⊆ T is called a base for a topology T on X if every non-empty
member of T can be represented as the union of a subfamily of B. A subset
P ⊆ T is called a subbase for a topology T on X if the family of all finite
intersections of members in P is a base for T .

If T1 and T2 are two topologies on X and T1 ⊆ T2, then we say that T2 is
finer than T1 or, equivalently, that T1 is coarser than T2. The discrete topology
and the anti-discrete topology are the finest and the coarsest topology on X,
respectively.

The intersection
⋂
i∈I
Ti of a family of topologies {Ti}i∈I onX is again a topology,

which is the finest topology that is coarser than all the topologies {Ti}i∈I .
Although the union

⋃
i∈I
Ti of a family of topologies {Ti}i∈I on X might not be a

topology, the supremum of these topologies (defined as the coarsest topology
on X that is finer than all the topologies {Ti}i∈I and denoted by

∨
i∈I
Ti) is

assured to exist. It is clear that
⋃
i∈I
Ti ⊆

∨
i∈I
Ti, the equality holding if and only

if
⋃
i∈I
Ti is a topology on X. In addition, it holds that

⋃
i∈I
Ti is a subbase for∨

i∈I
Ti.

A subset U ⊆ X is said to be a neighbourhood of a point x ∈ X with respect
to a topology T on X if x ∈ U and U ∈ T . A topology T on X is said to
be of type T0 if, for every pair of distinct points x, y ∈ X, there exists U ∈ T
containing exactly one of the two points.

A topology T on X is said to be Alexandrov [19] if it is closed under arbitrary
intersections, i.e., if {Ui}i∈I ⊆ T , then

⋂
i∈I
Ui ∈ T . A topology T on X is

Alexandrov if and only if every x ∈ X has a smallest neighbourhood. Moreover,
the smallest neighbourhood of a point with respect to an Alexandrov topology
is precisely the intersection of all the neighbourhoods of that point.

A mapping d : X × X → [0,+∞[ is called a metric [11] on X if it satisfies
the properties of identity of indiscernibles (d(x, y) = 0 if and only if x = y),
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symmetry (d(x, y) = d(y, x), for any x, y ∈ X) and the triangle inequality
(d(x, z) ≤ d(x, y)+d(y, z), for any x, y, z ∈ X). A metric d on a set X induces
a topology on X, denoted by Td, in which all the open balls {B(x, r)}x∈X,r>0

constitute a base, where B(x, r) = {y ∈ X | d(x, y) < r}.

2.2 On preorder relations and induced topologies

A preorder relation R on a set X is a binary relation on X satisfying reflexivity
and transitivity. An antisymmetric preorder relation is called an order relation.
An order relation R on X is called a total order relation if, for any x, y ∈ X,
either xRy or yRx holds. An element a ∈ X is said to be the smallest element
with respect to an order relation R on X if, for any x ∈ X, it holds that aRx.
It is clear that an order relation does not necessarily have a smallest element,
and, if it does, then it is unique.

A subset U ⊆ X is called an upper set with respect to a preorder relation R
on X if, for any x, y ∈ X, x ∈ U and xRy imply y ∈ U . For any x ∈ X, the
subset (↑ x)R = {y ∈ X | xRy} is called the principal filter at x with respect
to R. It is evident that (↑ x)R is the smallest upper set containing x.

A preorder relation R on a set X induces a topology on X, denoted by TR,
where TR is precisely the set of all upper sets with respect to R. The topology
TR is Alexandrov and, for any x ∈ X, (↑ x)R is the smallest neighbourhood
of x with respect to TR. In addition, TR is of type T0 if and only if R is an
order relation. Since U =

⋃
x∈U

(↑ x)R for any U ∈ TR, it holds that {(↑ x)R}x∈X
is a base for TR. Given an Alexandrov topology T on a set X, it holds that
RT is a preorder relation on X, where RT is defined as follows: xRT y if, for
any U ∈ T , x ∈ U implies y ∈ U . This correspondence between the set of
all preorder relations and that of all Alexandrov topologies on a given set
is one-to-one. For this very reason, we often refer to the topology TR as the
Alexandrov topology induced by the preorder relation R.

Note that alternative construction methods for a topology given a (specific
type of) preorder relation have been proposed in literature, e.g., the Scott
topology and the Lawson topology for directed-complete (partial) order rela-
tions (for more details, see, for instance, [14]).

2.3 On betweenness relations

It is important to mention that there exist many different postulates for defin-
ing a betweenness relation. In particular, different types of transitivity prop-
erties have been proposed by Pitcher and Smiley [24]. Here, we adopt the
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definition by Pérez-Fernández and De Baets [22], which is a basic betweenness
relation in the sense of [1] that additionally satisfies axiom (R7) defined in
the same paper. The reason for doing so does not only lie in its applicability
in data aggregation, but also in its nice representation as a family of order
relations, which will enable us to induce a family of topologies, as will be
discussed in Section 4.

Definition 1 [22] A ternary relation B on a set X is called a betweenness
relation if it satisfies the following three properties:

(i) Symmetry in the end points: for any x, y, z ∈ X,

(x, y, z) ∈ B ⇐⇒ (z, y, x) ∈ B .

(ii) Closure: for any x, y, z ∈ X,

((x, y, z) ∈ B ∧ (x, z, y) ∈ B) ⇐⇒ y = z .

(iii) End-point transitivity: for any o, x, y, z ∈ X,

((o, x, y) ∈ B ∧ (o, y, z) ∈ B) =⇒ (o, x, z) ∈ B .

Remark 2 [22] For any x, y ∈ X, if (x, y, x) ∈ B, then it follows that x = y.
Equivalently, if x, y ∈ X with x 6= y, then (x, y, x) 6∈ B.

The simplest and smallest betweenness relation on a set X, denoted by B0,
is the ternary relation {(x, y, z) ∈ X3 | x = y ∨ y = z}, called the minimal
betweenness relation on X. One can construct more elaborated betweenness
relations from other mathematical structures, such as an ordered set, a metric
space and a real vector space.

Example 1 [1] Let R be an order relation on a set X. The ternary relation
BR = B0∪{(x, y, z) ∈ X3 | xRyRz∨zRyRx} is a betweenness relation on X. /

Example 2 [1] Let d be a metric on a set X. The ternary relation Bd =
{(x, y, z) ∈ X3 | d(x, z) = d(x, y) + d(y, z)} is a betweenness relation on X. /

Example 3 [1] Let X be a subset of a real vector space. The ternary relation
B = {(x, y, z) ∈ X3 | (∃λ ∈ [0, 1])(y = λx + (1 − λ)z)} is a betweenness
relation on X. /

Example 4 Let X be a set with |X| > 2 and b ∈ X be fixed. The ternary
relation Bb = B0 ∪ {(x, b, z) ∈ X3 | x 6= b ∧ x 6= z ∧ b 6= z} is a betweenness
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relation on X. Actually, Bb can be induced by the following metric:

d(x, y) =


0 , if x = y ,

1 , if x 6= y and b ∈ {x, y} ,

2 , otherwise.

/

3 Representation of a betweenness relation as a family of order
relations

In this section, we show that any betweenness relation can be represented as
a family of order relations. The following result was mentioned in [1].

Theorem 3 Consider a betweenness relation B on a set X. For any x ∈ X,
we define a binary relation Ox on X as follows:

Ox = {(y, z) ∈ X2 | (x, y, z) ∈ B} .

Then {Ox}x∈X is a family of order relations on X such that, for any x, y, z ∈
X,

(y, z) ∈ Ox ⇐⇒ (y, x) ∈ Oz .

Proof. It follows from the closure property of B that each Ox is reflexive
and antisymmetric. In addition, the end-point transitivity of B implies the
transitivity of each Ox. Hence, {Ox}x∈X is a family of order relations on X.
The symmetry of B in the end points implies (y, z) ∈ Ox ⇐⇒ (y, x) ∈ Oz, for
any x, y, z ∈ X. �

Remark 4 (i) Since (x, y) ∈ Ox for any x, y ∈ X, x is the smallest or
greatest element in Ox and

⋃
x∈X

Ox = X2.

(ii) Since every Ox is reflexive, it follows that {(x, x) | x ∈ X} ⊆ ⋂
x∈X

Ox.

For any x, y ∈ X with x 6= y, we conclude that (y, x) 6∈ Ox by Remark 2,
which implies (y, x) 6∈ ⋂

x∈X
Ox. Hence, it holds that

⋂
x∈X

Ox ⊆ {(x, x) | x ∈

X}, and, thus,
⋂

x∈X
Ox = {(x, x) | x ∈ X}.

Theorem 3 states that we can construct a family of order relations from a given
betweenness relation. Conversely, given a family of order relations satisfying
an additional condition concerning the symmetry in the end points, we can
construct a betweenness relation.
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Theorem 5 Consider a family of order relations {Ox}x∈X on a set X such
that, for any x, y, z ∈ X,

(y, z) ∈ Ox ⇐⇒ (y, x) ∈ Oz .

For any x ∈ X, we define a ternary relation Bx on X as follows:

Bx = {(x, y, z) | (y, z) ∈ Ox} .

Then B =
⋃

x∈X
Bx is a betweenness relation on X.

Proof. It follows from the fact that (y, z) ∈ Ox ⇐⇒ (y, x) ∈ Oz for any
x, y, z ∈ X that B is symmetric in the end points. The reflexivity and anti-
symmetry of each Ox imply the closure property of B, and the transitivity of
each Ox implies the end-point transitivity of B. �

From Theorems 3 and 5, we obtain the following representation theorem for
a betweenness relation via a family of order relations.

Theorem 6 A ternary relation B is a betweenness relation on a set X if and
only if it is induced (as in Theorem 5) by a family of order relations {Ox}x∈X
on X satisfying that (y, z) ∈ Ox ⇐⇒ (y, x) ∈ Oz for any x, y, z ∈ X.

4 Main results

4.1 Topologies induced by a betweenness relation

In this subsection, we study some basic properties of the family of topologies
induced by a betweenness relation. Note that we fix the semantics “smaller
than or equal to” for the family of order relations {Ox}x∈X . A discussion on the
use of the dual semantics “greater than or equal to” is addressed in Section 5.

First, for any x, y ∈ X, we define the subset (↑ y)x of X with respect to a
betweenness relation B on X as follows:

(↑ y)x = {z ∈ X | (x, y, z) ∈ B} .

Obviously, (↑ y)x can be equivalently defined via (↑ y)x = {z ∈ X | (y, z) ∈
Ox} and (↑ y)x is precisely the principal filter at y with respect to the order
relation Ox, where Ox is defined as in Theorem 3. Some properties of the
family {(↑ y)x}x,y∈X are listed below.

Proposition 7 The family {(↑ y)x}x,y∈X has the following properties:
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(i) y ∈ (↑ y)x.
(ii) (↑ x)x = X.

(iii) x 6∈ (↑ y)x if and only if x 6= y.
(iv) (↑ y)x ∩ (↑ x)y = ∅ if and only if x 6= y.
(v)

⋂
x∈X

(↑ y)x = {y}.

Proof.
(i) Since (x, y, y) ∈ B for any x, y ∈ X, it holds that y ∈ (↑ y)x.

(ii) Since (x, x, y) ∈ B for any x, y ∈ X, it holds that (↑ x)x = X.

(iii) By (ii), x = y implies x ∈ (↑ y)x. So if x 6∈ (↑ y)x, then x 6= y. If x 6= y,
then (x, y, x) 6∈ B, i.e., x 6∈ (↑ y)x by Remark 2.

(iv) It follows from (ii) and the closure property of a betweenness relation.

(v) By (iii), x 6∈ (↑ y)x for any x 6= y. Hence, if x 6= y, then x 6∈ ⋂
x∈X

(↑ y)x,

which implies
⋂

x∈X
(↑ y)x ⊆ {y}. On the other hand, {y} ⊆ ⋂

x∈X
(↑ y)x by (i).

We conclude that
⋂

x∈X
(↑ y)x = {y}. �

Consider a betweenness relation B on a set X and the family of order relations
{Ox}x∈X induced by B as in Theorem 3. A family of topologies {Tx}x∈X is said
to be induced by the betweenness relation B, if for any x ∈ X, Tx is exactly
the topology induced by the order relation Ox. For any x ∈ X, {(↑ y)x}y∈X is
a base for Tx and (↑ y)x is the smallest neighbourhood of y with respect to Tx
for any y ∈ X.

The following theorem indicates that, for any x ∈ X, Tx is neither the discrete
nor the anti-discrete topology when dealing with a set of cardinality greater
than one.

Theorem 8 Let X be a set with |X| > 1 and {Tx}x∈X be the family of topolo-
gies induced by a betweenness relation B on X. Then {∅, X} ⊂ Tx ⊂ P(X)
for any x ∈ X.

Proof. Obviously, {∅, X} ⊆ Tx ⊆ P(X). It remains to prove that P(X) 6=
Tx 6= {∅, X}. For any x ∈ X, it holds that {x} ∈ P(X), but, as we will prove
next, {x} 6∈ Tx. Suppose {x} ∈ Tx. On the one hand, {x} is the smallest
neighbourhood of x with respect to Tx. On the other hand, (↑ x)x = X is
also the smallest neighbourhood of x with respect to Tx. Hence, it holds that
{x} = X, which contradicts |X| > 1. This shows that P(X) 6= Tx. Next,
consider any y ∈ X \ {x}. It follows from y ∈ (↑ y)x and x 6∈ (↑ y)x that
∅ 6= (↑ y)x 6= X. Note that (↑ y)x ∈ Tx. We conclude that Tx 6= {∅, X}. �
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Remark 9 It is evident that, if |X| = 1, then {∅, X} = Tx = P(X).

From Theorem 8, the following interesting question arises: Is it possible that⋂
x∈X
Tx = {∅, X} and

∨
x∈X
Tx = P(X) if |X| > 1? The main purpose of the

next section is to address this question.

4.2 Intersection and supremum of the induced topologies

In this subsection, we investigate the intersection and supremum of the family
of topologies induced by a betweenness relation.

The intersection of the family of topologies {Tx}x∈X induced by a betweenness
relation B on a set X is necessarily the anti-discrete topology on X.

Theorem 10 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. Then

⋂
x∈X
Tx = {∅, X}.

Proof. It is obvious that {∅, X} ⊆ ⋂
x∈X
Tx. Now consider any A ∈ ⋂

x∈X
Tx

with A 6= ∅, and choose any x0 ∈ A. On the one hand, it holds that A ∈ Tx0 ,
which implies that A is a neighbourhood of x0 with respect to Tx0 . On the
other hand, (↑ x0)x0 = X is the smallest neighbourhood of x0 with respect to
Tx0 . Therefore, A = X. �

For the supremum of these topologies, we first consider the minimal between-
ness relation.

Theorem 11 Let {Tx}x∈X be the family of topologies induced by the minimal
betweenness relation B0 on a set X. Then

⋃
x∈X
Tx =

∨
x∈X
Tx = P(X).

Proof. Obviously,
⋃

x∈X
Tx =

∨
x∈X
Tx = P(X) if |X| = 1. We therefore assume

that |X| > 1. Since
⋃

x∈X
Tx ⊆

∨
x∈X
Tx ⊆ P(X), it suffices to show that P(X) ⊆⋃

x∈X
Tx. For any A ∈ P(X), we distinguish two possible cases:

(i) If A = ∅ or A = X, then it is evident that A ∈ ⋃
x∈X
Tx.

(ii) If ∅ ⊂ A ⊂ X, choose any x0 ∈ X \ A. It follows from the definition
of B0 that (↑ y)x0 = {y} for any y ∈ A. Note that (↑ y)x0 ∈ Tx0 . Hence,
A =

⋃
y∈A
{y} =

⋃
y∈A

(↑ y)x0 ∈ Tx0 . We conclude that A ∈ ⋃
x∈X
Tx. �

The following question now arises: Are the equalities
⋃

x∈X
Tx =

∨
x∈X
Tx = P(X)
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still valid for any betweenness relation? The following example shows that
these equalities do not hold in general.

Example 5 Consider an infinite set X and the betweenness relation Bb de-
fined in Example 4. Then Tb = {X} ∪ {A ⊆ X | b 6∈ A} and, for any x ∈ X
with x 6= b, it holds that Tx = {X,X \ {x}} ∪ {A ⊆ X | x, b 6∈ A}. Hence,∨

x∈X
Tx = {A ⊆ X | b 6∈ A} ∪ {X \B | B is a finite subset of X \ {b}} .

Since {b} 6∈ ∨
x∈X
Tx,

∨
x∈X
Tx is not the discrete topology. In addition, if a, c ∈ X

and b 6= c 6= a 6= b, then X \ {a, c} ∈ ∨
x∈X
Tx, but it is not difficult to see that

X \ {a, c} 6∈ ⋃
x∈X
Tx. This implies that

∨
x∈X
Tx 6=

⋃
x∈X
Tx. Therefore,

⋃
x∈X
Tx ⊂∨

x∈X
Tx ⊂ P(X). /

Although the two equalities might not hold in general, the second equality∨
x∈X
Tx = P(X) is valid in many cases, as we shall see next. To that end,

we consider three different axioms for a betweenness relation and study the
relationships among them. Later on, we will show that either of the first two
axioms is a sufficient condition for the equality

∨
x∈X
Tx = P(X) to hold (Theo-

rems 20 and 21), whereas the third one is a necessary and sufficient condition
(Theorem 18). The three axioms read as follows:

(A1) For any a, b, c ∈ X with a 6= b 6= c such that (a, b, c) ∈ B, it holds that
(a, b, d) ∈ B and (c, b, d) ∈ B imply d = b.

(A2) For any b ∈ X, there exists a ∈ X such that (a, b, c) ∈ B implies c = b.
(A3) For any b ∈ X, there exists a finite subset {ai}ni=1 of X such that, if

(ai, b, c) ∈ B for all i ∈ {1, . . . , n}, then c = b.

Obviously, the minimal betweenness relation B0 satisfies all three axioms. The
next two propositions indicate that any betweenness relation induced by an
order relation or a real vector space satisfies (A1). A non-minimal betweenness
relation satisfying (A2) is given in Example 6, which is a slight modification
of Example 4.

Proposition 12 Let B be the betweenness relation induced by an order rela-
tion R on a set X. Then B satisfies axiom (A1).

Proof. For any a, b, c ∈ X with a 6= b 6= c and (a, b, c) ∈ B, it follows from
a 6= b 6= c that aRbRc or cRbRa. Without loss of generality, we can assume
that aRbRc. Suppose that (a, b, d) ∈ B and (c, b, d) ∈ B. We also assume that
d 6= b.

It follows from a 6= b 6= d and (a, b, d) ∈ B that aRbRd or dRbRa. Similarly,
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we have cRbRd or dRbRc. We distinguish four possible cases:

(i) aRbRd and cRbRd. Recall that aRbRc. It holds that bRc and cRb imply
b = c, a contradiction.

(ii) aRbRd and dRbRc. It holds that bRd and dRb imply d = b, a contra-
diction.

(iii) dRbRa and cRbRd. It holds that dRb and bRd imply d = b, a contra-
diction.

(iv) dRbRa and dRbRc. Recall that aRbRc. It holds that aRb and bRa imply
a = b, a contradiction.

Therefore, (a, b, d) ∈ B and (c, b, d) ∈ B imply d = b. �

Proposition 13 The betweenness relation B induced on a subset X of a real
vector space satisfies axiom (A1).

Proof. For any a, b, c ∈ X such that a 6= b 6= c and (a, b, c) ∈ B, there
exists α ∈ ]0, 1[ such that b = αa + (1 − α)c. Suppose that (a, b, d) ∈ B and
(c, b, d) ∈ B. Then there exist β, γ ∈ [0, 1[ such that b = βa + (1 − β)d and
b = γc+ (1− γ)d. We distinguish two possible cases:

(i) If β = 0 or γ = 0, then it is obvious that d = b.
(ii) If β 6= 0 and γ 6= 0, then β, γ ∈ ]0, 1[. Multiplying both sides of the

three equalities above by the appropriate factor, we obtain what follows:
βγb = αβγa+ (1− α)βγc

αγb = αβγa+ α(1− β)γd

(1− α)βb = (1− α)βγc+ (1− α)β(1− γ)d.

Hence, it holds that

αγb+ (1− α)βb = βγb+ (α(1− β)γd+ (1− α)β(1− γ)d) ,

which implies

(α(1− β)γ + (1− α)β(1− γ))d = (α(1− β)γ + (1− α)β(1− γ))b .

Note that (α(1− β)γ + (1− α)β(1− γ)) > 0 since α, β, γ ∈ ]0, 1[. Thus,
we conclude that d = b. �

Example 6 Let X be an infinite set, S be a finite subset of X with |S| > 3
and b ∈ S be fixed. Define B = B0∪{(x, b, z) ∈ X3 | (x, z ∈ S\{b})∧(x 6= z)}.
It is easy to verify that B is a betweenness relation on X. For any y ∈ X,
choose an x ∈ X \ (S ∪ {y}). It holds that (x, y, z) ∈ B implies z = y. Thus,
we conclude that B satisfies (A2). /
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The following theorem characterizes the three axioms in terms of principal
filters.

Theorem 14 Let B be a betweenness relation on a set X.

(i) B satisfies (A1) if and only if for any a, b, c ∈ X with a 6= b 6= c and
(a, b, c) ∈ B, (↑ b)a ∩ (↑ b)c = {b}.

(ii) B satisfies (A2) if and only if for any b ∈ X, there exists a ∈ X such
that (↑ b)a = {b}.

(iii) B satisfies (A3) if and only if for any b ∈ X, there exists a finite subset

{ai | i ∈ {1, 2, . . . , n}} of X such that
n⋂

i=1
(↑ b)ai = {b}.

Proof. We only prove (i). The proofs of (ii) and (iii) are quite similar to
that of (i).

Suppose that B satisfies (A1). Consider a, b, c ∈ X such that a 6= b 6= c and
(a, b, c) ∈ B. By definition, it holds that d ∈ (↑ b)a ∩ (↑ b)c is equivalent to
(a, b, d) ∈ B and (c, b, d) ∈ B. Then d = b by (A1), which implies (↑ b)a ∩ (↑
b)c ⊆ {b}. Proposition 7(i) implies the opposite inclusion {b} ⊆ (↑ b)a∩ (↑ b)c.
We conclude that (↑ b)a ∩ (↑ b)c = {b}.

Conversely, for any a, b, c ∈ X with a 6= b 6= c and (a, b, c) ∈ B, if (a, b, d) ∈ B
and (c, b, d) ∈ B, i.e., d ∈ (↑ b)a∩(↑ b)c, then it follows from (↑ b)a∩(↑ b)c = {b}
that d = b. So B satisfies axiom (A1). �

From Theorem 14(iii) and Proposition 7(v), it follows that any betweenness
relation on a finite set necessarily satisfies axiom (A3).

Proposition 15 If X is a finite set, then any betweenness relation B on X
satisfies (A3).

Now, we study the relationships among the three axioms on a betweenness
relation.

Theorem 16 Let B be a betweenness relation on a set X.

(i) Axiom (A1) implies axiom (A3).
(ii) Axiom (A2) implies axiom (A3).

Proof. (i) Assume that B satisfies (A1). For any b ∈ X, we distinguish two
possible cases:

(a) If there exist a, c ∈ X such that a 6= b 6= c and (a, b, c) ∈ B, then
(↑ b)a ∩ (↑ b)c = {b} by Theorem 14(i).

(b) Otherwise, for any a ∈ X with a 6= b, it is easy to verify that (↑ b)a =
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{b}. We conclude that B satisfies (A3) by Theorem 14(iii).

(ii) It follows directly from Theorem 14(ii) and Theorem 14(iii). �

Remark 17 (i) Axiom (A1) does not imply axiom (A2). Actually, it is
not difficult to prove that the betweenness relation induced by a total order
relation on a set X with |X| > 2 and the betweenness relation induced
by a convex subset X of a real vector space with |X| > 2 do not satisfy
axiom (A2). From Propositions 12 and 13, we know that both betweenness
relations satisfy axiom (A1).

(ii) Axiom (A2) does not imply axiom (A1). Actually, let B be the between-
ness relation defined in Example 6, a, c ∈ S \ {b}. If a 6= c (otherwise
(a, b, c) /∈ B), then (a, b, c) ∈ B and (↑ b)a ∩ (↑ b)c = S \ {a, c} since
(↑ b)a = S \ {a} and (↑ b)c = S \ {c}. It follows from |S| > 3 that
{b} ⊂ S \ {a, c}, which implies (↑ b)a ∩ (↑ b)c 6= {b}. Hence, B does not
satisfy axiom (A1), but B satisfies axiom (A2).

(iii) Axiom (A3) neither implies axiom (A1) nor axiom (A2), which follows
from the example below.

Example 7 Let X be an infinite set that can be written as the union of a
pairwise disjoint family of finite subsets {Si}i∈I with |Si| > 3 for all i and fix
b ∈ X. Define B = B0 ∪ {(x, b, z) ∈ X3 | (∃i ∈ I)(x, z ∈ Si \ {b} ∧ x 6= z)}.
It is easy to verify that B is a betweenness relation on X.

For any x ∈ X, we can show that there exists a finite subset {ai | i ∈
{1, 2, . . . , n}} of X such that

n⋂
i=1

(↑ x)ai = {x}. In fact, if x 6= b, choose

any y ∈ X \ {x}, then (↑ x)y = {x}. If x = b, then
⋂

y∈Si

(↑ x)y = {x} for any

i ∈ I. Therefore, B satisfies (A3).

However, similarly to Remark 17(ii), B does not satisfy (A1). It follows from
the construction of X that |(↑ b)a| > 2 for any a ∈ X, which implies (↑ b)a 6=
{b} for any a ∈ X. Therefore, B does not satisfy (A2). /

The following theorem shows that axiom (A3) is a necessary and sufficient
condition for the equality

∨
x∈X
Tx = P(X) to hold.

Theorem 18 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. Then

∨
x∈X
Tx = P(X) if and only if B satisfies

axiom (A3).

Proof. Necessity: Assume that
∨

x∈X
Tx = P(X). Then {b} ∈ ∨

x∈X
Tx for

any b ∈ X. Additionally, since
⋃

x∈X
Tx is a subbase for

∨
x∈X
Tx, there exists a

family of subsets {Uj}j∈J of X such that {b} =
⋃
j∈J

Uj, where each Uj is the
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intersection of a finite number of members in
⋃

x∈X
Tx. Hence, there exist j0 ∈ J

such that {b} = Uj0 and a finite family {Vi | i ∈ {1, 2, . . . , n}} of members in⋃
x∈X
Tx such that Uj0 =

n⋂
i=1

Vi. Hence, {b} =
n⋂

i=1
Vi.

Since Vi ∈
⋃

x∈X
Tx for any i ∈ {1, 2, . . . , n}, there exists ai ∈ X such that

Vi ∈ Tai , which implies that Vi is a neighbourhood of b with respect to Tai .
Note that (↑ b)ai is the smallest neighbourhood of b with respect to Tai , which

implies b ∈ (↑ b)ai ⊆ Vi. It follows from {b} =
n⋂

i=1
Vi that

n⋂
i=1

(↑ b)ai = {b}.
Therefore, B satisfies (A3) by Theorem 14(iii).

Sufficiency: If B satisfies (A3), then it follows from Theorem 14(iii) that for
any b ∈ X, there exists a finite subset {ai | i ∈ {1, 2, . . . , n}} of X such that
n⋂

i=1
(↑ b)ai = {b}. Note that (↑ b)ai ∈ Tai ⊆

∨
x∈X
Tx for any i ∈ {1, 2, . . . , n},

which implies {b} ∈ ∨
x∈X
Tx. We conclude that

∨
x∈X
Tx = P(X) since the result

holds for any b ∈ X. �

Since any betweenness relation on a finite set necessarily satisfies (A3), the
following corollary is immediate.

Corollary 19 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. If X is finite, then

∨
x∈X
Tx = P(X).

Note that both axioms (A1) and (A2) imply axiom (A3), but the converse
is not true. Hence, either axiom (A1) or axiom (A2) is a sufficient (but not
necessary) condition for the equality

∨
x∈X
Tx = P(X) to hold, as indicated in

the following two theorems.

Theorem 20 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. If B satisfies axiom (A1), then

∨
x∈X
Tx = P(X).

Theorem 21 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. If B satisfies axiom (A2), then

∨
x∈X
Tx = P(X).

Finally, from the perspective of topology, we propose another necessary and
sufficient condition for the equality

∨
x∈X
Tx = P(X) to hold.

Theorem 22 Let {Tx}x∈X be the family of topologies induced by a between-
ness relation B on a set X. Then

∨
x∈X
Tx = P(X) if and only if

∨
x∈X
Tx is

Alexandrov.
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Proof. Necessity: It is evident that
∨

x∈X
Tx is Alexandrov if

∨
x∈X
Tx = P(X).

Sufficiency: Suppose that
∨

x∈X
Tx is Alexandrov. On the one hand, for any

x, y ∈ X, it holds that (↑ y)x ∈ Tx ⊆
∨

x∈X
Tx. On the other hand, from

Proposition 7(v), we know that
⋂

x∈X
(↑ y)x = {y}. Since

∨
x∈X
Tx is Alexandrov,

it holds that {y} ∈ ∨
x∈X
Tx for any y ∈ X. Therefore,

∨
x∈X
Tx = P(X). �

Remark 23 Note that {Tx}x∈X is a family of type T0 and Alexandrov topolo-
gies on X. Therefore, Theorem 22 and Example 5 indicate that the supremum
of a family of type T0 and Alexandrov topologies is not necessarily Alexandrov.

4.3 Relationship between the topology induced by an order relation or a metric
and the family of topologies induced by the betweenness relation induced
by this same order relation or metric

On the one hand, any order relation or metric can induce a topology and a
betweenness relation. On the other hand, any betweenness relation can induce
a family of topologies. Thus, it might be interesting to investigate the rela-
tionship between the topology induced by an order relation or a metric and
the family of topologies induced by the betweenness relation induced by this
same order relation or metric.

We have the following two results in the case of an order relation.

Theorem 24 Let BR be the betweenness relation induced by an order relation
R on a set X, TR be the topology induced by R and {Tx}x∈X be the family of
topologies induced by BR. The following results hold:

(i) TR ⊆
∨

x∈X
Tx.

(ii) TR =
∨

x∈X
Tx if and only if R = {(x, x) | x ∈ X}.

Proof. (i) It follows from Proposition 12 and Theorem 20 that
∨

x∈X
Tx =

P(X), which implies TR ⊆
∨

x∈X
Tx.

(ii) Since
∨

x∈X
Tx = P(X), we may equivalently prove that TR = P(X) if and

only if R = {(x, x) | x ∈ X}.

If R = {(x, x) | x ∈ X}, then every singleton is an upper set, which implies
{x} ∈ TR for all x ∈ X. Hence, TR = P(X).
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Conversely, if TR = P(X), then it follows from the one-to-one correspondence
(mentioned in Subsection 2.2) between the set of all preorder relations and
that of all Alexandrov topologies on X that R = {(x, x) | x ∈ X}. �

Theorem 25 Let BR be the betweenness relation induced by an order relation
R on a set X, TR be the topology induced by R and {Tx}x∈X be the family of
topologies induced by BR. Then, for any a ∈ X, Ta = TR if and only if a is
the smallest element with respect to R.

Proof. Necessity: Since the correspondence between the set of all preorder
relations and that of all Alexandrov topologies on X is one-to-one, it follows
from Ta = TR that Oa = R. So a is the smallest element with respect to R by
Remark 4.

Sufficiency: Assume that a is the smallest element with respect to R. It is
equivalent to show that Oa = R. If (b, c) ∈ Oa, then we have by the definition
of Oa that (a, b, c) ∈ BR. We distinguish four possible cases: (i) a = b or (ii)
b = c or (iii) aRbRc or (iv) cRbRa:

(i) a = b implies (b, c) ∈ R since a is the smallest element in R.
(ii) b = c trivially implies (b, c) ∈ R since R is reflexive.

(iii) It is evident that aRbRc implies (b, c) ∈ R.
(iv) Since a is the smallest element in R and R is antisymmetric, cRbRa

implies that a = b = c. Thus, due to the reflexivity of R, it holds that
(b, c) ∈ R.

Hence, Oa ⊆ R.

Conversely, if (b, c) ∈ R, then aRbRc since a is the smallest element in R,
which implies (a, b, c) ∈ BR, and, also, (b, c) ∈ Oa. Therefore, it holds that
R ⊆ Oa, and, thus, Oa = R. �

Remark 26 From Theorem 25, we conclude that, if R has no smallest ele-
ment, then Ta 6= TR for any a ∈ X.

In the upcoming two examples, we show that similar results do not hold in
the case of a metric.

Example 8 Let X be an infinite set with a fixed element b, d be the metric
defined in Example 4 and Bd be the betweenness relation induced by d. For
any x ∈ X, B(x, 1) = {y ∈ X | d(x, y) < 1} = {x}, which implies {x} ∈
Td. Hence, Td = P(X). On the other hand, it follows from Example 5 that∨
x∈X
Tx ⊂ P(X). Therefore,

∨
x∈X
Tx ⊂ Td. /

Example 9 Let X = ] −∞,+∞[ be the real line and d be the metric on X
defined as d(x, y) = |x − y|, for any x, y ∈ X. It is easy to verify that the
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betweenness relation Bd induced by d is exactly the one induced by the usual
total order relation ≤ on X. For any x, y ∈ X, it holds that

(↑ y)x =


[y,+∞[ , if y > x ,

X , if y = x ,

]−∞, y] , if y < x .

For any x ∈ X, we may consider y = |x|+ 1 > x, thus resulting in [y,+∞[∈
Tx. However, [y,+∞[ 6∈ Td. Therefore, Tx 6⊆ Td. It is also true that Td 6⊆ Tx
since ]− y, y[∈ Td, but ]− y, y[ 6∈ Tx. /

Remark 27 In Example 9, we know from Proposition 12 and Theorem 20
that

∨
x∈X
Tx = P(X). However, it is well known that Td ⊂ P(X). We thus

conclude that Td ⊂
∨

x∈X
Tx.

5 Discussion on the use of lower sets

Note that the set of all lower sets with respect to a preorder relation R is
also an Alexandrov topology, and coincides with the Alexandrov topology
induced by the preorder relation obtained by transposing R. Thus, a natural
question arises: Are the main results on the intersection and supremum of the
induced topologies in Subsection 4.2 still valid in such case? The following
theorem indicates that, if we consider the topology of the lower sets, then the
intersection is still anti-discrete, but the supremum is now necessarily discrete
for any betweenness relation (the betweenness relation does not need to satisfy
any additional condition such as (A3)).

Theorem 28 Consider a betweenness relation B on a set X and the family of
order relations {Ox}x∈X induced by B. For any x ∈ X, Tx denotes the topology
of all lower sets with respect to Ox. Then

⋂
x∈X
Tx = {∅, X} and

∨
x∈X
Tx = P(X).

Proof. It is obvious that {∅, X} ⊆ ⋂
x∈X
Tx. Now consider any A ∈ ⋂

x∈X
Tx

with A 6∈ {∅, X}, and choose any x0 ∈ X \A. Since A ∈ Tx0 and {(↓ x)x0}x∈X
is a base for Tx0 , there exists {xi}i∈I ⊆ X such that A =

⋃
i∈I

(↓ xi)x0 , where

(↓ x)x0 = {y ∈ X | (x0, y, x) ∈ B} . Note that x0 ∈ (↓ x)x0 for any x ∈ X.
Hence x0 ∈ A, which contradicts the fact that x0 ∈ X \A. Therefore,

⋂
x∈X
Tx =

{∅, X}.

For the supremum, it is equivalent to prove that {x0} ∈
∨

x∈X
Tx for any x0 ∈ X.
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This follows from (↓ x0)x0 = {x0} and (↓ x0)x0 ∈ Tx0 ⊆
∨

x∈X
Tx. �

6 Conclusions and open problems

A betweenness relation can be represented as a family of order relations, and,
thus, induce a family of topologies. In this paper, the intersection of this fam-
ily of topologies has been proven to be the anti-discrete topology, whereas a
necessary and sufficient condition for the supremum of this family of topolo-
gies to be the discrete topology has been given. In particular, this condition
holds in case the considered set is finite. Future work concerns the defini-
tion of alternative construction methods for a topology given a betweenness
relation. For instance, we highlight the use of alternative topologies to the
Alexandrov topology, such as the Scott topology and the Lawson topology in
case we are dealing with a family of directed-complete (partial) order relations
(see Subsection 2.2), or even the construction of a topology that avoids the
intermediate step of representing the betweenness relation as a family of order
relations. Also, the construction of a fuzzy topology given a fuzzy betweenness
relation could be an interesting future study subject. We end by noting that,
in the field of data aggregation, continuity is strongly acclaimed as a desirable
property assuring an aggregation process to be well behaving. The study here
addressed entails a first step towards the study of the continuity of aggrega-
tion processes on sets equipped with a betweenness relation (such as sets of
rankings or sets of strings [22]).
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[22] R. Pérez-Fernández, B. De Baets, On the role of monometrics in penalty-
based data aggregation. IEEE Transactions on Fuzzy Systems, in press, DOI:
10.1109/TFUZZ.2018.2880716
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