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Abstract 

 
The purpose of this study is to develop a non-invasive neural network classi- 

fication model for early neonatal sepsis detection. Early neonatal sepsis is a 

public health issue and one of the leading causes of complications and deaths 

in neonatal intensive care units. The data used in this study is from Crecer’s 

Hospital center in Cartagena-Colombia. An imbalanced dataset of 555 neonates 

with (66%) of negative cases and (34%) of positive cases was used for this study. 

The study results show a sensitivity of 80.32%, a specificity of 90.4%, precision 

on the positive predicted value of 83.1% in the test sample and a calculated area 

under the curve of 92.5% (95% Confidence Interval[91.4 - 93.06]). This neural 

network model can be used as a smart system’s inference engine to support the 

detection of neonatal sepsis in neonatal intensive care units. 

Keywords: Machine Learning, Artificial Neural Networks, sepsis 

neonatal, Medical Decision Support Systems, Smart Systems. 
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1. Introduction 

 
Neonatal sepsis is a severe problem for neonates, and it is estimated to 

affect more than 3 million newborns worldwide every year [1]. World Health 

Organization estimates that one in ten deaths associated with pregnancy and 

5 childbirth is due to maternal sepsis with over 95% of deaths due to maternal 

sepsis occurring in low and middle-income countries. 

Early neonatal sepsis is defined as the presence of infection proven by a blood 

or cerebrospinal fluid (CSF) culture positive for bacteria and fungi, and viruses 

manifested in the first 72 hours of birth [2] in pre-term. Despite the advances 

10 in antibiotic therapy and the awareness of risk factors in neonatal intensive care 

units, neonatal sepsis continues to be a severe complication and cause of severe 

illness and deaths of hospitalized neonates. The amount of data routinely col- 

lected in electronic medical records (EMR) and bed-monitors allow us to obtain 

quality data to build useful predicting models and tools like smart systems to 

15 generate continuous risk-assessments for neonatal sepsis from big clinical data 

and machine learning to produce an earlier diagnosis and improve sepsis man- 

agement in neonates. Early diagnosis has been shown to reduce delays in treat- 

ment, increase appropriate care and reduce mortality [3]. The development of 

smart systems that can gather a multitude of physiological measurements such 

20 as blood pressure, ECG, EEG, skin conductance, respiration and heart rate, 

plus all the information extracted from EMR systems, has a significant poten- 

tial to perform data analysis and detect life-threatening symptoms in infants to 

prevent early neonatal sepsis. 

We present a non-invasive prediction model that can be used as an inference 

25 engine of a smart system to provide decision support for health care providers 

at neonatal intensive care units to provide antibiotic administration when sepsis 

is detected. 

The structure of this paper is as follows: Section 2 presents related work 

and literature research of several models that used neural networks for neonatal 

30  sepsis prediction. In section 3, we describe the development of the multi-layer 
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model, describing the population, data source, and validation of the model. 

Section 4 presents the statistical and clinical analysis of the outcomes. Section 

5 discusses the results of the model and its limitations. Finally, section 6 covers 

conclusions and future work. 

 
35 2. Related work 

 
Several papers were reviewed that used artificial neural networks to predict 

sepsis neonatal. In every article, we analyzed the model building process, vari- 

able selection, ground truth, training and test datasets, overfitting avoidance, 

error estimate, and AUC (Area Under the Curve) information. 

40  Subramani [4]. Presents several machine learning models including support 

vector machines (SVM), naive Bayes classifier (NB), tree augmented naive Bayes 

(TAN), averaged one-dependence estimators (AODE), K nearest neighbor (K- 

NN), decision tree classifier and regression trees (CART), random forest (RF), 

logistic regression (LR) and Lazy Bayesian Rules (LBR). The dataset used con- 

45 sisted of 299 infants evaluated for late-onset sepsis. Several feature selection 

algorithms were used to select highly predictive features including SVM - (for- 

ward, backward, forward-backward and recursive), HITON Markov blanket and 

HITON - parents and children algorithms. This study reported an AUC of 78% 

for naive Bayes. 

50  Griffin [5]. Shows that the clinical diagnosis of neonatal sepsis is preceded 

by abnormal heart rate characteristics (HRC). This study reported an AUC of 

82% for sepsis prediction using multivariable logistic regression. The dataset 

used consisted of 678 infants. 

Honor´e [6]. Presented a shallow feed-forward Neural Network model with 

55 30 hidden nodes that used an imbalanced dataset composed by heart frequency 

signals and SpO2 signals after applying frame normalization and removed the 

mean of every signal. This study reported an AUC of 85% for sepsis prediction, 

but the author expressed that this model is based on the inaccurate modeling 

of a deficient number of training examples. 
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60  Calvert [7]. Develop high-performance early sepsis prediction technology 

for the general patient population. This model reported an average AUC of 

92%. This model used nine vital sign variables, systolic blood pressure, pulse 

pressure, heart rate, temperature, respiration rate, white blood cell count, pH, 

blood oxygen saturation, and age. 

65  Desautels [8]. Applied the InSight, machine learning classification model 

developed by Calvert, and use combinations of patient data such as vitals, pe- 

ripheral capillary oxygen saturation, Glasgow Coma Score, and age. This model 

reported an average AUC of 88%. 

Horng [9]. This study presents a model that include free text, vital signs, and 

70 demographic data to identify patients with sepsis at the emergency department. 

This model reported an average AUC of 85%. 

Kam [10]. This study presents a detection model using deep learning method- 

ologies and compares it with conventional regression methods. This model re- 

ported an average AUC of 92.9%, and it is the baseline for our study due to the 

75  similarity of the data used in their research and the neural network architecture. 

Our study shows several improvements concerning the studies presented 

above, first of all, the type of risk variables included in our study such as so- 

ciodemographic, obstetric, neonatal and maternal infectious related variables 

were not used at the same time in the variable selection criteria in the other 

80 studies. Our classification results suggested that the combinatory use of these 

variables and the proposed ANN (artificial neural network) is a potentially useful 

clinical model to classify the neonatal sepsis. Second, our study shows a better 

calculated AUC than most of the work described before due to the performance 

of the ANN architecture even with a highly unbalanced dataset, weighting the 

85 samples from the underrepresented class shows better results than other pro- 

posed architectures. Third, our study shows different reporting metrics such as 

a confusion matrix and classification report that are not present in the related 

work in addition to the AUC, accuracy, and precision. Finally, our classification 

model used a non-invasive approach for the classification of neonatal sepsis and 

90  was found to have a better overall performance compared with other models. 



5  

 
 
 

3. Model Development and Validation 

 
We developed a deep learning classification model in this study and will 

discuss and analyze how we implemented, trained and evaluated the model. 

The package Sklearn of Python programing language [11], Microsoft Cognitive 

95  Toolkit (CNTK) from Microsoft and AzureML were used to build the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

100 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

105 

3.1. Data Source 

Our model used an anonymous dataset from a private institution in the 

city of Cartagena, Colombia from 2016 to 2017. Demographic, laboratory data, 

blood pressure, and body measures data were part of the dataset. The dataset 

includes cases of live newborns of ages inferior to 72 hours with a diagnosis of 

early neonatal sepsis by clinical criteria and laboratory blood cultures. Control 

cases were part of the dataset including all newborns healthy by clinical diag- 

nosis and who have returned healthy for a follow up at 72 hours. This data was 

used under resolution 008430, title II, chapter 1, article 11 of the Colombian 

health department. 
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115 

3.2. Study Population and Analysis 

This retrospective study includes 186 cases and 368 controls based on a case- 

control relationship of 1:2 with a 95% of the trust factor, power of 80% and the 

application of Yates correction [12]. Bivariate analysis and logistic regression 

were performed to detect the variable associated with early sepsis, and the 

significant statistical association used was p ≤ 0.05. 

3.3. Input variables 

This study considered nine sociodemographic, fourteen obstetric, nine neona- 

tal and four maternal infectious related pathology variables. Table 1 shows the 

quantitative sociodemographic variables, table 2 shows the qualitative sociode- 

mographic variables, table 3 shows the quantitative neonatal variables, table 4 

shows the qualitative neonatal variables, table 5 shows the quantitative obstet- 

ric variables, table 6 shows the qualitative obstetric variables and table 7 shows 

the qualitative maternal infections of the cases and controls. 
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Table 1: Quantitative socio demographic variables in cases (186) and controls (369) 

 
Quantitative Socio demographic variable 

Cases Controls  

mean median SD RIQ mean median SD RIQ p-value 

Age 23.93 23.5 4.99 20-26 24.22 23 6.19 19-28 0.793 

Onset of sexual activity 16.06 16 0.945 15-17 15.6 16 0.971 15-16 0.0001 

 

 

Table 2: Qualitative socio demographic variables in cases (186) and controls (369) 
 

Qualitative Socio demographic variable 
 

Categories 
Cases Controls  

X2 
 

p-value 
N % N % 

 
Teen Mother 

Yes 15 8.1 69 18.7  
10.88 

 
0.001 

No 171 91.9 300 81.3 

 

Health Regimen 
Government 183 98.4 349 94.6  

4.51 
 

0.041 
Commercial 3 1.6 20 5.4 

 
Origin 

Rural 42 22.6 5 1.4  
71.87 

 
0.00001 

Urban 144 77.4 364 98.6 

 
Marital Status 

Married or in common law married 128 68.8 101 27.4  
87.64 

 
0.00001 

Single, divorced or widow 58 31.2 268 72.6 

 
Level of education 

Elementary School 86 46.2 80 21.7  
35.57 

 
0.00001 

High School 100 53.8 289 78.3 

 

Start of Marital status life younger than 18 yo 
Yes 178 95.7 357 96.7  

0.39 
 

0.531 
No 8 4.3 12 3.3 

 
Start of Marital status life younger than 16 yo 

Yes 47 25.3 147 39.8  
11.54 

 
0.001 

No 139 74.7 222 60.2 

 

 

Table 3: Quantitative Neonatal variables in cases (186) and controls (369) 

 
Quantitative Neonatal variable 

Cases Controls  

mean Median SD RIQ mean Median SD RIQ p-value 

New born weight in grams 2639.9 2768.5 546.5 2500-3020 3202.4 3224 412.1 2950-3500 0.0001 

APGAR after 1 minute of birth 7.73 8.0 0.611 8.0 8.09 8.0 0.598 8.0 0.0001 

 
120 3.4. Variables selection 
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130 

In our study, a bivariate analysis chi-square with correction was performed 

to the qualitative variables to find statistically association between our inde- 

pendent variable and the possibility to develop early neonatal sepsis. For the 

quantitative variables, the Mann–Whitney U test was performed. From this 

statistical analysis it is essential to show that we didn’t find significant sta- 

tistical evidence for the variables Age, start of the marital status life younger 

than 18 years old, gender, APGAR (Appearance, Pulse, Grimace, Activity, and 

Respiration) value less than 7 after 1 minute and after 5 minutes, number of 

pregnancies, the type of birth. Prenatal control is not associated with the case 

of sepsis; however, assisting to 5 prenatal controls are associated with the pro- 
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Table 4: Qualitative Neonatal variables in cases (186) and controls (369) 

 
Qualitative Neonatal variable 

 
Categories 

Cases Controls  
X2 

 
p-value 

N % N % 

 
Premature 

Yes 100 53.8 25 6.8  
156.4 

 
0.0001 

No 86 46.2 344 93.2 

 
Gender 

Male 109 58.6 202 54.7  
0.748 

 
1.672 

Female 77 41.4 167 45.3 

 
Less than 1500 grams 

Yes 11 5.9 2 0.5  
15.6 

 
0.00001 

No 175 94.1 367 99.5 

 
Less than 2500 grams 

Yes 44 23.7 9 2.4  
64.44 

 
0.00001 

No 142 76.3 360 97.6 

 
APGAR less than 7 after 1 minute of birth 

Yes 2 1.1 3 0.8  
0.095 

 
0.999 

No 184 98.9 366 99.2 

 
APGAR less than 7 after 5 minutes 

Yes 4 2.2 9 2.4  
0.045 

 
0.999 

No 182 97.8 360 97.6 

 
Respiratory distress 

Yes 89 47.8 27 7.3  
122.8 

 
0.0001 

No 97 52.2 342 92.7 

 

 

Table 5: Quantitative Obstetric variables in cases (186) and controls (369) 

 
Quantitative Obstetric variable 

Cases Controls 

mean Median SD RIQ mean Median SD RIQ p-value 

Gestational age at the time of birth 35.6 36.0 3.47 34-39 38.4 39.0 1.62 38-39 0.0001 

Number of prenatal controls 4.08 5.0 1.83 3.75-5.0 4.32 5.0 1.83 4-5.0 0.002 

Number of pregnacies 1.77 1.0 1.15 1.0-2.0 1.6 1.0 1.15 1-2.0 0.076 

Number of births 1.04 1.0 1.03 0-1 0.7 1.0 1.03 0-1 0.0001 

Numbers of C-sections 0.65 1.0 0.68 0-1 0.76 1.0 0.68 0-1 0.029 

 

 

tection to avoid the appearance of early neonatal sepsis as shown in our previous 

study [2]. There was no evidence with the variables IUGR (Intrauterine growth 

restriction) background and multiple pregnancies. Twenty-seven (27) variables 

were selected as input variables for our artificial neural network architecture. 

 
135 3.5. Neural Network Model 

A neural network is a class of machine learning algorithms that receives input 

from one or more sources into layers of intermediate nodes which are connected 

(hidden layers [13]) to build a network that generates output values [14]. Figure 

1 shows a sample of the structure of the artificial neural network architecture 

140  used in our study. The input nodes received categorical and numerical values 
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Table 6: Qualitative Obstetric variables in cases (186) and controls (369) 

 

Qualitative Obstetric variable 
 

Categories 
Cases Controls  

X2 
 

p-value 
N % N % 

 

Type of birth 
Vaginal 98 52.7 162 43.9  

3.833 
 

0.05 
C-Section 88 47.3 207 56.1 

 

IUGR Background 
Yes 5 2.7 13 3.5  

0.275 
 

0.6 
No 181 97.3 356 96.5 

 

Assistance for prenatal control 
Yes 165 88.7 318 86.2  

0.702 
 

0.402 
No 21 11.3 51 13.8 

 

Assistance for at least 4 prenatal control 
Yes 140 75.3 301 81.6  

3.01 
 

0.083 
No 46 24.7 68 18.4 

 

Assistance for at least 5 prenatal control 
Yes 105 56.5 254 68.8  

8.301 
 

0.004 
No 81 43.5 115 31.2 

 

Premature rupture of membrane with more than 18 hours 
Yes 95 51.1 17 4.6  

165.7 
 

0.00001 
No 91 48.9 352 95.4 

 

Chorioamnionitis 
Yes 23 12.4 3 0.8  

36.96 
 

0.00001 
No 163 87.6 366 99.2 

 

Premature membrane rupture with more than 6 hours 
Yes 161 86.6 194 52.6  

61.96 
 

0.0001 
No 25 13.4 175 47.4 

 

Multiple Pregnacies 
Yes 2 1.1 10 2.7  

0.39 
 

0.353 
No 184 98.9 359 97.3 

 

 

Table 7: Qualitative maternal infections variables in cases (186) and controls (369) 

 
Qualitative Maternal infections variables 

 
Categories 

Cases  Controls   
X2 

 
p-value 

N % N % 

 
Maternal Fever 

Yes 67 36.0 40 10.8  
50.38 

 
0.0001 

No 119 64.0 329 89.2 

 
Yeast Infections 

Yes 31 16.7 15 4.1  
25.83 

 
0.0001 

No 155 83.3 354 95.9 

 
Sexualy transmitted disease history 

Yes 27 14.5 7 1.9  
34.24 

 
0.0001 

No 159 85.5 362 98.1 

 
Urinary Tract Infections 

Yes 11 5.9 9 2.4  
4.29 

 
0.0381 

No 175 94.1 360 97.6 

 
that will be encoded and normalized with gaussian normalization [15] to improve 

the computation of the network and to prevent the data from being distant from 

each other. 

This neural network extract features and learn high-level new features from 

145 the data, but to learn these new features, the design of the architecture is fun- 

damental [16]. Three fully connected hidden layers in addition to the input 

layer and output layer were added to the network to generate our multi-layer 

architecture. The correct selection of the number of hidden layers and hidden 



9  

nodes nodes nodes 

 

 

 
Input 

layer 

X1 

Hidden 

layer1 

674 

Hidden 

layer2 

336 

Hidden 

layer3 

168 

 
Output 

layer 

 
X2 

 
X3 

0 

X4 1 

X5 

X6 

X7 

Figure 1: Multilayer Perceptron Architecture 
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nodes is an active area of research. For our study, we used a back propaga- 

tion approach and three layers were enough so our network can generalize as 

a universal approximation for the mathematical function that can separate our 

input variables to solve the classification problem of arbitrary complexity and 

preventing overfitting. 

We can define a simple neural network with the first layer taking an input 

matrix X with dimensions m number of samples in the dataset and nx input size 

(X.shape = (nx, m)), and produces a linear output (first hidden layer Z1 with 

dimension n. Each feature in the input layer is connected with a node in the 

output layer by the weight which is represented by a matrix W with dimensions 

n × nx: 

Z1 = W · X + b 

 
Where b is a bias vector of dimension n and (b.shape = (n, 1)). 

In the architecture of our network, each layer has its weight matrix W , its 
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bias vector b, and an output vector a with activation function f . Superscripts 

appended to these variables will identify the layers. For R inputs, Z1 represents 

the number of neurons in the first layer and Z2 neurons in the second layer. 

The output layer for our model is the layer 4 with three hidden layers 1,2 and 

3. Then, the output of layer 1 is the input for layer 2, and the output of layer 

2 is the input for layer 3, and the output of layer 3 is the input for the output 

layer. 

if: 

 
a1 = f 1(W 1X + b1) 

 
a2 = f 2(W 2a1 + b2) 

a3 = f 3(W 3a2 + b3) 

a4 = f 4(W 4a3 + b4) 

then, 

 
a4 = predicted 

 
The structure of our network can be expressed in a simple way as: 

 
R → Z1 → Z2 → Z3 → a4 

 
Each layer will be a dense layer with a specific input dimension, output 

dimensions, and activation function. Specifically, in our model, the first layer 

has an input dimension of 27 variables (the figure only shows 7), an output 

dimension of 674 nodes, and activation function being ReLU (Rectified Linear 

Unit activation function) [17]. The second layer having an input dimension of 

674 nodes, an output dimension of 332 nodes, and activation function being 

also ReLU, the third layer has an input of 168 nodes, an output of 168 nodes 

and activation function being also ReLU. Furthermore, the output layer with 

no activation. The final output layer emits a vector of two values, and we used 

Softmax [18] to normalize the output of the model and to map the accumulated 

evidence or activations to a probability distribution over the classes. 
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Softmax is used in the model to interpret the output as a probability dis- 

tribution over a set of classes C, where a vector z is mapped to a vector of 

probabilities p that sum up to 1 and can be interpreted as probabilities for 

mutually exclusive outcomes. 

 
pi = Softmax(z, i) = L 

exp(zi) 

exp(z ) 

190 Where k goes over all the possible values of C, so k would go from 1 to C. 

The vector of probabilities can be expressed at z = x as: 
I 
  exp(xi)    exp(xi)    exp(xi)   

1
 

softmax(xi) = L
k exp(xk) 

. . . 
k exp(xk) 

L
k exp(xk) 

3.6. Network Architecture and hyper-parameters selection 
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Besides the logistic regression model used in a previous study, and explained 

in [2], decision trees was another data modeling technique considered to evaluate 

how the independent variables affect the responses of the dependent variable 

in the model for early diagnosis of sepsis neonatal. However, we decided in 

our study to use artificial neural networks due to useful capabilities, including 

online learning with incremental updates, better representation of non-linear 

interaction between the independent variables, and better performance than 

exhaustive search on noisy data. 

For the architecture selection, we started with a simple two-layer perceptron 

and some hidden units matching the number of nodes and leaves of our initial 

decision tree approach. This first approach could not capture the significant 

non-linearity of the data. Then, we constructed a sequence of networks with 

increasing numbers of hidden layers and nodes. All these networks were trained 

on a different set of hyper-parameters and normalized data using Gaussian nor- 

malization, decreasing the training and testing errors in each network until we 

found the architecture with a better fit and better generalization for a final 

number of hidden layers and nodes. As a result, our best architecture presents 

3 hidden layers, with dimensions of 674, 336 and 168 hidden nodes respectively. 

The minibatch size of 8 samples injects enough noise to each gradient update 

kEC 
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allowing our network to achieve relatively fast convergence in combination with 

the selection of sgd with momentum of 0.9, and a learning rate of 0.01 where 

our network converges to something useful to improve its performance. Finally, 

Softmax in the output layer allows us to interpret the output as probabilities, 

and the cross-entropy loss was used to measure the error at this softmax layer. 

We have published the model architecture and dataset in the gallery of Microsoft 

Azure Machine Learning Studio for model replication [19]. 

 
3.7. Model Training 

For training our model, we would like the generated probabilities to be as 

close as possible to the observed labels. We calculated the cost function which 

is the difference between the learned model versus the generated by the training 

set. We used cross-entropy with Softmax in our study, but the computation of 

the derivative of Softmax and the backward functions are beyond the scope of 

this article. However, the cross-entropy loss formula can be expressed as in 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
230 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 

 
235 

C 

crossEnt(Y, P ) = − Y (k)log(P (k)) (1) 
k=1 

Where k goes over all the possible output classes, specifically, in our case, 

there are C output classes, so k would go from 1 to C. P are the Softmax 

output, and Y is the correct classification output. P (k) is the probability of the 

class as predicted by the model and Y (k) is the correct probability of the class 

provided by the ground-truth labels. If we make Y (k) = 1 and for all k ¡= y we 

have Y (k) = 0, and we express the formula in function of just P treating y as a 

constant and P (y) as the y − th element of P . The Softmax and cross-entropy 

loss can be expressed as in 2. 

 
crossEnt(P ) = −log(Py) (2) 

 
Once defined the cost function, the model minimizes it using an optimization 

technique. In this study, we used stochastic gradient descent with momentum 
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[20]. The model starts with random initialization of the parameters and gen- 

erates a new set of parameters after each evaluation. In our implementation, 

we used He initialization [21]. Which is similar to Xavier initialization except 

Xavier uses a different scaling factor for the weights W in layer l, and the author 

recommends for layers with ReLU activation. We used mini-batches to train our 

model, a small number of observations were loaded into the model to calculate 

the average of the loss to update the model parameters. Another critical pa- 

rameter used in our training was the learning rate [22]. This learning rate is a 

factor that moderates how much we change the parameters in each iteration. 

Each iteration will work on eight samples, and we trained the model with 70% 

(388) of the dataset, and the number of mini-batches to train is defined by the 

number of samples to train divided by the mini batch size. Table 8 shows the 

parameters of the trainer architecture. 

 
3.8. Model Evaluation 

In our study, we evaluated the accuracy, sensitivity, specificity, and AUC 

in early neonatal sepsis detection when using an artificial neural network. The 

softmax layer finds the index of the highest value in the output array and com- 

pares it to the actual ground truth label. We evaluated the trained network on 

data that has not been used for training and corresponds to the ground truth 

of 30% (166) of the dataset. The resulting error is comparable to the training 

error, and this indicates that our model has a proper generalization error. 

We generated some evaluation metrics to evaluate the classifier. Table 9, 

shows the confusion matrix with a classification results summary of the actual 

class label vs. the predicted ones. True positive value (49), True Negative value 

(95), False Negative (12) and False Positive value (10). 

Classification report showed in table 10 shows the precision, sensitivity and 

the harmonic mean of precision and sensitivity. The sensitivity of the model 

moderately acceptable due to the imbalanced testing dataset, and there is still 

a high number of false negatives. 
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Table 8: Model Architecture parameters 

Model Architecture parameters 

Parameter Value 

Input Dimension 27 

Num Output classes 2 

Num Hidden Layers 3 

Hidden Layer1 Dimension 674 

Activation Func Layer1 Relu 

Hidden Layer2 Dimension 336 

Activation Func Layer2 Relu 

Hidden Layer3 Dimension 168 

Activation Func Layer3 Relu 

Minibatch size 8 

Num samples to train 388 

Num minibatches to train 48 

Loss Function cross entropy with softmax 

Eval Error Classification error 

Learner for parameters momentum sgd 

Eval Metrics Confusion Matrix, AUC 

 

 

Table 9: Confusion Matrix 

 Predicted 

Non-Sepsis Sepsis 

True 
Non-Sepsis 95 10 

Sepsis 12 49 

 
265 4. Results and Analysis 

 
Statistical and clinical analysis is essential to explain the results and useful- 

ness of the model. In the next sections, we will review some of the results. 
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Table 10: Classification Report 

Classification Report 

True Positive False Negative Precision Accuracy 

49 12 0.83 0.867 

False Positive True Negative Recall f1-score 

10 95 0.803 0.817 

Positive Label: 1 Negative Label: 0 
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4.1. Statistical Analysis 

An artificial neural network is a class of non-linear model used to identify 

the unknown non-linearity of the input variables. Our test sampling of 166a in- 

cludes 105 (63,25%) negative examples and 61 (36,75%) positive examples. The 

model produces a sensitivity of 49/61 = 80.32% (positives that were correctly 

identified) and a specificity of 95/105 = 90.4% (negatives that are correctly 

identified). 

The positive predicted value was 49/59 = 83% and the negative predicted 

value 95/107 =88.7%. The false negative rate of the model was 12/61 = 19.6% 

and a false positive rate of 10/105 = 9.5%. The probability of false alarm for 

the model was 1-0.904(specificity) = 9.6%. The miss rate and the fall out rate 

were not significant for our model due to the imbalance of the sampling data 

set. Figure 2 shows the area under the curve plotted with a true positive rate 

on the y-axis and false positive rate on the x-axis. Figure 3 shows the plot of 

the proportion of the true results of overall positives results versus the fraction 

of all correct results returned by the model. 

4.2. Clinical Analysis 

A sensitivity of 80.3% and a specificity of 90.4% shows that our model might 

be useful for detecting positive cases, and the true negative rate shows that 

our model is also efficient at identifying negative cases. The high precision 

value of 83.1% and the AUC of 92.5% confirm the adequacy of the model as 

a preliminary screening tool. The percentage of positive cases shows that our 



16  

 
 

 

  

 
Figure 2: ROC Curve Figure 3: Precision/Recall 
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model works better than random guessing and the conditional probability of 

negative test results is considerably low. The accuracy of 86.74% shows that 

our model correctly identifies negative cases and positive cases based on the 

characteristics of the dataset and the small number of cases examined. 

 
5. Discussion and Limitations 

 
This neural network model can be used as a screening and decision support 

tool and not as a stand-alone decision-making inference engine for either a smart 

system or an expert system. Our model may not be directly applicable to other 

NICU (Newborn Intensive Care Unit) datasets, but we think that our study 

supports the potential for applying neural network architectures in assisting 

NICU care facilities in the management and treatment of neonatal sepsis. The 

AUC of our model was slightly higher than our previous developed logistic 

regression model [2] and showed improvement in early neonatal sepsis detection. 

Our model has limitations of data size, and the imbalanced dataset used caused 

a limited generalization. 

In future studies, it is necessary to include a more complicated set of vari- 

ables related to sepsis diagnosis, train the model with a more extensive and 

balanced dataset, and to explore different and more advanced neural network 



17  

 

 
 
 
 
 
 
 

 
310 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
5 

architectures, transfer learning, recurrent neural networks [23] and fuzzy neural 

networks [24] to improve the detection early neonatal sepsis. Also, principal 

component analysis [25] can be used to reduce de dimensionality of the dataset. 

Finally, there is a need to perform cost-benefit studies concerning the implemen- 

tation of this model and programs to detect and treat infections in pregnant 

women before 20 weeks of gestation, and this has shown to reduce low birth 

weight in preterm infants and premature birth. 

 
6. Conclusions and Future work 

 

Early identification of neonatal sepsis would allow physicians to implement 

treatments, determine proper antibiotic administration, and potentially reduce 

associated complications for neonates at Neonatal Intensive Care Unit. The use 

of data extracted from the electronic medical records allowed us to create a 

model with good performance and results when compared with others that used 

more complex data such as bio-signal data, laboratory results of blood cul- ture, 

electrocardiogram data and pulse oximeter data. Our study demonstrates the 

use of neural network models that learn features and make predictions for the 

detection of early neonatal sepsis. However, this study also indicates that such 

models have some limitations in setting the dependent variable, having a 

sufficient amount of data, and adequate explanatory power. 

Mothers with premature rupture of membrane, maternal fever, and prema- ture 

newborn make an evident causal association for early neonatal sepsis. Level of 

education and marital status show significant evidence in the appearance of 

neonatal sepsis. Presence of maternal infectious pathology, such as vaginal in- 

fection was a determining factor to explain the cases of premature membrane 

rupture over the 18 hours. 
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