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Electron-pair bonding in real space. Is the charge-shift
family supported?

J. Luis Casals-Sainz, F. Jiménez-Grávalos, E. Francisco, A. Martín Pendás∗†

Charge-shift bonding (CSB) has been introduced as a distinct third family of electron-pair links that
adds to the covalent and ionic tradition. However, the full battery of orbital invariant tools provided
by modern real space artillery shows that it is difficult to find CSB signatures outside the original
valence-bond framework in which CSB was developed. The CSB concept should therefore be
further investigated.

More than a hundred years after Lewis seminal paper,1 the
electron-pair bond may still be considered the most central con-
cept in Chemistry. After its inception, its initial theoretical devel-
opment by Heitler-London2 and its incorporation to mainstream
computational chemistry,3 the Lewis pair lies at the core of chem-
ical thinking. Through Pauling’s4 tour de force, the shared elec-
tron pair gave rise to the two major covalent (or polar-covalent)
and ionic bonding families. These emerge as the degree of atomic
sharing of the pair deviates from equality, and have carved the
chemists’ way of thinking. Subjected to reasonable generaliza-
tions, the covalent-ionic dichotomy has resisted exceedingly well
the test of time.

Fundamental as they are, neither the Lewis pair nor the
electron-pair bonding families are linked to quantum mechanical
observables, and their significance rests on how a provided quan-
tum mechanical wavefunction Ψ is interpreted. Usually, this relies
on what theoretical framework has been used to generate Ψ, and
although as the level of theory is improved all frameworks con-
verge, interpretations do not necessarily do so, vanishing into thin
air.5 To understand how an electron pair is shared between two
atoms, we have to deal with at least (i) the indistinguishability
of electrons and electron pairs and (ii) the absence of isolatable
atoms in the quantum mechanical description of two interacting
systems. How this is done depends on the theoretical paradigm
used, e.g. the valence bond (VB) or the molecular orbital (MO)
viewpoints.

The existence of two main pair-electron bonding families has
been challenged by the addition of a new charge-shift bonding
(CSB) category. This is introduced in non-orthogonal VB (NOVB)
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as a distinct bonding class in which the bonding energy does come
neither from the so-called spin-pairing of covalent bonds nor from
the electrostatic stabilization of ionic links, but from the large res-
onance energy (RE) between the VB covalent and ionic structures.
Although the paradigm of a CSB system is the F2 molecule, whose
VB covalent structure is unbound in marked contrast to a normal
covalent bond like the one in H2, many other cases have been
found over the years, and a number of informative presentations
can be found in the literature.6

Since according to Carl Sagan’s standard, extraordinary claims
require extraordinary evidence, the proposers of the CSB category
have tried to offer that evidence by linking CSB to MO theory;
to real space descriptors of chemical bonding like density differ-
ences, the laplacian of the electron density or the electron local-
ization function (ELF); and to experimental behavior. Charge-
shift bonds were soon associated to systems affected by the lone
pair bond weakening effect (LPBWE) described by Sanderson,7

so efforts have also been put on rationalizing their physical ori-
gin.8 This was found to lie in very large kinetic energies coming
from two-center three-electron Pauli repulsions between bonding
electrons and compact lone pairs.

A decisive test of any new concept should be its independency
from the theory used to discover or define it. In chemical bond-
ing a framework invariant paradigm is available. It is based on
(i) partitioning the space into 3D regions associated to atoms and
(ii) on computing quantum mechanical observables within these
regions. Although several partitioning strategies exist, the one
provided by the quantum theory of atoms in molecules (QTAIM)
is widely used.9 These techniques need only a proper wavefunc-
tion, are orbital invariant by construction, and provide indices
and energetic quantities which are directly related to Lewis’ con-
cepts.

In this Communication we show that charge-shift bonds display
all the characteristics of a standard covalent interaction at larger
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than expected distances. The latter are forced by the LPBWE, but
the nature of the interaction has no specific peculiarity. This is
found by critically examining the CSB family in the light of real
space reasoning.

Electron-pair bonding in real space
Real space theories of the chemical bond have acquired a con-
siderable level of maturity and notoriety.10 Once an atomic par-
tition of space is defined appropriately (through the QTAIM, for
instance), one has access to both electron counting (through elec-
tron distribution functions, EDFs11) and energetic (through the
interacting quantum atoms scheme, IQA12) descriptors. EDFs,
that provide the probability of finding a given distribution of the
N electrons of a system into atoms, behave as Pauling’s resonance
structures. Their knowledge gives also the average atomic elec-
tron population (thus the atomic net charge, QA and the ionic
bond order,13 ιAB = −QAQB) and all their further statistical mo-
ments. The interatomic covariance, or an equivalent form known
as the delocalization index δ AB, measures the number of shared
electron pairs between atoms and provides the covalent bond or-
der.14 Similarly, the binding energy of a molecule becomes a sum
of atomic deformation energies, EA

de f , and interatomic interac-
tions, EAB

int . The former basically correspond to traditional pro-
motion costs, and the latter determine in situ bond energies, sep-
arated into covalent (cov) and electrostatic (ion) terms. For each
atomic pair, the covalent energy is proportional to the number
of shared pairs, while the electrostatic one is dominated by the
product of the atomic charges. Ionicity and covalency are thus
uniquely and invariantly defined. A brief introduction to this for-
malism is found in the supplementay information (ESI).

For two-center (A,B) electron-pair bonds, only three electron
distributions are possible. Two zwitterionic, with the two elec-
trons residing on either of the atoms —(2,0) and (0,2)—, and one
similar to the VB-covalent structure, (1,1). Denoting the proba-
bility that one electron lies in A as p and using a −1 ≤ f ≤ 1
correlation factor between the two electrons, all 2c,2e links can
be mapped. It is easy to show (see the ESI) that ι + δ = 1
when f = 0, so that ionicity excludes covalency and vice versa
for electron-pair links (not in more complex situations15), and
that δ = 4p(1− p)(1− f ), this meaning also that covalency comes
from electron delocalization and that it implies a non-vanishing
population of the real space ionic resonance structures. A full
classification for correlated situations is also known.16

Charge-shift bonding
CSB in NOVB appears when much (or all) of the binding energy
of a system comes from the resonance energy between the VB-
covalent, Ψcov, and the VB-ionic, Ψion, structures, i.e. when nei-
ther 〈Ψcov|Ĥ|Ψcov〉 nor 〈Ψion|Ĥ|Ψion〉 is appropriately bound and
it is 〈Ψcov|Ĥ|Ψion〉 that determines the bond energetics. Being
consubstantial to Quantum Mechanics via the superposition prin-
ciple, resonance is representation dependent: a change of basis
changes its value. Even more, two non-orthogonal states cou-
pled by a large resonance integral may become uncoupled after
orthogonalization, and vice versa. The resonance energy condition
is therefore not invariant, and cannot serve our purpose to uncover

invariant features of CSB. Arguments based on two-configuration
self-consistent field calculations,17 that have been offered as a
proof that CSB also appears under MO theory, simply mimic the
NOVB wavefunction, and do not change the above conclusion.
In the form of a two-electron two-orbital configuration mixing
(CI(2,2)), this oversimplified description captures the essential el-
ements of CSB, allowing us to examine it also under a real space
perspective. To that end, we construct a model homoatomic two-
electron wavefunction with strictly localized functions a and b
with overlap 〈a|b〉 = S, so that the g and u orthogonal MOs are
written as g,u = Ng,u(a± b). The spatial parts of the Heitler-
London VB singlet covalent and ionic functions are the textbook
Ψcov ≡ (ab+ba) and Ψion ≡ (aa+bb), so that the NOVB function
is Ψ = cΨcov + iΨion, while its complete active space (CAS) ana-
logue becomes Ψ = λ |gḡ|+µ|uū|, with λ 2 +µ2 = 1. A one-to-one
map (c, i)↔ (λ ,µ) exists. Full details are found in the ESI. The
Hartree-Fock mean-field solution corresponds to λ = 1. In H2,
Ψcov provides a rather accurate binding curve, and mixing it with
Ψion introduces a slight resonance stabilization with a final small
i contribution. In F2 none of Ψcov,Ψion or ΨHF are bound, but the
CAS(2,2) Ψ is. Such a calculation within the 2pz manifold with a
6-31G* basis provides Re = 1.48 Å and De ≈ 16 kcal mol−1, to be
compared with the experimental 1.40 Å and 39 kcal mol−1 values,
respectively. The essential features of CSB are thus captured by
this naïve model. If orbitals are not allowed to relax, then the Ψcov

and Ψion functions correspond to a (λc,−µc), (λc,µc) pair, with
λc,µc > 0, respectively. ΨHF lies at µ = 0, so examining the −λc ≤
µ ≤ λc window provides a continuous map that visits all the four
Ψcov,ΨCI,ΨHF, and Ψion states. We use CAS orbitals in the follow-
ing. It is relevant (ESI) that the first and second order densities of
the 2e subsystem have very simple expressions in the λ ,µ space:
ρ(rrr;rrr′) = 2λ 2g(rrr)g(rrr′)+ 2µ2u(rrr)u(rrr′), so any one-electron opera-
tor property varies linearly with λ 2; ρ2(rrr1,rrr2)= 2λ 2g2(rrr1)g2(rrr2)+

2µ2u2(rrr1)u2(rrr2)+2λ µ g(rrr1)u(rrr1)g(rrr2)u(rrr2). The latter expression
shows that the gg− uu resonance lies only in the two-electron
2λ µ g(rrr1)u(rrr1)g(rrr2)u(rrr2) term if orbitals are not relaxed. This
points to electron-electron repulsion, and not to the large kinetic
energy of the covalent term (as usually admitted in the CSB liter-
ature) as the driving force for CSB.

Plenty of real space signatures of CSB have been reported so
far.18 For instance, negative deformation electron densities be-
tween the nuclei, indicative of density retraction in the bonding
region. However, as recognized,18 ∆ρ is reference dependent,
and a change from spherically-averaged to valence-prepared
atomic references may change the sign of ∆ρ, which is not invari-
ant. The sign of the laplacian of the density at the QTAIM bond
critical point (bcp) has also been advocated as a CSB feature. A
homonuclear covalent system usually displays ∇2ρ(rrrbcp) < 0 val-
ues, but these become positive in F2 and many other CSB cases.
Recall, however, that for a simple ρ(r) = Ne−ζ r exponential de-
cay ∇2ρ(r) = Ne−ζ r(ζ 2−2ζ/r), that turns positive after a critical
distance. For instance, when stretching a normal H2 molecule, its
laplacian becomes positive at the bcp at about RHH = 3.2 au, so
that a positive laplacian just indicates a too long distance. More-
over, since in a homodiatomic u(rrrbcp) = 0, it can be shown (ESI)
that ∇2ρ(rrrbcp) is positive if µ = 1, so a large g,u mixing makes
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Table 1 6-31G* data for F2 with CAS(2,2) orbitals at Re = 1.49 Å. gg
and uu refer to MO determinants built from fixed CAS orbitals. The CAS
contributions have been separated into those of the 2e active system and
those of the remaining 16e electrons. The latter are also classified into π

and σ symmetries. All data in au obtained at the bcp.

Ψ ρbcp ∇2ρ ELF
gg 0.22 0.46 0.57

CAS 0.21 0.66 0.43
uu 0.06 2.68 0.02

CAS ρbcp ∇2ρ

18e 0.21 0.66
16e 0.06 0.90
2e 0.15 -0.23
π 0.00 0.42
σ 0.06 0.48

the laplacian tend to a positive value necessarily, whatever the
distance. Similarly, g,u mixing decreases ρ(rrrbcp) from g2(rrrbcp) to
0 as λ goes from one to zero (ESI). Since all these properties de-
pend on the one-matrix, and we have just shown that resonance is
a two-electron phenomenon in an orthogonal framework, neither
the behavior of the density nor of the laplacian can be related to
covalent-ionic resonance in CSB.

The results of this model can be tested on real calculations.
Table 1 shows how scalar fields at the bcp behave in F2. Interest-
ingly, ρ is dominated by the 2e active subsystem, but ∇2ρ is not.
Surprinsingly, ∇2ρ of the 2e subsystem is negative, like in H2, and
it is the effect of the non-bonding electrons that makes it overall
positive. A similar criticism can be cast on arguments based on
the ELF function, which is commonly obtained from the 1-matrix.
CSB has been related to small ELF bonding domains with low
electron count and large population variances (or fluctuations).
However, the standard ELF function is difficult to generalize out-
side the single-determinant (SD) framework19 (needed to deal
with CSB), shedding doubts on its meaning. Moreover, variances
obtained from SD expressions are in gross error when applied to
correlated (or DFT) descriptions. Sometimes, even the ELF disy-
naptic bonding domain is absent in high accuracy wavefunctions
(like in coupled-cluster calculations of F2

18) and the variance ar-
gument can simply not be applied. All this is compatible with
an old proposition that would consider F2 and other systems in
a proto-bonding situation,20 but is hardly related with covalent-
ionic resonance.

Turning to cohesion, CSB has been linked to the kinetic en-
ergy (T ), in line with Kutzelnigg and Ruedenberg classical argu-
ments,21 although the latter have been criticized for they ignore
other equally important energy components in favor of T .22 Ac-
cording to this view, in standard covalent bonding the virial theo-
rem is restored as a bond is being formed through an increase in
T driven by orbital contraction. When lone pairs give rise to large
T ’s due to 2c-3e repulsions, a new restoration mechanism sets in
and heavy mixing with the ionic configurations, which largely de-
crease T , serve this purpose. As a result, large fluctuations of the
pair density are thought to appear.18 However, in a fixed orbital
framework which allows comparison across VB or MO paradigms,
T , a one-electron property, changes linearly (with λ 2) between its
gg (lower) and uu (higher) limits. Were it not for the Vee electron
repulsion, there would be no gg,uu mixing at all. Moreover, T
in the covalent and ionic mixtures (ESI) are identical with fixed
orbitals. Table 2 shows actual data. For fixed orbitals, the HF
determinant always displays the smallest T , but its density is not

Table 2 Total energy components for several 6-31G* wavefunction of F2
with fixed CAS(2,2) orbitals at Re = 1.49 Å. All data in au (198 and 533
au have been added to E and Vne respectively, and 198, 108, and 20 au
subtracted from T , Vee, and V ca

ee , respectively). Energy at the dissociation
limit E = −198.724 au. λcov ≈ 0.83 estimated from orbital overlaps (ESI).
V a

ee and V ca
ee are the interelectron repulsion among the active electrons

and among the frozen core and the active electrons, respectively.

Ψ E T Vne Vee V ca
ee V a

ee
gg -0.656 -0.034 -0.373 0.025 0.264 0.660

CAS -0.751 0.290 -0.811 0.044 0.444 0.499
cov -0.641 1.229 -2.078 0.482 0.967 0.414
ion -0.075 1.229 -2.078 1.048 2.001 0.980
uu 0.173 3.475 -5.110 2.083 2.220 0.762

Table 3 Relevant IQA data in 6-31G* for different two-state wavefunc-
tions of H2 and F2. λcov ≈ 0.982 in dihydrogen. All data in au and all
orbitals and distances fixed to those in the CAS.

H2 EA
de f T A V AA

ee EAB
int EAB

cov V AB
ee δ AB

cov 0.005 0.601 0.136 -0.153 -0.194 0.321 0.715
CAS 0.013 0.578 0.165 -0.189 -0.222 0.296 0.833
HF 0.043 0.567 0.198 -0.230 -0.262 0.269 1.000
ion 0.132 0.601 0.263 -0.280 -0.321 0.195 1.284
F2 EA

de f T A V AA
ee EAB

int EAB
cov V AB

ee δ AB

cov 0.092 99.614 40.435 -0.084 -0.122 27.611 0.397
CAS 0.077 99.145 40.237 -0.164 -0.199 27.569 0.713
HF 0.173 98.983 40.270 -0.263 -0.297 27.484 1.206
ion 0.526 99.614 40.870 -0.387 -0.425 27.381 2.040

compact enough and the total one-electron energy (T +Vne) is
more stabilizing for the uu state than for the gg one (contrarily to
what happens in H2, see the ESI). From the VB point of view, the
covalent structure has too large T , and the system responds by c, i
mixing so that both T and the electron repulsion decrease.

A clue about the effect of c, i or λ ,µ mixing is found on sep-
arating Vee into core-core (c), core-active (ca) and active-active
(a) pieces. The former is constant, the latter is smallest in the
Ψcov calculation (as in H2 with no lone-pairs). It is thus the ca
repulsion that dominates the global Vee behavior, being too large
in the VB covalent structure. The absence of lone pairs leads to no
V ca

ee , to a one-electron energy decreasing form uu to gg, and to small
c, i mixing that decreases Vee of the active orbitals. The presence of
many lone pairs leads to the contrary behavior: one-electron energy
decreasing towards uu, dominating ca repulsion, and large c, i mix-
ing that tries to decrease its impact. As shown in the ESI, the first
behavior is found from H2 up to N2, the second in O2 and F2.

Is then CSB a distinct family of pair-electron bonding? Real
space analysis clarifies this by answering the following questions:
Is covalency changed in any substantial way in CSB? Is CSB char-
acterized by a larger than usual fluctuation of the electron pair?
IQA data for the model 6-31G* H2 and F2 systems are found in
Table 3. Notice than in homodiatomics, all real space partitions
coincide with that of the QTAIM. As seen, the covalent interac-
tion in both CAS models as well as their delocalization indices
are quite similar. In H2, as expected, atomic deformations grow
from the covalent to the CAS to the ionic solutions as we increase
the contribution of the deformed hydride-like terms. The optimal
CAS mixing is achieved close to Ψcov: the slight increase in the
CAS Ede f is compensated through Eint via Ecov. In F2, Ede f (Ψcov)

is almost 20 times larger than in H2, with a rather smaller Eint
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(due to a larger distance and a more compact electron distribu-
tion). Mixing increases the interaction, as in H2, but decreases the
deformation. Going further, this is clearly due to a considerable
decrease in the intra-atomic electron repulsion, which is minimum
in the CAS function. As shown in the ESI, the larger than expected
distance is a direct effect of this intra-atomic effect, which grows
very quickly on approaching the two atoms. Aside from this, cova-
lency displays the standard behavior overall. Invariant real space
arguments uncover intra-atomic electron repulsion as the driving
force behind CSB anomalies. These are carried over with the atom,
in agreement with Sanderson’s LPBWE insights. As fluctuations are
regarded, the EDF shows only one delocalized electron pair in
F2, so only the (9,9) and (10,8) ≡ (8,10) structures have non-
negligible probabilities. In the CAS solution of H2, p(1,1) = 0.583,
p(2,0) = 0.208. At the CAS solution of F2, no anomalous fluctua-
tion is found, with p(9,9) = 0.684 and p(10,8) = 0.151, the latter
being even smaller than p(2,0) in H2, in line with the similar
structure VB weights for H2 and F2 (ESI). This is compatible with
a proto-bond with hindered delocalization. At complete variance
with CSB arguments, the electron-pair fluctuation is smaller in F2
than in a purportedly normal covalent bond.

All these model results, which we think provide useful insights,
are fully supported by heat-bath multiconfigurational correlated
calculations that match well the experimental bond distances and
dissociation energies, both in F2 and in a number of representa-
tive CSB systems. Details are found in the ESI. In F2, for instance,
a (23,14) AVAS CASSCF provides a much compacted Re = 1.41
Å, but a fluorine deformation energy of 0.078 au very close to
that in the model, a stronger covalent energy of −0.259 au, and
a considerably smaller electrostatic repulsion that justifies the in-
creased binding. In these higher levels of theory the intra-atomic
repulsion is lower and permits a decrease in Re together with a
more extensive delocalization. δ increases to 0.886, although its
main σ eigen-component is still low (0.613), and p(9,9) = 0.609,
p(10,8)= 0.188 approach the values of a correlated 2c-2e covalent
bond with f = 0.21. Equivalent insights are obtained after exam-
ining the Z = 6,7,8 second period diatomics, N2H4, H2O2, heavier
representative diatomics like S2, Cl2, Br2, and some CSB transi-
tion metal systems like Cu2, Ag2, Au2 or Hg 2+

2 (ESI). Finally,
polar CSBs, like those in H-F, C-F, or Si-F bonds have also been
analyzed. In CH3F, for instance, the CH3−F −0.393 au ionic bond
energy is considerably larger than the −0.261 au covalent one,
with δ = 0.896. Analysis of the CH3−F EDF gives p(nCH3

= 8,nF =

10) = 0.586, p(9,9) = 0.300, p(10,8) = 0.076 which describes a po-
lar interaction with small f = 0.22, a value very close to that in
F2. In SiH3F, the ionic energy escalates to −0.715 au, covalency
decreases with δ Si,F = 0.591, and f ≈ 0.60. No sign of larger than
normal ( f < 0) fluctuations is found. Much on the contrary, in
this case the link has clear proto-bonding ( f � 0) signatures. In
propellane, the deformation energy of the bridging carbons (b),
Eb

de f , is even smaller than that for non-bridge C’s, Enb
de f , and a

bridge proto-bond is found with Eb
cov =−0.109 au, δ b = 0.410.

Summarizing, although CSB stands out clearly in NOVB theory,
it is difficult to find specific invariant signatures of this purported
third electron-pair bond family, which in our opinion is still better

described in terms of a classical Sanderson’s intra-atomic LPBWE
leading to proto-bonding.
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