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Abstract

Binary classification is an essential matter in multiple real-life
problems, and so, the comparison of the performance of classifiers
is a key issue. A criterion for that purpose is introduced in this
manuscript. That criterion is based on a stochastic dominance, and
permits to compare classifiers in subgroups of the population with
the same size. By means of the new criterion, the alteration of the
size of the subgroups where classifiers are compared, does not entail
the modification of the suitable classifier. Characterization results of
the criterion are proved. For that purpose, connections of the crite-
rion with the theory of copulas, and with a tool introduced in the

∗Corresponding author

1



manuscript, the so-called continuity modelling vector, are essential.
An application to the comparison of some classifiers for the detection
of purchasers of home insurances is developed.

Keywords: alternative accumulated improvement curve, binary classifier,
continuity modelling vector, copula, insurance, target

1 Introduction

Classification is an appealing topic because of its importance in multiple
fields, like insurance, banking, biological classification, medical diagnosis,
computer vision, internet search engines, etc. Very basically, classification
aims to designate to which of a group of categories an individual belongs.
A classification procedure is said to be binary if the number of categories
is equal to two. Research on this kind of classification has experienced a
significant growth in recent years. For instance, binary classification is a
key issue for commercial purposes in marketing strategies, especially in the
development of marketing programs to launch campaigns among clients, or
in the right classification of patients with respect to an illness, or in the
identification of possible churn attrition, or possible credit card fraud, etc.

Binary classification systems are frequently carried out by means of a
bidimensional random vector (modelling vector), whose components are the
so-called classifier and target. A target is a Bernoulli random variable with
parameter q, where q denotes the true and unknown proportion of individ-
uals which belong to an specific category. For instance, when an insurance
company analyzes which potential clients will purchase a life insurance, q is
the true proportion of them which will acquire such an insurance. The target
variable takes on value 1 at an individual which will purchase the insurance,
otherwise zero. The value the target assigns to each individual is unknown,
and the aim of any binary classification system is the prediction of that. Such
an estimation is performed with the information provided by the value of the
classifier at each individual.

Multiple techniques have been proposed and designed to develop classi-
fiers, using, for example, neuronal networks, decision trees, random forests,
logistic regression, Bayesian analysis, mesh methods, etc. (see, for instance,
Breiman (2001), Wei and Chiu (2002), Hwang et al. (2004), Buckinx and
Van den Poel (2005), Hung et al. (2006), Qi et al. (2009), Figini and Giudici
(2010), Güunther et al. (2014), etc.).
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A key matter is the comparison of classifiers. Identifying suitable classi-
fiers to estimate a target is a fundamental issue because of the importance
of underlying problems. Special attention has been focused on this ques-
tion during the last years (see, for instance, Lloyd (1998), Lee (1999), Hand
(2009), Hand and Zhou (2009), Hand (2010), Hand (2012), Hand and Anag-
nostopoulos (2012), Hand and Anagnostopoulos (2013), Yousef (2013), etc.)

A criterion for the comparison of classifiers based on the theory of stochas-
tic orders was introduced in López-Dı́az et al. (2017). We describe that
procedure briefly, in order to clarify the proposal of the present manuscript.

Consider a modelling vector X = (CX , TX), where the target TX follows
a Bernoulli distribution with parameter q, and CX is the classifier. The
mapping MX : (0, 1) → R, with MX(p) = P (TX = 1/CX ≥ F−1

CX
(1 − p))

for any p ∈ (0, 1), is said to be the accumulated improvement curve of the
modelling vector X . Given any p ∈ (0, 1), we consider the smallest group
containing at least the 100p% of the individuals with the largest values of
the classifier CX , and in such a subgroup, we study the probability that the
target takes on value 1. That represents the probability of being right when
we estimate the value of the target as 1 at those individuals.

Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors where TX and
TY follow Bernoulli distribution with parameter q (from an applied point of
view, usually TX = TY ). It will be said that the modelling vector X is less
than Y in the accumulated improvement curve stochastic order, if MX(p) ≤
MY (p) for any p ∈ (0, 1). It will be denoted by X �M Y . Roughly speaking,
the relation X �M Y means that for any p ∈ (0, 1), given the 100p% of the
individuals with the largest values of the corresponding classifiers CX and
CY , the probability of carrying out right classifications by estimating as 1
the value of the target at those individuals, is greater (at least the same)
with classifier CY than with classifier CX . .

It is interesting to remark that rating systems of classifiers based on a
single numeric value, by means of a global assessment of classifiers, like ROC
and CAP indexes (areas under ROC and CAP curves, respectively), lead
to a total preorder, and so permit to order any two classifiers. However, a
rating could fail when those classifiers are applied in subgroups of the whole
population, like those given by CX ≥ F−1

CX
(1 − p) and CY ≥ F−1

CY
(1 − p),

for a specific value p ∈ (0, 1). The procedure based on the accumulated
improvement curve avoids that important drawback, considering the com-
parison in all those groups. A key advantage of that technique is that when
X �M Y , the modification of the sizes of the groups, that is, the change of
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p, does not entail the modification of the suitable classifier. The reader is
referred to López-Dı́az et al. (2017) for a detailed theoretical analysis of the
accumulated improvement curve criterion, and an application of that to the
customer attrition problem in commercial banking.

A critique which could be assigned to the above procedure is that when
discrete classifiers are considered, the subgroups of the population given by
CX ≥ F−1

CX
(1 − p) and CY ≥ F−1

CY
(1 − p) with p ∈ (0, 1), could have quite

different sizes. The comparison of classifiers in subgroups which are not
similar in size is commonly avoided. We could say that the root cause of this
piece of work is based on how to solve that drawback of the above criterion for
the rating of classifiers. The criterion introduced in the present manuscript
avoids the above inconvenient, considering groups with the same size in the
comparison of classifiers, for all possible sizes. The main contributions of
the paper in the different sections are the following. The new mathematical
model to compare classifiers is given in Section 3. Its definition is based on
the comparison of the so-called alternative accumulated improvement curves.
Some preliminaries results are developed in this section. Section 4 is essential
to analyze the proposed model from a theoretical point of view. It is proved
the existence of, what we have coined, the continuity modelling vector, that
is, given any modelling vector, there exists another modelling vector with
the same alternative accumulated improvement curve, and so at the same
level in the new criterion, whose classifier has uniform distribution on the
interval (0, 1). This result is key to obtain posterior mathematical properties,
since the use of continuous classifiers simplifies mathematical developments
considerably. Section 5 is devoted to prove characterization results of the
new criterion for the comparison of classifiers. Connections of our model
with the theory of copulas are essential for this purpose. An application of
the proposed method is developed in Section 6. Namely, we compare some
classifiers for the detection of purchasers of home insurances. To conclude,
a simulation study, which ‘corroborates’ the efficiency of model proposed in
the manuscript, is developed in Section 7.

2 Notation and definitions

A stochastic order is a pre-order relation on a set of probabilities associated
with a measurable space. Basically, a stochastic order is a criterion to rank
probabilities. The reader is referred to the books Müller and Stoyan (2002),
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Shaked and Shanthikumar (2007) and Belzunce et al. (2016), for an intro-
duction to the theory of stochastic orders from theoretical and applied points
of view.

Given a random vector or random variable W , its distribution function
will be denoted by FW . The survival function of W will be represented by
FW . The expectation of W will be indicated by EW .

When W is a random variable, the symbol F−1
W will stand for the quantile

function ofW , that is, F−1
W : [0, 1) → R, with F−1

W (u) = inf {x ∈ R : FW (x) ≥
u} for any u ∈ [0, 1). Note that F−1

W (0) = −∞. By agreement we define
FW (−∞) = 0.

The dependence of the components of a random vector is given by the
so-called copula. A copula can be defined as a distribution function of a
random vector whose components follow uniform distribution on the interval
(0, 1).

If X = (X1, X2, . . . , Xn) is a random vector, then there exists a copula

C such that FX = C(FX1
, FX2

, . . . , FXn
). We will denote by Ĉ the survival

copula of C, that is, the copula associated with the survival function of
X = (X1, X2, . . . , Xn), namely, F (X1,X2,...,Xn) = Ĉ(FX1

, FX2
, . . . , FXn

).
The reader is referred, for instance, to Cherubini et al. (2004) and Nelsen

(2006) for an introduction to the theory of copulas.
Some criteria to compare random vectors (stochastic orders) are included

now. Let X = (X1, X2, . . . , Xn) and Y = (Y1, Y2, . . . , Yn) be random vectors.
It is said that X is less that Y in the usual stochastic order, denoted by

X �st Y , if E(f(X)) ≤ E(f(Y )) for all increasing mappings f : Rn → R

such that the expectations exist, that is, for all mappings f : Rn → R with
f(x) ≤ f(y) when x ≤ y, where ≤ stands for the usual componentwise order
of Rn.

We say that X is less that Y in the upper orthant order, denoted by
X �uo Y , if FX(x1, . . . , xn) ≤ F Y (x1, . . . , xn) for all (x1, . . . , xn) ∈ R

n.
Let (X, Y ) be a bidimensional random vector.
We say that X is positively regression dependent on Y , if P (X ≤ t/Y =

s) is decreasing in s for all t. Moreover, X is said to be right tail increasing in
Y , if P (X > t/Y > s) is increasing in s for all t (see, for instance, Lehmann
(1966) and Esary and Proschan (1972)).

The symbol ∼st will mean the equality in distribution.
By B(q) we will denote the Bernoulli distribution with parameter q ∈

(0, 1). The uniform distribution on the interval (0, 1) will be indicated by

5



U(0,1).
The support of a random variable will be denoted by supp.
Let F : R → R be a distribution function, Im(F ) will stand for the image

set of F .
On the other hand, by ‘continuous random variable’ we will mean a ran-

dom variable whose distribution function is continuous. Note that the exis-
tence of a density function is not required.

3 The mathematical model, preliminary re-

sults

In this section, we introduce the mathematical model to approach the mo-
tivating problem of this manuscript. That is based on what we have coined
the alternative accumulated improvement curve. That curve tries to avoid
the comparison of classifiers in subgroups which are different in size. Some
preliminary results are also stated in this section.

Definition 3.1. Let X be a random variable. Let p ∈ (0, 1]. We will denote

by pX the real value which satisfies that 1− pX = FX(F
−1
X (1− p)).

It is clear that pX ≤ p for any p ∈ (0, 1] since FX(F
−1
X (1 − p)) ≥ 1 − p.

Moreover, if p1 ≤ p2 with p1, p2 ∈ (0, 1], then pX1 ≤ pX2 since FX and F−1
X are

increasing. Observe that 1− pX ∈ Im(FX).
It is not hard to prove that 1−pX is the first value greater or equal to 1−p

which belongs to Im(FX). As a consequence, p− pX ≤ P (FX(X) = 1− pX)
for any p ∈ (0, 1].

We define the alternative accumulated improvement curve.

Definition 3.2. Let X = (CX , TX) be a modelling vector. Let M̃X : (0, 1] →
R be the mapping given by

M̃X(p) =
1

p

(
pCXP (TX = 1/FCX

(CX) > 1− pCX )

+(p− pCX )P (TX = 1/FCX
(CX) = 1− pCX )

)
.

The mapping M̃X is said to be the alternative accumulated improvement curve

of the modelling vector X.
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The motivation of this definition is the following. Given any p ∈ (0, 1], we
try to obtain the probability that the target assumes value 1 in the 100p%
of the individuals with the largest values of the classifier CX . If there exists
exactly a group with such a percentage (in that case, p = pCX ), the above
probability is calculated in those individuals. If such a subgroup does not
exist (in that case, p 6= pCX ), on the one hand, it is taken the biggest group
(with the largest values of the classifier) whose size is lower than 100p%
(exactly 100pCX%, (FCX

(CX) > 1 − pCX )), and on the other hand, that
group is completed with the following group with the largest values of the
classifier (FCX

(CX) = 1− pCX ), taking the appropriate weighting.
A criterion to compare classifiers based on the alternative accumulated

improvement curve is introduced now.

Definition 3.3. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors.

It will be said that X is less than Y in the alternative accumulated improve-

ment curve stochastic order, if M̃X(p) ≤ M̃Y (p) for any p ∈ (0, 1]. It will be
denoted by X �

M̃
Y .

The relation X �
M̃

Y means that for any p ∈ (0, 1], given the 100p%
of the individuals with the largest values of the corresponding classifiers CX

and CY , the probability of carrying out right classifications by estimating as
1 the value of the target at those individuals, is greater (at least the same)
with classifier CY than with classifier CX . Thus, modelling vector Y is better
than X to classify individuals, whatever sizes of groups in which we compare
those modelling vectors.

From now on, X ∼
M̃

Y will mean that X �
M̃

Y and Y �
M̃

X hold
simultaneously.

Some technical results needed for our purposes are stated below. They
relate values of p ∈ (0, 1] with the corresponding pX . Their proofs can be
found in the Appendix of the manuscript.

Proposition 3.4. Let X be a random variable and p ∈ (0, 1]. Then, 1− p ∈
Im(FX) if and only if pX = p.

Proposition 3.5. Let X be a random variable and p ∈ (0, 1). It holds that

P (FX(X) > 1− pX) = pX .

Proposition 3.6. Let X be a random variable and p ∈ (0, 1]. It holds that

p = pX when P (FX(X) = 1− pX) = 0.
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The following propositions are in relation to alternative accumulated im-
provement curves. Among other multiple purposes, they will be used to prove
the continuity of alternative accumulated improvement curves, an interesting
property from an applied point of view.

Proposition 3.7. Let X = (CX , TX) be a modelling vector. Define the

mapping HX : (0, 1] → R, with HX(p) = p − pM̃X(p) for any p ∈ (0, 1]. It
holds that

i) HX(p) = P (FCX
(CX) > 1 − pCX , TX = 0) + αP (FCX

(CX) = 1 −

pCX , TX = 0), where α = p−pCX

P (FCX
(CX )=1−pCX )

if P (FCX
(CX) = 1 − pCX ) > 0,

otherwise α = 0,
ii) HX(p) ≤ P (TX = 0) for any p ∈ (0, 1],
iii) HX is increasing.

Proof. In relation to i), note that HX(p) = p− pM̃X(p)

= p−
(
pCXP (TX = 1/FCX

(CX) > 1− pCX )

+(p− pCX )P (TX = 1/FCX
(CX) = 1− pCX )

)

= pCX (1− P (TX = 1/FCX
(CX) > 1− pCX ))

+(p− pCX )(1− P (TX = 1/FCX
(CX) = 1− pCX ))

= pCXP (TX = 0/FCX
(CX) > 1− pCX )

+(p− pCX )P (TX = 0/FCX
(CX) = 1− pCX ).

Proposition 3.5 reads that P (FCX
(CX) > 1− pCX ) = pCX , and thus HX(p)

= P (FCX
(CX) > 1−pCX , TX = 0)+(p−pCX)P (TX = 0/FCX

(CX) = 1−pCX ).

This leads to i) by applying Proposition 3.6.
Condition ii) can be derived by i) and the fact that α ∈ [0, 1], observe

that p− pCX ≤ P (FCX
(CX) = 1− pCX ).

Regarding iii), let p ≤ p′ with p, p′ ∈ (0, 1].
If pCX = p′CX , then HX(p) ≤ HX(p

′) since p− pCX ≤ p′ − pCX .
If pCX < p′CX , we obtain thatHX(p) ≤ P (FCX

(CX) ≥ 1−pCX , TX = 0) ≤
P (FCX

(CX) > 1− p′CX , TX = 0) ≤ HX(p
′), which concludes the proof.
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Proposition 3.8. Let X = (CX , TX) be a modelling vector. Define the

mapping AX : (0, 1] → R, with AX(p) = pCXP (TX = 1/FCX
(CX) > 1 −

pCX ) + (p− pCX )P (TX = 1/FCX
(CX) = 1− pCX ) for any p ∈ (0, 1]. Then,

i) AX(p) = P (FCX
(CX) > 1−pCX , TX = 1)+(p−pCX )P (TX = 1/FCX

(CX) =
1− pCX ) for any p ∈ (0, 1],

ii) AX is increasing,

iii) AX(1) = q.

Proof. If pCX = 0, the result is clear. If pCX 6= 0, by Proposition 3.5
P (FCX

(CX) > 1 − pCX ) = pCX , and thus, pCXP (TX = 1/FCX
(CX) >

1− pCX ) = P (FCX
(CX) > 1− pCX , TX = 1), which proves i).

Let us prove ii). Let p, p′ ∈ (0, 1] with p ≤ p′.
Firstly, let us suppose that pCX = p′CX . Applying formula i) of this propo-

sition, we obtain that AX(p) ≤ AX(p
′).

Now, let pCX < p′CX . Observe that p − pCX ≤ P (FCX
(CX) = 1 − pCX ).

Moreover, by Proposition 3.6, if P (FCX
(CX) = 1− pCX ) = 0, then p = pCX .

Thus, AX(p)

= P (FCX
(CX) > 1−pCX , TX = 1)+(p−pCX )P (TX = 1/FCX

(CX) = 1−pCX )

≤ P (FCX
(CX) > 1− pCX , TX = 1) + P (FCX

(CX) = 1− pCX , TX = 1)

= P (FCX
(CX) ≥ 1− pCX , TX = 1)

≤ P (FCX
(CX) > 1− p′CX , TX = 1)≤AX(p

′).

Therefore, AX is increasing.
To conclude, note that for any random variable W , it holds that 1W = 1.

Thus, AX(1) = P (FCX
(CX) > 0, TX = 1) = P (TX = 1) = q.

4 The continuity modelling vector

A key tool for the analysis and the development of the alternative accumu-
lated improvement curve criterion, is constructed in this section. We will
prove that given any modelling vector, there exists another modelling vector
whose classifier follows uniform distribution on the interval (0, 1), and both
modelling vectors have the same alternative accumulated improvement curve,
that is, they are ‘at the same level’ in the new criterion for the comparison
of classifiers. That modelling vector has been coined as the continuity mod-
elling vector of the former. This result and its proof are key to derive other
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results. Note that the continuity of the classifier simplifies the formula of the
alternative accumulated improvement curve since pCX = p for any p ∈ (0, 1]
(see Proposition 3.4), and thus the analysis of the criterion.

Theorem 4.1. Let X = (CX , TX) be a modelling vector with TX ∼st B(q).
Then, there exists a modelling vector X ′ = (C ′

X , T
′
X) with T ′

X ∼st B(q), such
that C ′

X ∼st U(0,1) and X ∼
M̃

X ′.

Proof. Let us define G : R2 → R, with

G(k1, k2) =





0 if k1 ≥ 1 or k2 ≥ 1,

(1− k1)M̃X(1− k1) if 0 ≤ k1 < 1 and 0 ≤ k2 < 1,
1− k1 if 0 ≤ k1 < 1 and k2 < 0,
q if k1 < 0 and 0 ≤ k2 < 1,
1 if k1 < 0 and k2 < 0,

for any (k1, k2) ∈ R
2.

We have that,
i) G is decreasing in k1 and k2. Observe that (1 − k1)M̃X(1 − k1) =

AX(1 − k1), and AX is positive, increasing and AX(1) = q (see Proposition

3.8). Moreover, 0 ≤ M̃X ≤ 1, and so, (1 − k1)M̃X(1 − k1) ≤ 1 − k1 for any
k1 ∈ [0, 1).

ii) It is clear that limk1,k2→−∞G(k1, k2) = 1.
iii) limk1→∞G(k1, k2) = 0 for any k2 ∈ R, and limk2→∞G(k1, k2) = 0 for

any k1 ∈ R.
iv) As we show below, it holds that G(k1, k2) − G(k′

1, k2) − G(k1, k
′
2) +

G(k′
1, k

′
2) ≥ 0 for any (k1, k2), (k

′
1, k

′
2) ∈ R

2 with k1 ≤ k′
1 and k2 ≤ k′

2.
If k′

1 < 0, then G(k1, k2) = G(k′
1, k2) and G(k1, k

′
2) = G(k′

1, k
′
2), and so,

we have the result in this case.
The cases in which k′

2 < 0, or k′
1 ≥ 1, or k′

2 ≥ 1, or k1 ≥ 1, or k2 ≥ 1 are
also immediate.

The cases k1 < 0 and 0 ≤ k1 < 1 can be derived since the mapping HX

is increasing (see Proposition 3.7).
v) By the definition of G, it can be seen that limh→0− G(k1+ h, k2+ h) =

G(k1, k2).
Therefore, G is a survival function of a bidimensional random vector (see,

for instance, Breiman (1992)). Let X ′ = (C ′
X , T

′
X) be a random vector whose

survival function is G, that is, F (C′

X
,T ′

X
) = G.
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We have that

FC′

X
(x) = lim

y→−∞
G(x, y) =





0 if x ≥ 1,
1− x if 0 ≤ x < 1,
1 if x < 0.

Therefore, C ′
X follows uniform distribution on the interval (0, 1). Moreover,

F T ′

X
(y) = lim

x→−∞
G(x, y) =





0 if y ≥ 1,
q if 0 ≤ y < 1,
1 if y < 0,

that is, T ′
X ∼st B(q).

Thus, X ′ = (C ′
X , T

′
X) is a modelling vector with C ′

X ∼st U(0,1) and T ′
X ∼st

B(q).
To conclude, we need to prove that X ∼

M̃
X ′. That is the same as

M̃X′ = M̃X . Let p ∈ (0, 1). Since C ′
X ∼st U(0,1), we obtain that

M̃X′(p) = P (T ′
X = 1/FC′

X
(C ′

X) > 1− p) = P (T ′
X = 1/C ′

X > 1− p)

=
P (C ′

X > 1− p, T ′
X = 1)

p
=

1

p
P (C ′

X > 1−p, T ′
X >

1

2
) =

1

p
F (C′

X
,F ′

X
)(1−p,

1

2
)

=
1

p
G(1− p,

1

2
) =

1

p
(1− (1− p))M̃X(1− (1− p)) = M̃X(p).

When p = 1, note that M̃X(1) = AX(1) = q for any modelling vector (see
Proposition 3.8), which concludes the proof.

Definition 4.2. Let X = (CX , TX) be a modelling vector with TX ∼st B(q).
A modelling vector X ′ = (C ′

X , T
′
X) is said to be a continuity modelling vector

of X = (CX , TX), if T
′
X ∼st B(q), C

′
X ∼st U(0,1) and X ∼

M̃
X ′.

The tool introduced in the above definition, and the particular continuity
modelling vector constructed in Theorem 4.1, will be essential for different
purposes of the manuscript.

As an example of application, we prove the continuity of alternative ac-
cumulated improvement curves immediately.

Proposition 4.3. Let X = (CX , TX) be a modelling vector. Then M̃X is

continuous.
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Proof. Let X ′ = (C ′
X , T

′
X) be a continuity modelling vector of X = (CX , TX).

Recall that M̃X = M̃X′ . Since C ′
X is continuous, for any p ∈ (0, 1], M̃X′(p) =

P (TX = 1/FC′

X
(C ′

X) > 1 − p) = 1
p
P (FC′

X
(C ′

X) > 1 − p, TX = 1), which is

continuous since FC′

X
(C ′

X) ∼ U(0,1).

Another instance of applicability of the continuity modelling vector is
the analysis of the preservation of the order under weak convergence. The
following example, based on those modelling vectors, shows that the new
criterion is not closed under that convergence. However, conditions under
which the new stochastic order is closed under weak convergence, are stated
below.

Example 4.4. Let Xn = (CXn
, TXn

), n ∈ N, be modelling vectors such
that P (CXn

= 1, TXn
= 1) = 3/8, P (CXn

= 1, TXn
= 0) = 1/8, P (CXn

=
1 − 1/n, TXn

= 1) = 1/8, and P (CXn
= 1 − 1/n, TXn

= 0) = 3/8, for any
n ∈ N \ {1}. Observe that TXn

∼st B(1/2).
It is not hard to see that for all n ∈ N and p ∈ (0, 1],

M̃Xn
(p) =

{
3
4

if 0 < p ≤ 1/2,
1
p
(3
8
+ (p− 1

2
)1
4
) if 1/2 < p ≤ 1.

In accordance with Theorem 4.1, there exists a common continuity mod-
elling vector of all those vectors, say W = (CW , TW ), with CW ∼st U(0,1),
TW ∼st B(1/2), and Xn ∼

M̃
W for all n ∈ N.

Let X = (CX , TX) be a modelling vector where CX = 1 a.s. and TX ∼st

B(1/2). It is clear that limnXn = X in distribution.

However, the relation X ∼
M̃

W is false since M̃X(p) = 1/2 for any
p ∈ (0, 1], observe that CX and TX are independent.

Therefore, the order �
M̃

is not closed under weak convergence.

Conditions under which the new order is closed under weak convergence
are stated below. The proof is included in the Appendix.

Proposition 4.5. Let Xm = (CXm
, TXm

), Ym = (CYm
, TYm

), m ∈ N, X =
(CX , TX) and Y = (CY , TY ) be modelling vectors. If Xm �

M̃
Ym for any

m ∈ N, limm Xm = X and limm Ym = Y in distribution, and CX and CY are

continuous, then X �
M̃

Y .

To conclude this section, next result shows another construction of con-
tinuity modelling vectors when classifiers are continuous.
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Proposition 4.6. Let X = (CX , TX) be a modelling vector, and let X ′ =
(C ′

X , T
′
X) be a continuity modelling vector of X. If CX is continuous, then

(C ′
X , T

′
X) ∼st (FCX

(CX), TX).

Proof. Let Y = (FCX
(CX), TX). Since FCX

(CX) ∼st U(0,1), p
FCX

(CX) = p for

any p ∈ (0, 1) (see Proposition 3.4), and so, M̃Y (p) = P (TX = 1/FCX
(CX) >

1− p) = M̃X(p) = M̃X′(p).
Observe that for any k ∈ [0, 1) and p ∈ (0, 1), it holds that P (FCX

(CX) >
1 − p, TX > k) = P (FCX

(CX) > 1 − p)P (TX > k/FCX
(CX) > 1 − p) =

pM̃Y (p) = pM̃X(p).
Now, it is immediately seen that the survival function of Y , F Y , is equal

to the mapping G in the proof of Theorem 4.1. Therefore, (C ′
X , T

′
X) ∼st

(FCX
(CX), TX).

5 Characterizations of the new comparison

criterion for classifiers and some

consequences

Next, we prove different characterizations of the new criterion for the compar-
ison of classification systems. Connections of that criterion with the theory
of copulas will be essential for that purpose. We will also obtain sufficient
conditions to assure the order between two classifiers, and some consequences.

The following result is key to state one of those characterizations.

Theorem 5.1. Let X = (CX , TX) be a modelling vector, and let X ′ =
(C ′

X , T
′
X) be a continuity modelling vector of X. Let CCMV be a copula of

X ′. Then, CCMV is a copula of X.

Proof. Let CCMV be a copula of X ′, and ĈCMV the corresponding survival
copula. Let C be a copula of X , and Ĉ the associated survival copula.

Let us analyze the value of the survival distribution function of X .
Let y ∈ [0, 1) and x ∈ R such that P (CX > x) ∈ (0, 1). We have that

FX(x, y) = P (CX > x, TX > y) = Ĉ(FCX
(x), F TX

(y)) = Ĉ(p, q) with p =
FCX

(x). Then, 1 − p = P (CX ≤ x), and so pCX = p (see Proposition 3.4)
and (FCX

(CX) > 1− p) = (CX > x) a.s.

Thus, M̃X(p) = P (TX = 1/CX > x) = M̃X′(p) = P (T ′
X = 1/C ′

X > 1−p).
This implies that P (CX > x, TX = 1) = P (C ′

X > 1− p, T ′
X = 1).

13



Observe that P (C ′
X > 1 − p, T ′

X = 1) = ĈCMV (FC′

X
(1 − p), F T ′

X
(y)) =

ĈCMV (p, q).

Therefore, we conclude that FX(x, y) = ĈCMV (FCX
(x), F TX

(y)) when x
and y satisfy the above conditions. For other values of x and y, the same
relation is trivial. Thus, ĈCMV is a copula of X = (CX , TX).

The converse of Theorem 5.1 is not true, as we will see after Theorem
5.5. However, the converse holds if classifiers are continuous.

Proposition 5.2. Let X = (CX , TX) be a modelling vector, and let X ′ =
(C ′

X , T
′
X) be a continuity modelling vector of X. Let C be a copula of X. If

CX is continuous, then C is a copula of X ′.

Proof. Let C be a copula ofX = (CX , TX). Since FCX
is increasing, Theorem

3.3 in Cai and Wei (2012) reads that C is also a copula of (FCX
(CX), TX). By

Proposition 4.6, (C ′
X , T

′
X) ∼st (FCX

(CX), TX), which proves the result.

The following result states a characterization of the new criterion by
means of survival copulas of continuity modelling vectors.

Proposition 5.3. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors.

Let X ′ = (C ′
X , T

′
X) and Y ′ = (C ′

Y , T
′
Y ) be continuity modelling vectors of X

and Y , respectively. Let ĈX
CMV and ĈY

CMV be survival copulas of X ′ and Y ′,

respectively. Then, X �
M̃

Y if and only if ĈX
CMV (p, q) ≤ ĈY

CMV (p, q) for

any p ∈ [0, 1].

Proof. Since C ′
X ∼st C

′
Y ∼st U(0,1), we have that X ′ �

M̃
Y ′ if and only if

P (C ′
X > 1− p, T ′

X = 1) ≤ P (C ′
Y > 1− p, T ′

Y = 1) for any p ∈ (0, 1). This is
the same as P (C ′

X > 1− p, T ′
X > 0) ≤ P (C ′

Y > 1− p, T ′
Y > 0), equivalently,

ĈX
CMV (FC′

X
(1− p), F T ′

X
(0)) ≤ ĈY

CMV (FC′

Y
(1− p), F T ′

Y
(0)) for any p ∈ (0, 1).

Note that FC′

X
(1−p) = FC′

Y
(1−p) = p, and F T ′

Y
(0) = F T ′

Y
(0) = q. Therefore,

X ′ �
M̃

Y ′ if and only if ĈX
CMV (p, q) ≤ ĈY

CMV (p, q) for any p ∈ (0, 1). Observe
that if p = 0 or p = 1, both expressions are the same. Now, the result follows
from the definition of continuity modelling vector.

We relate the new method for rating classifiers with that proposed in
López-Dı́az et al. (2017). That will lead to other characterizations of �

M̃
.

Proposition 5.4. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors

such that CX and CY are continuous. Then, X �
M̃

Y if and only if X �M

Y.
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Proof. If CX is continuous, M̃X(p) = P (TX = 1/FCX
(CX) > 1−p) = P (TX =

1/FCX
(CX) ≥ 1−p) = MX(p) for any p ∈ (0, 1), which proves the result.

It is not hard to see that both criteria are not the same.
Now, we are in conditions to state the following characterizations of the

alternative accumulated improvement curve criterion.

Theorem 5.5. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors.

Let X ′ = (C ′
X , T

′
X) and Y ′ = (C ′

Y , T
′
Y ) be continuity modelling vectors of X

and Y , respectively. Let ĈX
CMV and ĈY

CMV be survival copula functions of X ′

and Y ′, respectively. The following conditions are equivalent,

i) X �
M̃

Y ,

ii) X ′ �
M̃

Y ′,

iii) ĈX
CMV (p, q) ≤ ĈY

CMV (p, q) for any p ∈ [0, 1],

iv) X ′ �uo Y
′,

v) T ′
X |(C

′
X ≥ 1− p) �st T ′

Y |(C
′
Y ≥ 1− p) for any p ∈ (0, 1),

vi) for any x ∈ supp (T ′
X |C

′
X ≥ 1−p)∩supp (T ′

Y |C
′
Y ≥ 1−p) and p ∈ (0, 1),

F−1
T ′

X
|C′

X
≥1−p

(FT ′

Y
|C′

Y
≥1−p (x)) ≤ x.

Proof. Conditions i) and ii) are equivalent by Definition 4.2.
The equivalence of i) and iii) follows from Proposition 5.3.
The equivalence of ii) and iv) is because of Proposition 5.4, and Propo-

sition 3.15 in López-Dı́az et al. (2017), note that the classifiers of X ′ and Y ′

have uniform distribution on the interval (0, 1). In the same way, the equiva-
lence of ii) and v), and the equivalence of ii) and vi) are due to Propositions
3.14 and 3.13, respectively, in López-Dı́az et al. (2017).

The following characterizations hold when classifiers are continuous.

Theorem 5.6. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors.

Let C1 and C2 be copula functions of X and Y , respectively. If CX and CY

are continuous, the following conditions are equivalent,

i) X �
M̃

Y ,

ii) C1(p, 1− q) ≤ C2(p, 1− q) for any p ∈ [0, 1],
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iii) Ĉ1(p, q) ≤ Ĉ2(p, q) for any p ∈ [0, 1].

Proof. LetX ′ = (C ′
X , T

′
X) and Y ′ = (C ′

Y , T
′
Y ) be continuity modelling vectors

of X and Y , respectively. By Proposition 5.2, C1 is a copula of X ′ and C2 of
Y ′. This proves the equivalence between i) and iii) using Theorem 5.5. The
equivalence between ii) and iii) follows from the relation between a copula
and its survival copula.

Let us see that the converse of Theorem 5.1 is not true. Suppose that
the converse holds. Let C be a copula of a modelling vector X = (CX , TX).
Let us consider the mapping h : R → R, with h = 0. Since h is increasing,
Theorem 3.3 in Cai and Wei (2012) says that C is a copula of the modelling
vector (0, TX). Under our assumption, C is a copula of (0′, T ′

X), a continuity
modelling vector of (0, TX), and a copula of X ′ = (C ′

X , T
′
X). Applying Theo-

rem 5.5, we obtain that (CX , TX) ∼M̃
(0, TX), which obviously is not true in

general since 0 and TX are independent.
The following result states sufficient conditions for the new criterion to

compare classifiers.

Proposition 5.7. Let X = (CX , TX) and Y = (CY , TY ) be modelling vectors

such that CY is continuous. If (FCX
(CX), TX) �uo (FCY

(CY ), TY ), then

X �
M̃

Y .

Proof. Let us see that M̃X(p) ≤ M̃Y (p) for any p ∈ (0, 1]. This is the same
as AX(p) ≤ AY (p) for any p ∈ (0, 1) (see Proposition 3.8).

Observe that by Proposition 3.5, AX(p)

= P (FCX
(CX) > 1−pCX , TX = 1)+(p−pCX)P (TX = 1/FCX

(CX) = 1−pCX ).

If p = pCX , then AX(p) = P (FCX
(CX) > 1 − p, TX = 1). If p 6= pCX , recall

that p − pCX ≤ P (FCX
(CX) = 1 − pCX ), and so, it holds that AX(p) ≤

P (FCX
(CX) ≥ 1− pCX , TX = 1) ≤ P (FCX

(CX) > 1− p, TX = 1).
Since CY is continuous, 1−p ∈ Im(FCY

) for any p ∈ (0, 1), thus, pCY = p
(see Proposition 3.4) and FCY

(CY ) ∼st U(0,1). Then, AY (p) = pP (TY =
1/FCY

(CY ) > 1− p) = P (FCY
(CY ) > 1− p, TY = 1). Now, the result follows

from the condition (FCX
(CX), TX) �uo (FCY

(CY ), TY ).

An interesting property that an alternative accumulated improvement
curve can satisfy, is being decreasing. Roughly speaking, if such a curve
decreases, taking smaller groups of the population with larger values of the
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classifier, increases the probability that the target assumes value 1. That
means that the probability of being right when we estimate the value of
the target as 1, increases as p approaches to 0. In the following results, we
state conditions on modelling vectors to have decreasing alternative accumu-
lated improvement curves. The proofs of those results are included in the
Appendix.

Proposition 5.8. Let X = (CX , TX) be a modelling vector. Let TX be

positively regression dependent on CX . Then,

i) the mapping M̃X is decreasing,

ii) X̃ �
M̃

X where X̃ = (C̃X , T̃X), with C̃X ∼st CX , T̃X ∼st TX , C̃X and

T̃X being independent.

Proposition 5.9. Let X = (CX , TX) be a modelling vector where CX is

a continuous random variable. Let C be a copula of X. Let us define the

mapping g : (0, 1) → R with g(x) = Ĉ(x, q)/x, where Ĉ stands for the

survival copula of C. If g is decreasing, so is M̃X .

Copulas which satisfy the condition of g in Proposition 5.9 are, for in-
stance, C : [0, 1] × [0, 1] → R, with Ĉ(u, v) = uv, Ĉ(u, v) = min {u, v},
or those whose survival copulas belong to the Cuadras-Augé family. That
family is given by Cθ : [0, 1]× [0, 1] → R, with

Cθ(u, v) = (min {u, v})θ(uv)1−θ =

{
uv1−θ if u ≤ v,
u1−θv if v ≤ u,

for any u, v ∈ [0, 1], with θ ∈ [0, 1] (see Cuadras and Augé (1981)).
It is worth noting that the characterizations of the criterion �

M̃
permit

to find families of modelling vectors which are a lattice in �
M̃
. Let us see

an example of that, its proof is in the Appendix.

Proposition 5.10. Let Υ be the set of modelling vectors whose targets follow

Bernoulli distribution with parameter q, classifiers are continuous, and have

a survival copula in the Cuadras-Augé family. Then, (Υ, �
M̃
) is a lattice.

The following propositions show maximal and minimal modelling vectors
in the set of modelling vectors whose targets follow Bernoulli distribution
with parameter q. As expected, the target and one minus the target are the
best and worst classifiers, respectively. Proofs are included in the Appendix.
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Proposition 5.11. Let X = (CX , TX) be a modelling vector with TX ∼st

B(q). Let Z be the modelling vector (TZ , TZ) with TZ ∼st B(q). Then, X �
M̃

Z.

Proposition 5.12. Let X = (CX , TX) be a modelling vector with TX ∼st

B(q). Let W be the modelling vector (1− TW , TW ) with TW ∼st B(q). Then,

W �
M̃

X.

To conclude this section, we compare the alternative accumulated im-
provement curve criterion with one of the most popular rating systems, that
based on the CAP curve of a classifier.

Let (C, T ) be a modelling vector where C can take only the values 0 and
1, and the value of T is estimated by the value of C. The sensitivity of (C, T )
is the ratio between the so-called true positives and positive condition, that
is, P (C = 1, T = 1)/P (T = 1). Given (C, T ) a modelling vector and k ∈ R,
let (Ck, T ) be the modelling vector given by Ck = 1 when C ≥ k, otherwise
Ck = 0. For each (Ck, T ), consider its sensitivity, denoted by Sens(k). The
CAP curve of (C, T ) is the set of points {(P (C ≥ k), Sens(k)) | k ∈ R}. The
CAP index is the area under the CAP curve.

In López-Dı́az et al. (2017), it is proved that when the classifier of a
modelling vector (C, T ) is continuous, then

Sens(k) = M(C,T )(pk)
pk
q
,

where P (C ≥ k) = pk with pk ∈ (0, 1) (see the proof of Proposition 3.30 in
the above reference). Thus, the CAP curve of (C, T ) is {(pk,M(C,T )(pk)

pk
q
) |

k ∈ R}.
By Proposition 5.4, when C is continuous, the CAP curve of (C, T ) is

{(pk, M̃(C,T )(pk)
pk
q
) | k ∈ R}.

Assume now that (C, T ) is any modelling vector. Let (C ′, T ′) be a continu-
ity modelling vector of (C, T ). Recall that C ′ ∼st U(0,1). Thus, the CAP curve

of (C ′, T ′) is {(p, M̃(C′,T ′)(p)
p

q
) | p ∈ (0, 1)} = {(p, M̃(C,T )(p)

p

q
) | p ∈ (0, 1)},

since M̃(C′,T ′) = M̃(C,T ).
A natural question appears now. Let HC : (0, 1) → R, with HC(p) =

M̃(C,T )(p)
p

q
for any p ∈ (0, 1). Which is the relation between the CAP curve

of (C, T ) and HC?, that is, which is the connection between the CAP curve
of (C, T ) and the CAP curve of any continuity modelling vector of (C, T )?
The following result answers this question. Its proof is in the Appendix.
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Proposition 5.13. Let (C, T ) be a modelling vector and let p ∈ (0, 1).

i) If there exists k ∈ R such that P (C ≥ k) = p, the value of the CAP

curve of (C, T ) at k satisfies that (P (C ≥ k), Sens(k)) = (p,HC(p)),

ii) if there is not k ∈ R such that P (C ≥ k) = p, HC(p) is the value at

p of the linear interpolation constructed with the points (pC , HC(p
C))

and (pC +m,HC(p
C +m)), where m = P (FC(C) = 1− pC).

6 Application to the comparison of classifiers

for the sale of home insurances

The model introduced in this manuscript, has been applied to the comparison
of the performance of some classifiers for the estimation of possible purchasers
of a home insurance in a banking institution. For that analysis, we have made
use of a database provided by Liberbank (a Spanish commercial banking).

In the study, we considered clients of that banking that, at 31 December
2016, are aged between 18 and 80 years, have at least 500 euros of business
balance (savings+debts), an account balance greater than 0, and do not enjoy
of a home insurance (usual legal commercial filters were applied). In total,
740.315 clients were included. The number of available variables of each
individual was 58.

We aim to estimate the target T = ‘the client will buy a home insurance
in 2017’. It was considered that a client had bought a home insurance if
at 31 December 2017, he had one. The proportion of purchasers of a home
insurance in the sample was 0.006.

The database was divided at random into two groups, a training group
containing 540.315 clients, and a testing or validation group with 5.000.000
of observations taking at random from the remaining group of 200.000 indi-
viduals. The training group was used for the construction of the classifiers,
the testing group for the comparison of the performance of those classifiers.

We have compared eight classifiers constructed by means of the available
variables. Some of them were designed using three important variables in
accordance with the opinion of some experts of the bank, namely, assets,
number of bank products and age.

The scheme to construct classifiers is as follows. Let (X1, X2, . . . , X58)
be the random vector associated with the 58 available variables of each in-
dividual, that is, Xi stands for the random variable associated with the ith
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characteristic. By means of the above random vector, we construct eight
different classifiers Ci as

Ci = Hi(X1, X2, . . . , X58), 1 ≤ i ≤ 8.

Each Hi is developed by means of decision trees or logistic regression (ma-
chine learning techniques).

The classifiers are:

• Classifier 1 (C1): decision tree with all the variables, 2 branches per
division, maximum depth of 6 and minimum size of leaf equals to 5.000
clients.

• Classifier 2 (C2): logistic regression with all the variables and stepwise
selection method.

• Classifier 3 (C3): decision tree with the variables assets, number of
bank products and age, 2 branches per division, maximum depth of 6
and minimum size of leaf equals to 5.000 clients.

• Classifier 4 (C4): logistic regression with the variables assets, number
of bank products and age, and stepwise selection method.

• Classifier 5 (C5): decision tree with the variable age, 2 branches per
division, maximum depth of 6 and minimum size of leaf equals to 5.000
clients.

• Classifier 6 (C6): decision tree with the variable age, 2 branches per
division, maximum depth of 3 and minimum size of leaf equals to 5.000
clients.

• Classifier 7 (C7): decision tree with the variable assets, 2 branches per
division, maximum depth of 6 and minimum size of leaf equals to 5.000
clients.

• Classifier 8 (C8): decision tree with the variable assets, 2 branches per
division, maximum depth of 3 and minimum size of leaf equals to 5.000
clients.
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For the comparison of any two classifiers Ci and Cj , the testing group
was divided at random one hundred times into two groups of size 2.500.000.
We follow this procedure to avoid the influence of a particular division in the
final conclusions.

In each division of the testing group, we proceeded as follows. Each part
of the division was assigned at random to one of the classifiers. The sample
alternative accumulated improvement curve of each classifier was calculated
in a mesh of twenty points (20 values of p), from 0.05 to 1, with a step of 0.05,
using the corresponding part of the division. For each classifier C and each
of the values of p, the sample alternative accumulated improvement curve
was obtained as follows.

Let Z be a random variable with uniform distribution on the interval
(0, 1), Z ∼st U(0, 1), independent of the modelling vector (C, T ).

Let kp = 1− p−pC

P (FC(C)=1−pC)
if P (FC(C) = 1− pC) 6= 0, otherwise kp = 1.

Let

Ap = {FC(C) > 1− pC} ∪ {FC(C) = 1− pC , Z > kp}.

By Proposition 3.5 and 3.6, it is immediately seen that P (Ap) = p.

Let us see that M̃(C,T )(p) = P (T = 1/Ap). Observe that

P (T = 1/Ap) =
P (Ap, T = 1)

P (Ap)

=
1

p
(P (FC(C) > 1− pC , T = 1) + P (FC(C) = 1− pC , Z > kp, T = 1)).

By Proposition 3.5 and 3.6, that is equal to P (T = 1/FC(C) > 1 − p) if

P (FC(C) = 1− pC) = 0 since p = pC , and so that value is M̃(C,T )(p). When
P (FC(C) 6= 1− pC) 6= 0, such a value is equal to

1

p

(
pCP (T = 1/FC(C) > 1− pC)

+P (T = 1/FC(C) = 1−pC)P (FC(C) = 1−pC)P (Z > 1−
p− pC

P (FC(C) = 1− pC)

)
,

that is,

1

p

(
pCP (T = 1/FC(C) > 1− pC) + (p− pC)P (T = 1/FC(C) = 1− pC)

)
,
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which is M̃(C,T )(p).

This result (i.e. M̃(C,T )(p) = P (T = 1/Ap)) is key to compute the sample
alternative accumulated curve of any classifier C at any point p, since it
means that M̃(C,T )(p) is a population proportion. Roughly speaking, the

sample version of M̃(C,T )(p) is the proportion of ones of the target T in the
sample counterpart of Ap = {FC(C) > 1− pC} ∪ {FC(C) = 1− pC , Z > kp}.
Note that such a sample set is easy to calculate for a sample drawn from
(C, T ). Basically, for a value p, we should obtain the sample value of pC

using the empirical distribution function of the sample of C (note that one
minus such a value is the first value greater or equal to 1− p which belongs
to the image of the empirical distribution function).

The sample version of Ap is given by those individuals in which the value
of the classifier at the empirical distribution function of C is greater than
one minus the sample version of pC (this corresponds to (FC(C) > 1− pC)),
and for those individuals in which the equality holds (that corresponds to
(FC(C) = 1 − pC)), they are included or not using the value of the random
variable Z (Z > kp or not).

This approach has a double advantage. On the one side, it permits to
calculate the sample value of M̃(C,T )(p) easily. On the other hand (and ex-
tremely important for our purposes), it permits the inferential comparison of

the values M̃(Ci,T )(p) and M̃(Cj ,T )(p) for any two classifiers Ci and Cj , since
that inferential procedure is reduced to a simple comparison of two propor-
tions (note that M̃(C,T )(p) is the probability that a Bernoulli variable assumes
value 1 in the subgroup of the population Ap).

Thus, for each division of the testing group, the sample alternative ac-
cumulated improvement curves M̃(Ci,T ) and M̃(Cj ,T ) were obtained at the
corresponding values of p with the above procedure, that is, by means of
the proportions of purchasers of a home insurance in the corresponding sub-
groups. Therefore, for the comparison of two classifiers Ci and Cj, we have

100 pairs of sample values of M̃(Cj ,T ) and M̃(Ci,T ).
We aim to analyze:
- if Ci and Cj are equally efficient to detect purchasers of home insurances,

equivalently, (Ci, T ) ∼M̃
(Cj, T ), that is, M̃(Ci,T ) = M̃(Cj ,T ),

- if Ci is more efficient than Cj to predict purchasers of home insurances,

this is the same as (Cj, T ) �
M̃

(Ci, T ), or M̃(Cj ,T ) ≤ M̃(Ci,T ) (in the event of
rejection of the same efficiency).

In relation to the same efficiency problem, for each division of the testing
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group, we considered tests for the equality of the alternative accumulated
improvement curves of both classifiers at the values of p. The null hypothesis
of those tests is H0 : M̃(Ci,T )(p) = M̃(Cj ,T )(p). Note that this is a test for the
equality of two independent proportions.

We obtained 20 p-values associated with the 20 values of p (from 0.05 to

1 with a step of 0.05). As a summary p-value of the hypothesis M̃(Ci,T ) =

M̃(Cj ,T ), we took the smallest one among the 20 p-values, that is, the p-

value showing more evidence that the relation M̃(Ci,T ) = M̃(Cj ,T ) is false.
As usual, a Bonferroni correction to reduce the chances of obtaining false-
positive results was considered. Taking the usual level of significance α =
0.05, p-values should be compared with 0.05/20.

Therefore, we obtained 100 p-values, one for each division of the testing
group. As a representative p-value for the null hypothesis M̃(Ci,T ) = M̃(Cj ,T ),
we considered the median p-value.

Table 1 shows our inferential conclusions. For ease of reading, it contains
representative p-values multiplied by 20 (to be compared with 0.05 because
of Bonferroni correction). For each row (Ci) and each column (Cj), the table

displays p-values×20 for the null hypothesis M̃(Cj ,T ) = M̃(Ci,T ).
We conclude that classifiers C1 and C3 are equally useful to predict pur-

chasers of a home insurance. Classifiers C7 and C8 have also the same per-
formance. On the other hand, there are not two other classifiers at the same
level in the alternative accumulated improvement curve stochastic order.

In relation to the more efficient classifier issue, that is, the tests with
null hypothesis H0 : M̃(Cj ,T ) ≤ M̃(Ci,T ), we followed the same steps. In this
case, we used a test for the comparison ≤ of two independent proportions at
each value of p. Table 2 contains our results. For each row (Ci) and each
column (Cj), we have the representative p-value multiplied by 20 (Bonferroni

correction) for the null hypothesis M̃(Cj ,T ) ≤ M̃(Ci,T ).
Inferential results can be summarize as follows:

• (C6, T ) �
M̃

(C5, T ) �
M̃

(C4, T ) �
M̃

(C2, T ) �
M̃

(C3, T ) ∼M̃
(C1, T )

• (C6, T ) �
M̃

(C5, T ) �
M̃

(C8, T ) ∼M̃
(C7, T ) �

M̃
(C3, T ) ∼M̃

(C1, T )

Inferential conclusions say that C1 and C3 are the best classifiers to predict
purchasers of a home insurance and they are equally useful.

Classifier C6 is worse than the rest of classifiers. Classifier C5 is better
than classifier C6, but worse than the remaining classifiers. C4 is better than
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C5 and worse than C2 and C1 and C3. Classifier C2 is worse than C1 and C3.
Finally, C7 and C8 are similar for our purposes, worse than C1 and C3 and
better than C5.

The diagram in Figure 1 represents the inferential conclusions. An arrow
from (Cj, T ) to (Ci, T ) means that Ci shows a better performance than Cj

to predict target T . Arrows which correspond to relations which can be
obtained from the diagram applying transitivity, are omitted.

It is very interesting to remark that C1 and C3 are the best classifiers
to predict purchasers of a home insurance, being equally effective. Recall
that they are constructed with the same pattern, namely, decision tree, 2
branches per division, maximum depth of 6 and minimum size of leaf equals
to 5.000 clients. However, C1 uses all the variable (58), and C3 only three
variables (assets, number of bank products and age). Obviously, from an
applied point of view, we should use classifier C3 since its computing cost is
much smaller than the cost of classifier C1. On the other hand, the inferential
results reinforce the opinion of the experts of the bank, which believe that
assets, number of bank products and age, are relevant variables to predict
purchasers of a home insurance.

The graphical representation of the sample alternative accumulated im-
provement curves of the eight classifiers appears in Figure 2. Those sample
mappings were obtained with the whole testing group. Such mappings were
calculated at the corresponding 20 values of p. They were depicted by means
of interpolation. Observe that the curves of classifiers C1 and C3 are above the
remaining curves in most points. Of course, that representation only permits
to envisage possible relations among classifiers, and an inferential procedure
(as the one previously developed) is necessary to draw conclusions.

We would like to emphasize that the proposed method in the present
manuscript has been used by Liberbank to compare the performance of dif-
ferent classifiers.

From a computational point of view, all the calculations were carried out
with the software SAS (SAS Base, SAS Stat and SAS Enterpriser Miner).

7 Simulation study

In this section, we develop a simulation study to ‘validate’ the procedure
proposed in the manuscript to compare classifiers. That analysis is as follows.

Given a random variable W , let QW
α stand for the quantile of order α of
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the variable W , with α ∈ (0, 1).
Let (C1, T ) be a modelling vector such that the conditional distribution of

T given that C1 = c is Bernoulli with parameter exp(c)/(1+ exp(c)) (inverse
logit transformation of c).

Consider the following classifiers for the estimation of the target T :

• Classifier 1 (C1): C1 follows uniform distribution on the interval (−4, 0),

• Classifier 2 (C2): with C2 = −4I
(−∞,Q

C1

0.5)
(C1) +QC1

0.5I[QC1

0.5,+∞)
(C1),

• Classifier 3 (C3): with C3 = −4I
(−∞,Q

C1

0.25)
(C1) + QC1

0.25I[QC1

0.25,Q
C1

0.5)
(C1) +

QC1

0.5I[QC1

0.5,Q
C1

0.75)
(C1) +QC1

0.75I[QC1

0.75,+∞)
(C1),

• Classifier 4 (C4): where C4 is given by C4 = −4I
(−∞,Q

C1

0.125)
(C1) +

QC1

0.125I[QC1

0.125,Q
C1

0.25)
(C1) +QC1

0.25I[QC1

0.25,Q
C1

0.375)
(C1) +QC1

0.375I[QC1

0.375,Q
C1

0.5)
(C1) +

QC1

0.5I[QC1

0.5,Q
C1

0.625)
(C1) + QC1

0.625I[QC1

0.625,Q
C1

0.75)
(C1) + QC1

0.75I[QC1

0.75,Q
C1

0.875)
(C1) +

QC1

0.875I[QC1

0.875,+∞)
(C1).

Note that C2, C3 and C4 are stepwise functions of C1, where the steps are
constructed by means of different quantiles of C1. In the case of C2, using
the median of C1, C3 by means of the quantiles of order 0.25, 0.5 and 0.75,
and with the quantiles of order 0.125, 0.25, 0.375, 0.5, 0.625, 075 and 0.875
in the case of C4.

Roughly speaking, C4 is constructed by means of C1 with a loss of in-
formation, C3 is designed using C1 with a loss of information ‘greater’ than
that of C4 since we use an smaller number of quantiles of C1. In the case of
C2, the loss of information is even ‘greater’ since it uses only one quantile,
the median of C1.

As a consequence, any coherent rating system should provide the following
ordering: C1 is better than C4 (not worse), C4 better than C3, and this
should be better than C2. With the alternative accumulated improvement
curve stochastic order, we should obtain the relation

(C2, T ) �
M̃

(C3, T ) �
M̃

(C4, T ) �
M̃

(C1, T ).
We aim to analyze if such an assumption can be ‘validated’ by means of

simulation.
For such a purpose, we have simulated a database with one million of

observations of (C1, T ) and thus, a million of observations of (C2, T ), (C3, T )
and (C4, T ).
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Applying the procedure explained in Section 6, we have obtained the
sample version of M̃(C1,T ), M̃(C2,T ), M̃(C3,T ) and M̃(C4,T ). Recall that those
sample mappings are sample proportions.

Those sample alternative accumulated improvement curves were calcu-
lated in a mesh of twenty points (20 values of p), from 0.05 to 1, with a step
of 0.05, using the whole set of simulations.

The graphical representation appears in Figure 3. That picture seems to
corroborate the above relations among classifiers.

To derive a conclusion, we apply the inferential procedure described in
Section 6. Note that in this case, we have constructed explicit classifiers
(totally specified), and thus we do not need a training group. The whole
group of one million of simulations was used for the inference issue.

Table 3 shows the inferential conclusions in relation to the problem of
same performance of the classifiers. It contains representative p-values mul-
tiplied by 20 (to be compared with 0.05 because of Bonferroni correction).
For each row (Ci) and each column (Cj), the table displays p-values×20 for

the null hypothesis H0 : M̃(Cj ,T ) = M̃(Ci,T ), that is, H0 : (Cj, T ) ∼M̃
(Ci, T ).

Thus, we conclude that there are not two classifiers at the same level in
the alternative accumulated improvement curve stochastic order. Any two
classifiers show a different performance to predict target T .

About the more efficient classifier problem, that is, the tests with null
hypothesis H0 : M̃(Cj ,T ) ≤ M̃(Ci,T ), equivalently, H0 : (Cj, T ) �

M̃
(Ci, T ),

Table 4 contains the results. For each row (Ci) and each column (Cj), it
includes the representative p-value multiplied by 20 (Bonferroni correction).
As a consequence, our simulation study leads to the conclusion (C2, T ) �

M̃

(C3, T ) �
M̃

(C4, T ) �
M̃

(C1, T ).
Thus, the simulation study ‘corroborates’ the appropriate behaviour of

the new technique for the comparison of classifiers.
To conclude, observe that T is positively regression dependent on C1.

Note that

P (T ≤ t/C1 = c) =





1 if t ≥ 1,
1− ec

1+ec
if t ∈ [0, 1),

0 if t < 0,

and so, P (T ≤ t/C1 = c) is decreasing in c for any t. Applying Proposition

5.8, we conclude that M̃(C1,T ) is decreasing. Therefore, it is expected that
the sample version of such a curve is decreasing. Observe that such a sample
mapping is decreasing (see Figure 3).
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Appendix: some proofs and auxiliary results

This appendix contains the proofs of some results in the manuscript.

Proof of Proposition 3.4. Note that FX(F−1
X (1− p)) = 1− p if and only if 1− p ∈

Im(FX) (see Proposition 1 in Shorack and Wellner (1986)), which implies that
pX = p. The converse is trivial.

Proof of Proposition 3.5. Note that P (FX(X) > 1 − pX) = 1 − P (FX(X) ≤
1−pX) = 1− (1−pX) = pX since 1−pX ∈ Im(FX) (see, for instance, Proposition
2 in Shorack and Wellner (1986)).
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The proof of Proposition 3.6 is based on the following result.
Lemma A.1. Let X be a random variable and p ∈ (0, 1]. Then, p ∈ Im(FX) and
there exists ε > 0 such that (p − ε, p) ∩ Im(FX) = ∅, if and only if, P (FX (X) =
p) > 0.

Proof. Assume that p ∈ Im(FX) and there exists ε > 0 such that (p − ε, p) ∩
Im(FX) = ∅. Take ap = F−1

X (p). Note that FX(ap) = p (see, for instance, Propo-
sition 1 of Shorack and Wellner (1986)). Observe that FX(a−p ) < FX(ap), thus
0 < P (X = ap) ≤ P (FX(X) = p).

Conversely, let us suppose that P (FX(X) = p) > 0. Therefore, p ∈ Im(FX)
and 0 < P (X = F−1

X (p)) (see, for instance, Proposition 3 of Shorack and Wellner
(1986)). So, FX(F−1

X (p))− FX((F−1
X (p))−) > 0. Thus, FX is left discontinuous at

F−1
X (p). If we take ε > 0 with ε < P (X = F−1

X (p)), then (p − ε, p) ∩ Im(FX) =
∅.

Proof of Proposition 3.6. We know that pX ≤ p. Let us suppose that pX < p. By
Proposition 3.4, we have that 1−p 6∈ Im(FX), and thus [1−p, 1−pX )∩Im(FX) = ∅.
This is a contradiction with Lemma A.1, which reads that P (FX(X) = 1− pX) >
0.

We state the following lemma to give a proof of Proposition 4.5.
Lemma A.2. Let X = (CX , TX) and Xn = (CXn , TXn), n ∈ N, be modelling

vectors such that CX is continuous and limnCXn = CX in distribution. For any

p ∈ (0, 1], we have that limn p
CXn = pCX .

Proof. The case p = 1 is clear, note that 1C = 1 for any random variable C. Let
p ∈ (0, 1). The distribution function FCX

is continuous, therefore 1−p ∈ Im(FCX
),

and so pCX = p.
Let us suppose that the result is false. Then, there exists ε > 0, such that for

any n0 ∈ N, there is n′
0 > n0 with |p

CXn′

0 − pCX | > ε. It is not a restriction to
suppose 1− p+ ε < 1 since 1− p < 1.

Let a ∈ R such that FCX
(a) = 1− p+ ε

2 . The existence of a is because FCX
is

continuous and 1− p+ ε
2 < 1. Since FCX

is continuous, by Polya’s Theorem (see,
for instance, Rao (1973)), we obtain that

lim
n

‖FCXn
− FCX

‖∞ = lim
n

sup
x∈R

|FCXn
(x)− FCX

(x)| = 0.

Thus, there exists m0 ∈ N with ‖FCXn
− FCX

‖∞ < ε/4 for any n ≥ m0. This
implies that for any n ≥ m0, it holds that

1− p+
ε

4
< FCXn

(a) < 1− p+
3

4
ε.

30



As a consequence, FCXn
(a) ≥ 1−pCXn since FCXn

(a) > 1−p (recall that 1−pCXn

is the first value greater or equal to 1 − p which belongs to Im(FCXn
)). Observe

that taking n0 ≥ m0, we obtain that

ε < |p
CX

n′

0 − pCX | = (1− p
CX

n′

0 )− (1− p) ≤ FCX
n′

0

(a)− (1− p) <
3

4
ε,

which is a contradiction. Thus, that limn p
CXn = pCX .

Proof of Proposition 4.5. By hypothesis, M̃Xm(p) ≤ M̃Ym(p) for any p ∈ (0, 1] and
any m ∈ N.

Note that

M̃Xm(p) =
1

p

(
pCXmP (TXm = 1/FCXm

(CXm) > 1− pCXm )

+(p− pCXm )P (TXm = 1/FCXm
(CXm) = 1− pCXm )

)
,

and M̃X(p) = P (TX = 1/FCX
(CX) > 1 − p) since pCX = p, observe that FCX

is
continuous.

Let us see that limm M̃Xm(p) = M̃X(p) and limm M̃Ym(p) = M̃Y (p) for any
p ∈ (0, 1], which proves the result.

The case p = 1 is trivial. Let p ∈ (0, 1).
By Lemma A.2, limm pCXm = p. Thus, we should prove that

lim
m

P (TXm = 1/FCXm
(CXm) > 1− pCXm ) = P (TX = 1/FCX

(CX) > 1− p).

Observe that for m large enough, pCXm < 1. Note that

P (TXm = 1/FCXm
(CXm) > 1− pCXm )

=
P (FCXm

(CXm) > 1− pCXm , TXm = 1)

P (FCXm
(CXm) > 1− pCXm )

.

Let us see that limm P (FCXm
(CXm) > 1− pCXm ) = P (FCX

(CX) > 1− p).
By Theorem 5.5 in Billingsley (1968), we have that limm FCXm

(CXm) = FCX
(CX)

in distribution, note that FCX
is continuous, and so, the sequence of distributions

{FCXm
}m tends to FCX

uniformly. We have that

P (FCXm
(CXm) ≤ 1− pCXm ) = FFCXm

(CXm )(1− pCXm )

= FFCXm
(CXm )(1− pCXm )− FFCX

(CX)(1− pCXm ) + FFCX
(CX )(1− pCXm ).
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Thus,

|FFCXm
(CXm )(1− pCXm )− FFCX

(CX )(1− pCXm )| ≤ ‖FFCXm
(CXm ) − FFCX

(CX )‖∞,

which vanishes as m tends to infinity since limm FCXm
(CXm) = FCX

(CX) in dis-
tribution and FFCX

(CX) is continuous. On the other hand,

lim
m

FFCX
(CX )(1− pCXm ) = FFCX

(CX)(1− p)

since FFCX
(CX) is continuous.

Now, let us prove that

lim
m

P (FCXm
(CXm) > 1− pCXm , TXm = 1) = P (FCX

(CX) > 1− pCX , TX = 1)

for any p ∈ (0, 1). Observe that

lim
m

F(FCX
(CX ),TX)(1− pCXm , 1/2) = F(FCX

(CX ),TX)(1− pCX , 1/2)

since F(FCX
(CX ),TX) is continuous in its first argument and limm pCXm = pCX .

Take the maps Lm, L : R → R, m ∈ N, with Lm(x) = F(FCXm
(CXm ),TXm )(x, 1/2)

and L(x) = F(FCX
(CX ),TX)(x, 1/2) for any x ∈ R. They are increasing, L is con-

tinuous, and for any x ∈ R we have that limm Lm(x) = L(x) since (x, 1/2) is a
continuity point of F(FCX

(CX ),TX). As a consequence, the sequence {Lm}m con-
verges uniformly to L in any compact interval. This implies that

lim
m

F(FCXm
(CXm ),TXm )(1− pCXm , 1/2) − F(FCX

(CX ),TX)(1− pCXm , 1/2) = 0

since limn p
CXm = p. Thus, we have obtained that

lim
m

F(FCXm
(CXm ),TXm)(1− pCXm , 1/2) = F(FCX

(CX),TX)(1− p, 1/2).

Now, observe that

P (FCXm
(CXm) > 1− pCXm , TXm = 1) = 1−

(
P (FCXm

(CXm) ≤ 1− pCXm )

+P (TXm = 0)− F(FCXm
(CXm ),TXm)(1− pCXm , 1/2)

)
,

and the same formula is satisfied by (FCX
(CX), TX), which leads to the proof of

the result.

We state the following lemma to prove Proposition 5.8.
Lemma A.3. Let X = (CX , TX) be a modelling vector such that TX is positively

regression dependent on CX . For any c1, c2 ∈ R, with c2 < c1, P (CX > c1) > 0
and P (CX ∈ (c2, c1)) > 0, it holds that
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i) P (TX = 1/CX > c1) ≥ P (TX = 1/CX ≥ c1) ≥ P (TX = 1/CX = c1),

ii) P (TX = 1/CX = c1) ≥ P (TX = 1/c1 > CX > c2),

iii) P (TX = 1/CX ≥ c1) ≥ P (TX = 1/CX > c2).

Proof of Lemma A.3. Since TX is positively regression dependent on CX , P (TX ≤
t/CX = c) is decreasing in c for any t. Thus, P (TX = 1/CX = c) = 1 − P (T ≤
0.5/CX = c) is increasing in c. Moreover, for any Borel subset B ⊂ R,

P (C−1
X (B), TX = 1) =

∫

B

P (TX = 1/CX = s) dPCX
.

Let us see i). It holds that

P (TX = 1/CX > c1) =
P (CX > c1, TX = 1)

P (CX > c1)

=

∫
(c1,+∞) P (TX = 1/CX = s) dPCX

P (CX > c1)
≥

∫
(c1,+∞) P (TX = 1/CX = c1) dPCX

P (CX > c1)

= P (TX = 1/CX = c1).

On the other hand, P (TX = 1/CX ≥ c1)

=
P (CX > c1)

P (CX ≥ c1)
P (TX = 1/CX > c1) +

P (CX = c1)

P (CX ≥ c1)
P (TX = 1/CX = c1).

Consider the mapping g : [0, 1] → R with g(α) = αP (TX = 1/CX > c1) + (1 −

α)P (TX = 1/CX = c1). Note that g(P (CX>c1)
P (CX≥c1)

) = P (TX = 1/CX ≥ c1). Since we

have proved that P (TX = 1/CX > c1) ≥ P (TX = 1/CX = c1), g is increasing.

Therefore, g(0) ≤ g(P (CX>c1)
P (CX≥c1)

) ≤ g(1), which proves i).

Let us analyze ii). Note that P (TX = 1/c1 > CX > c2)

=
P (CX ∈ (c2, c1), TX = 1)

P (CX ∈ (c2, c1))
=

∫
(c2,c1)

P (TX = 1/CX = s) dPCX

P (CX ∈ (c2, c1))

≤

∫
(c2,c1)

P (TX = 1/CX = c1) dPCX

P (CX ∈ (c2, c1))
= P (TX = 1/CX = c1).

In relation to iii), observe that

P (TX = 1/CX > c2) =
P (CX ≥ c1)

P (CX > c2)
P (TX = 1/CX ≥ c1)
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+
P (CX ∈ (c2, c1))

P (CX > c2)
P (TX = 1/CX ∈ (c2, c1)).

Let g : [0, 1] → R with g(α) = αP (TX = 1/CX ≥ c1) + (1 − α)P (TX =
1/CX ∈ (c2, c1)). By i) and ii), this mapping is increasing. Thus, we obtain

that g(P (CX≥c1)
P (CX>c2)

) ≤ g(1), which derives iii).

Proof of Proposition 5.8. Let p, p′ ∈ (0, 1] with p ≤ p′. Recall that pCX ≤ p′CX .
Case 1) Suppose that pCX = p′CX = p0 for some p0 ∈ (0, 1]. If p0 = 1, the

result is clear since p = p′ = 1. Suppose that p0 < 1. In this case, M̃X(p)

=
p0
p
P (TX = 1/FCX

(CX) > 1− p0) + (1−
p0
p
)P (TX = 1/FCX

(CX) = 1− p0),

and M̃X(p′)

=
p0
p′
P (TX = 1/FCX

(CX) > 1− p0) + (1−
p0
p′
)P (TX = 1/FCX

(CX) = 1− p0).

By Lemma A.3 i), P (TX = 1/FCX
(CX) > 1 − p0) ≥ P (TX = 1/FCX

(CX) =

1− p0), and p0/p ≥ p0/p
′, which implies that M̃X(p) ≥ M̃X(p′).

Case 2) Suppose that pCX < p′CX . Let m = P (FCX
(CX) = 1− pCX ). We have

that

M̃X(p) =
pCX

p
P (TX = 1/FCX

(CX) > 1− pCX )

+(1−
pCX

p
)P (TX = 1/FCX

(CX) = 1− pCX )

≥
pCX

pCX +m
P (TX = 1/FCX

(CX) > 1− pCX )

+
m

pCX +m
P (TX = 1/FCX

(CX) = 1− pCX )

= P (TX = 1/FCX
(CX) ≥ 1− pCX )

since p ≤ pCX +m and P (TX = 1/FCX
(CX) > 1− pCX ) ≥ P (TX = 1/FCX

(CX) =
1− pCX ).

Since 1−pCX > 1−p′CX , by Lemma A.3 iii), P (TX = 1/FCX
(CX) ≥ 1−pCX ) ≥

P (TX = 1/FCX
(CX) > 1− p′CX ). Moreover, by Lemma A.3 i),

P (TX = 1/FCX
(CX) > 1− p′CX ) ≥

p′CX

p′
P (TX = 1/FCX

(CX) > 1− p′CX )

+(
p′ − p′CX

p′
)P (TX = 1/FCX

(CX) = 1− p′CX ) = M̃X(p′),
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which concludes the proof.

Proof of Proposition 5.9. Let p ∈ (0, 1). The continuity of CX implies that

M̃X(p) = P (TX = 1/FCX
(CX) > 1− p) =

P (FCX
(CX) > 1− p, TX = 1)

P (FCX
(CX) > 1− p)

=
P (CX > F−1

CX
(1− p), TX = 1)

P (CX > F−1
CX

(1− p))
=

Ĉ(FCX
(F−1

CX
(1− p)), q)

FCX
(F−1

CX
(1− p))

,

which leads to the result.

Proof of Proposition 5.10. Let X,Y ∈ Υ. Let ĈθX and ĈθY be survival copulas of
X and Y , respectively.

Let θ = min {θX , θY } and θ = max {θX , θY }. Let Z and Z be modelling vectors
of Υ such that their survival copulas are Ĉθ and Ĉθ, respectively.

It can be proved that ĈθX (p, q) ≤ Ĉθ(p, q) and ĈθY (p, q) ≤ Ĉθ(p, q) for any

p ∈ [0, 1]. Moreover, Ĉθ(p, q) ≤ ĈθX (p, q) and Ĉθ(p, q) ≤ ĈθY (p, q) for any p ∈ [0, 1].
In accordance with Theorem 5.6, we deduce that Z �

M̃
X, Z �

M̃
Y , X �

M̃
Z

and Y �
M̃

Z.
Let us see that Z is the infimum of X and Y in the order �

M̃
.

LetW ∈ Υ such thatW �
M̃

X andW �
M̃

Y . Let ĈθW be the survival copula

ofW . By Theorem 5.6, we have that ĈθW (p, q) ≤ ĈθX (p, q) for any p ∈ [0, 1]. Then,
q1−θW ≤ q1−θX and so θX ≥ θW . In the same way, we obtain that θY ≥ θW . Thus,
θW ≤ θ. By Theorem 5.6, W �

M̃
Z. Therefore, Z is the infimum of X and Y in

the order �
M̃

.

In identical manner, it is possible to see that Z is the supremum of X and Y
in the order �

M̃
.

Proof of Proposition 5.11. The result will be proved if we see that a survival
copula of a continuity modelling vector of Z, say ĈZ

CMV , is given by ĈZ
CMV (u, v) =

min {u, v} for any u, v ∈ [0, 1]. Observe that any copula C satisfies that C(u, v) ≤
min {u, v} (Frechet-Hoeffding bounds for copulas). Thus, Theorem 5.5 would lead
to the result.

It is not hard to see that

M̃Z(p) =

{
1 if 0 < p < q,
q
p

if q ≤ p ≤ 1.

Let Z ′ = (C ′
Z , T

′
Z) be a continuity modelling vector of Z. Observe that C ′

Z ∼st
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U(0,1) and T ′
Z ∼st B(q). Thus,

FC′

Z
(k1) =





0 if k1 ≥ 1,
1− x if 0 ≤ k1 < 1,
1 if k1 < 0,

and F T ′

Z
(k2) =





0 if k2 ≥ 1,
q if 0 ≤ k2 < 1,
1 if k2 < 0.

Take Z ′ the continuity modelling vector of Z constructed in Theorem 4.1. The
survival function of Z ′ is

FZ′(k1, k2) =





0 if k1 ≥ 1 or k2 ≥ 1,
(1− k1)MZ(1− k1) if 0 ≤ k1 < 1 and 0 ≤ k2 < 1,
1− k1 if 0 ≤ k1 < 1 and k2 < 0,
q if k1 < 0 and 0 ≤ k2 < 1,
1 if k1 < 0 and k2 < 0,

for any (k1, k2) ∈ R
2.

We should prove that FZ′(k1, k2) = min {FC′

Z
(k1), F T ′

Z
(k2)} for any k1, k2 ∈

R.
Note that when 0 ≤ k1 < 1, we have that

(1− k1)M̃Z(1− k1) =

{
1− k1 if 0 < 1− k1 < q,
q if q ≤ 1− k1 < 1,

which is equal to min {1− k1, q} = min {FC′

Z
(k1), F T ′

Z
(k2)}.

Therefore, ĈZ
CMV (u, v) = min {u, v} is a survival copula of Z ′, which proves

the proposition.

Proof of Proposition 5.12. It is sufficient to prove that a survival copula of a
continuity modelling vector of W , is given by ĈW

CMV (u, v) = max {u+ v−1, 0} for
any u, v ∈ [0, 1]. Note that any copula C satisfies that max {u+v−1, 0} ≤ C(u, v)
(Frechet-Hoeffding bounds for copulas).

It can be seen that

M̃W (p) =

{
0 if 0 < p < 1− q,
1
p
(p+ q − 1) if 1− q ≤ p ≤ 1.

Let W ′ = (C ′
W , T ′

W ) be the continuity modelling vector of W defined in Theo-
rem 4.1.

Observe that when 0 ≤ k1 < 1 and 0 ≤ k2 < 1,

FW ′(k1, k2) = (1− k1)M̃W (1− k1) =

{
q − k1 if 0 < k1 ≤ q,
0 if q < k1 < 1,
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that is, max {q−k1, 0} = max {1−k1+ q−1, 0} = max {F (1−TZ )′(k1)+F T ′

Z
(k2)−

1, 0}, which leads to FW ′(k1, k2) = max {FC′

W
(k1) + F T ′

W
(k2) − 1, 0} for any

k1, k2 ∈ R, and so to the result.

Proof of Proposition 5.13. Let pk = P (C > k). Thus, 1 − pk ∈ Im(FC) and
p − pk = P (C = k) = P (FC(C) = 1 − pk). Observe that pk = pC . Note that the
events (FC(C) > 1− pC) and (C > k) are equal a.s., and the same holds with the
events (FC(C) = 1− pC) and (C = k). Therefore,

HC(p) =
1

q
(pCP (T = 1/FC(C) > 1− pC) + (p − pC)P (T = 1/FC (C) = 1− pC))

=
1

q
P (FC(C) ≥ 1− pC , T = 1) =

1

q
P (C ≥ k, T = 1) = Sens(k).

Thus, (p,HC(p)) = (p, Sens(k)) = (P (C ≥ k), Sens(k)).

In relation to ii), note that pC
C

= pC , and so, HC(p
C) = pC

q
P (T = 1/FC (C) >

1 − pC). On the other hand, HC(p
C + m) = 1

q
(pCP (T = 1/FC(C) > 1 −

pC) + mP (T = 1/FC(C) = 1 − pC)). Thus, we conclude that HC(p) = (1 −
p−pC

m
)HC(p

C) + p−pC

m
HC(p

C +m).
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Tables

C1 C2 C3 C4 C5 C6 C7 C8

C1 - 0,00 0,28 0,00 0,00 0,00 0,00 0,00
C2 - - 0,00 0,00 0,00 0,00 0,00 0,00
C3 - - - 0,00 0,00 0,00 0,00 0,00
C4 - - - - 0,00 0,00 0,00 0,00
C5 - - - - - 0,03 0,00 0,00
C6 - - - - - - 0,00 0,00
C7 - - - - - - - 0,17
C8 - - - - - - - -

Table 1: For each row (Ci) and each column (Cj), the representative p-

value×20 (Bonferroni correction) for the null hypothesis M̃(Cj ,T ) = M̃(Ci,T ) is
displayed (Section 6).

C1 C2 C3 C4 C5 C6 C7 C8

C1 - 1,00 1,00 1,00 1,00 1,00 1,00 1,00
C2 0,00 - 0,00 1,00 1,00 1,00 0,00 0,00
C3 0,27 1,00 - 1,00 1,00 1,00 1,00 1,00
C4 0,00 0,00 0,00 - 1,00 1,00 0,00 0,00
C5 0,00 0,00 0,00 0,00 - 1,00 0,00 0,00
C6 0,00 0,00 0,00 0,00 0,02 - 0,00 0,00
C7 0,00 0,00 0,00 0,00 0,47 0,32 - 0,20
C8 0,00 0,00 0,00 0,00 0,26 0,14 0,89 -

Table 2: For each row (Ci) and each column (Cj), the representative p-

value×20 (Bonferroni correction) for the null hypothesis M̃(Cj ,T ) ≤ M̃(Ci,T ) is
displayed (Section 6).
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C1 C2 C3 C4

C1 - 0,00 0,00 0,00
C2 - - 0,00 0,00
C3 - - - 0,00
C4 - - - -

Table 3: For each row (Ci) and each column (Cj), the representative p-

value×20 (Bonferroni correction) for the null hypothesis M̃(Cj ,T ) = M̃(Ci,T ) is
displayed (Section 7).

C1 C2 C3 C4

C1 - 1,00 1,00 1,00
C2 0.00 - 0,00 0,00
C3 0.00 1.00 - 0,00
C4 0.00 1.00 1.00 -

Table 4: For each row (Ci) and each column (Cj), the representative p-

value×20 (Bonferroni correction) for the null hypothesis M̃(Cj ,T ) ≤ M̃(Ci,T ) is
displayed (Section 7).
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Figures
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(C4,T)

(C6,T)

Figure 1: Diagram of classifiers for the alternative accumulated improvement
curve stochastic order. An arrow from (Cj , T ) to (Ci, T ) means that Ci shows
a better performance than Cj (Section 6).
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Figure 2: Sample alternative accumulated improvement curves of the classi-
fiers, depicted with the whole validation group (Section 6).
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Figure 3: Sample alternative accumulated improvement curves of the classi-
fiers, depicted with the whole set of simulations (Section 7).
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