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Potential-Based Efficiency Assessment and Target Setting 

 

Abstract 

In this paper, a new approach to the problem of efficiency assessment is presented, one that 

comes from applying a Physics analogy so that each feasible operating point is assigned an 

Efficiency Potential, i.e. a real value that decreases if the inputs are reduced and/or the outputs 

are increased. The gradient of that efficiency potential at any operating point points to the less 

input, more output region. For each Decision Making Unit (DMU) the minimum efficiency 

potential in that region is computed. The proposed Potential-Based Measure of efficiency (PBM) 

is computed as the ratio of that minimum efficiency potential and that of the DMU. A minimum 

efficiency potential target setting model is also formulated to identify a closest minimum 

efficiency potential target. The proposed approach can take into account undesirable outputs, 

nondiscretionary variables and preference structures. The method has been applied to a container 

shipping lines dataset. 

Keywords: DEA; efficiency potential; potential-based efficiency measure; closest target; 

container shipping lines 

1. Introduction 

Data Envelopment Analysis (DEA) is a well-known non-parametric method for assessing the 

relative efficiency of a set of homogeneous organizational units (usually termed Decision 

Making Units, DMUs). These DMUs are assumed to consume different inputs and produce 

different outputs. DEA only uses the information about the amount of each input consumed by 

each DMU and the amount of each output produced by each DMU. With the observed data and 

some standard assumptions (like envelopment of observed data, free disposability and convexity) 

an appropriate Production Possibility Set (PPS) is inferred (for more details see Cooper et al. 

2006). This PPS contains all the operating points that are deemed feasible. The non-dominated 

subset within the PPS is called its efficient frontier, also called strong-efficient frontier. 

For each DMU, an appropriate DEA model is used to project it onto the efficient frontier and 

compute an efficiency score. There are different DEA models leading to different 

efficiency/inefficiency measures. Table 1 lists some commonly used efficiency measures, 
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together with their main features. The list includes the oriented radial efficiency measures 

computed by the CCR (Charnes et al. 1978) and BCC (Banker et al. 1984) DEA models, the 

oriented non-radial Russell (NRRM, Färe and Lovell 1978), the hyperbolic efficiency measure 

(Färe et al. 1985), the Russell graph measure of efficiency (RGM, Färe et al. 1985), the enhanced 

Russell graph efficiency measure (ERGM, Pastor et al. 1999) and its equivalent slacks-based 

measure of efficiency (SBM, Tone 2001), the directional distance function (Chambers et al. 

1996), the measure of efficiency proportions (MEP, Cooper and Tone 1997) and its equivalent 

measure of efficiency dominance (MED, Bardhan et al. 1996), the range adjusted measure of 

efficiency (RAM, Cooper et al. 1999), the geometric distance function (GDF, Portela and 

Thanassoulis 2007), slacks-based inefficiency measure (SBI, Fukuyama and Weber 2009), the 

range directional measure (RDM) and the slack-free multidirectional efficiency analysis measure 

of efficiency (MEA) (Asmild and Pastor 2010) and the epsilon-based measure of efficiency 

(EBM, Tone 2010). 

As can be seen in Table 1, most efficiency measures are non-radial and result from linear 

optimization models. Practically all the efficiency measures considered are units invariant 

although only a few are also translation invariant. Most of these efficiency measures are 

comprehensive except the radial CCR and BCC, the oriented NRRM, the hyperbolic efficiency 

and the DDF, all of which do not exhaust all input and output slacks. Not all the efficiency 

measures are reference-set independent, usually because they involve statistics covering the 

whole dataset (like the input and output ranges or the ideal point, for example). In the case of 

DDF and SBI, this property, as well as others, depends on the specific direction vector 

considered (see Wang et al. 2017 for a review of the different methods of selecting the direction 

vector in DDF). Almost all efficiency measures are normalized scores but only a few, namely 

RGM, ERGM/SBM and GDF, are strongly monotonic in inputs and outputs.
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========================== Table 1 =========================== 

The Potential-Based Measure of efficiency (PBM) proposed in this paper is based on the 

efficiency potential, which translates the Potential Field concept, common in Physics, to the PPS 

context. This analogy allows defining Efficiency Filed Vectors, Efficiency Field Lines, 

isopotential surfaces, etc. (see Lozano and Calzada-Infante, 2018) and, in particular, allows 

computing an efficiency score for each point in the PPS. Thus, the gradient of the efficiency 

potential at a given DMUo points to the less input, more output region. All the points in that 

region have a lower efficiency potential than DMUo. The larger the input reduction and the 

output increase, the larger the reduction in the efficiency potential achieved. It seems natural to 

compute the minimum efficiency potential in that region and to measure the efficiency as the 

corresponding relative reduction of the efficiency potential from DMUo. Such a PBM efficiency 

score is non-radial, non-linear, units invariant, comprehensive, reference-set dependent, 

normalized and strongly monotonic in inputs and outputs. Also, since the minimum efficiency 

potential (MEffP) optimization model may have alternative optima, an approach similar to Zofio 

et al. (2013) to select the closest (using weighted Euclidean distance) MEffP operation point is 

proposed for target setting. 

Interestingly, although having its origin in a Physics analogy, the proposed potential-based 

measure of efficiency has a functional form that relates it to two existing DEA efficiency 

measures, namely the enhanced Russell graph measure of efficiency (ERGM) (a.k.a. slacks-

based measure of efficiency, SBM) and the geometric distance function (GDF). Thus, while 

ERGM (and equivalently SBM) maximizes the ratio of the average relative input reduction to the 

average relative output increase and GDF maximizes the ratio of the geometric mean of the 

relative input reductions to the geometric mean of the relative output increases, PBM maximizes 

the ratio of the product of the relative input reductions to the product of the relative output 

increases. In all cases, larger relative input reductions and relative output increases (i.e. larger 

margin for input and output improvement) lead to lower efficiency scores. 

The structure of the paper is the following. Section 2 introduces the efficiency potential and 

presents the proposed PBM efficiency score, illustrating it with a simple example. Section 3 

extends the PBM approach to situations in which non-discretionary inputs or outputs, 
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undesirable outputs or a preference structure is present. Section 4 presents the target setting 

model for selecting the closest MEffP operating point. Section 5 applies the proposed approach 

to assess the efficiency of 18 container shipping lines. Finally, Section 6 summarizes and 

concludes. 

2. Proposed PBM efficiency score 

The efficiency score proposed in this paper is based on the concept of efficiency potential, which 

is a novel concept inspired by the field potential concept commonly used in Physics. Same as an 

electric field potential can be assigned to each point of the Euclidean space, in this analogy an 

efficiency potential is assigned to each point of the Production Possibility Set. This allows 

defining equi-potential surfaces and efficiency field vectors perpendicular to the latter. Since the 

efficiency potential is monotonic in inputs and outputs, i.e. it increases if any input is increased 

or any output is decreased, all the operating points in the region that dominates a given DMU 

have less efficiency potential than that DMU. Among these, the operating points with the 

minimum efficiency potential are guaranteed to be efficient and therefore potential targets for the 

DMU being assessed. It seems natural also, and that is the potential-based efficiency score, to 

measure the efficiency of the DMU in terms of the corresponding reduction in the efficiency 

potential. This is because if the inputs of the DMU can be significantly reduced or its outputs 

significantly increased then the minimum efficiency potential would be much lower than that of 

the DMU and its potential-based efficiency score will be low. And the opposite, if the inputs of 

the DMU can only be slightly reduced and its outputs only slightly increased then the reduction 

of the efficiency potential will also be small and hence its potential-based efficiency score will 

be high. 

In order to make the efficiency potential dimensionless we have normalized the input and output 

variables. This is equivalent to defining the efficiency potential on the Production Possibility Set 

defined with these normalized inputs and outputs. Although other normalization constants could 

have been used, we used the average inputs and outputs, which, according to the definition of the 

efficiency potential given by equation (4), corresponds to assigning an efficiency potential of one 

to the average DMU. This seems a sensible choice. 
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2.1. Efficiency potential function 

In this section, we introduce the efficiency potential function. Assume we have data about 

DMU ( {1,..., })j j n  that produces output vector 1( )s
j kj ky y   consuming input vector 

1( )m
j ij ix x  . We assume that ˆ ˆ0 , 0ij kjx y   for all i, j and k. This assumption guarantees that the 

efficiency potential function, defined below, is always a positive number. The Production 

Possibility Set (PPS) constructed based on envelopment, convexity and Variable Returns to 

Scale (VRS) assumptions is 

t{( , ) | , , 1, 0}     VRS m sT x y R x X y Y e     (1) 

where e refers to unit vector. Note that, although in this paper we assume VRS, the proposed 

approach can be applied, with the corresponding changes, to any other returns to scale 

assumption. In particular, for Constant Returns to Scale (CRS) it is sufficient to drop the 

convexity constraint 1te  . We assume VRS so that the extension of the proposed approach to 

undesirable outputs (presented in section 3.2) considers that case, which is more difficult to 

model than the CRS case. 

Using the average input and output values aver
ix  and aver

ky  we may define the dimensionless 

variables 

aver aver
ˆ ˆ     

ij kj
ij kj

i k

x y
x i j y k j

x y
 (2) 

which leads to the following dimensionless PPS 

ˆ ˆ ˆˆ ˆ ˆ ˆ{( , ) | , , 1, 0}    VRS tT x y x X y Y e     (3) 
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in which 1ˆ ˆ( )m
i ix x   and 1ˆ ˆ( )  s

k ky y . Note that there is a one-to-one correspondence between 

VRST  and ˆVRST . The following potential function is defined on every point of the PPS 

( , ) 
 VRS m sx y T R 1 as follows 

1/( + ) 1/( + )

aver
1 1

aver
1 1

ˆ

( , )

ˆ

 

 

   
   
   

    
   

  
  

 

 

m s m s
m m

i
i

i i i
s s

k
k

k kk

x
x

x
P x y

y
y

y

 (4) 

Note that this function is units invariant. It assigns to each feasible operating point a value so 

that: if any input is decreased, the efficiency potential decreases and if any output is increased, 

the efficiency potential decreases. Although this is not essential, note that the specific 

normalization used in (4) implies that the efficiency potential of the average DMU is 1. 

As regards taking the m+s root in the efficiency potential definition (4), the idea is to compute 

the joint geometric mean of the normalized inputs and outputs. We use a joint geometric mean 

for symmetry. Otherwise, as it happens with GDF, which computes geometric means for the 

inputs and outputs separately (see Section 2.3), the treatment of the inputs and output variables is 

not symmetric as it depends on the number of each of these types of variables.  

2.2. MEffP DEA model and PBM efficiency 

Let DMUo be the DMU whose efficiency is to be assessed. Its corresponding efficiency potential 

is ( , )o o oP P x y . Let us consider the region of the PPS that dominates DMUo. We can compute 

the minimum efficiency potential (MEffP) within that region solving 

                                                           

1 {( , ) : ( , ) 0}m s m sR x y R x y 
     
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MEffP DEA model 

 * 1

1

1

1

1

ˆ

ˆ

ˆ ˆ ˆ. . 1,..., ,

ˆ ˆ ˆ 1,..., ,

1,

0














  

  



 











m

i
m s

i
o s

k

k

n

j ij i io
j

n

j kj k ko
j

n

j
j

j

x

P min

y

s t x x x i m

y y y k s

j









 

(5) 

Note that the objective function of model (5) is not the efficiency potential but its m+s power. 

Since the power function is monotonic it is equivalent to minimize the efficiency potential or the 

efficiency potential raised to its m+s power. Even with this simplification, the above model is 

still a linearly constrained nonlinear problem that can be solved using common global 

optimization packages like LINGO or GAMS. In particular, for the case study presented in 

Section 5, the solver that we chose for GAMS to solve this model was “Convex Over and Under 

ENvelopes for Nonlinear Estimation (Couenne)” which is an open source library for solving 

global optimization problems. 

Let 
* *ˆ ˆ( , )x y  be an optimal solution of model (5), which corresponds to the operating point 

* * averˆ  i i ix x x i , * * averˆ  k k ky y y k . The MEffP among all points that dominate DMUo is 

* * *( , )oP P x y . The proposed Potential-Based Measure of efficiency (PBM) of DMUo is 

computed as: 

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Global_optimization
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1/( ) 1/( )*
*

aver
1 1

*
*

aver* * *
1 1

1/( + ) 1/(

aver
1 1

aver
11

ˆ

ˆ
( , )

( , )

ˆ

ˆ

 

 

 

 



   
   
   
   
   
   
   

   
   
   
   
   
   

  
  

 

 

 



m s m sm m
i

i
i i i
s s

k
k

k k ko
o m s m

m mo o o
io

io

i ii
ss

ko
ko

kk k

x
x

x

y
y

yP P x y

P P x y
x

x
x

y
y

y


)s

 (6) 

2.3 Alternative PBM formulation and relation with GDF and ERGM 

Instead of computing the PBM score in two steps, first solving (4) and then applying (6), we can 

formulate the computation of o  directly. Since ˆ ˆ0 , 0io kox i y k     we can define variables 

1, 1i k    so that ˆ ˆ ˆ ˆ, y y     i i io k k kox x i k  . Thus  

1 1 1 1

1 1 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ

   

   



  



   

   

m m m m

i i io i io

i i i i
s s s s

k k ko k ko

k k k k

x x x

y y y

 

 

 (7) 

Hence, the reduction in the efficiency potential of point ( , )x y  with respect to ( , )o ox y  is 

1/( ) 1/( )

1 1 1

1 1 1 1
1/( ) 1/( )

1
1 1

1 1

ˆ ˆ

ˆ ˆ
( , )

( , )

ˆ ˆ

ˆ ˆ

 

  

   
 


 

 

   
   
   

   
   
   
   

  
   
   
   
   
   
   
   

  

   

 

 

m s m s
m m m

i i io

i i i
s s s m

k k ko i
k k k i

m s m s s
m mo o

k
io io

k
i i
s s

ko ko

k k

x x

y y
P x y

P x y

x x

y y



 



1/( )
 
 
 
 
 
 
 

m s

 
(8) 
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Therefore, since the PBM efficiency score o  corresponds to minimizing the ratio (8), we can 

solve model (9) instead of model (5) to obtain the PBM efficiency score directly. This requires 

the following change of variables ˆ ˆ ˆ ˆ, y y     i i io k k kox x i k   (so that 1, 1i k   ) as well as 

multiplying the input and output constraints by aver
ix  and aver

ky  respectively. 

PBM DEA model 

  1

1

1

1

1

. . 1,..., ,

1,..., ,

1,

0 1 1

m

i
m s i

o s

k

k

n

j ij i io
j

n

j kj k ko
j

n

j
j

j i k

min

s t x x i m

y y k s

j i k







 

 



  

 











  

  



     











 

(9) 

Same as (5) the above formulation has a non-linear objective function. The advantages of using it 

are that it produces the efficiency score directly, it shows that the PBM efficiency score is 

independent of the normalization coefficients used in the efficiency potential (4) and it facilitates 

the comparison with other DEA models like GDF and ERGM (see below). Also, upon the 

request of one of the reviewers, in the Appendix we derive the dual of model (9). 

Note that the proposed PBM efficiency score has the following properties (see Table 1 for 

comparison with other efficiency measures): 

 It is a normalized score, i.e. 0 1o  . Thus, since the constraints of model (5) impose 

ˆ ˆ ˆ ˆ0 , 0i io k kox x i y y k      , it follows that * *0 ( , ) ( , )o oP x y P x y   and therefore 

0 1o  . Analogously, the constraints in model (9) guarantee that 
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0 1 , 1i ki k       and therefore the corresponding optimal objective function 

value  0 1
m s

o


  . 

 1o  if and only if ( , )o ox y  is technically efficient. By definition, DMUO is efficient if 

and only if 1o  , which is equivalent to 
* *1 , 1i ki k      in model (9), i.e. no input or 

output can improve, and hence DMUO is technical efficient. 

 It is a comprehensive efficiency measure. Thus, the target computed by model (5) or 

model (9) is efficient and cannot improve any of its inputs or outputs any further. 

Otherwise, its efficiency potential could be reduced and hence it would not be optimal. 

 It is units invariant. Thus, equation (6) shows that the efficiency potential depends only 

on the normalized input and output values, which do not depend on their units of 

measurement. 

 It is strongly monotonic. A reduction in any input reduces the efficiency potential of the 

DMU and therefore increases its PBM efficiency score. Similarly, increasing any output 

reduces its efficiency potential and therefore increases its PBM efficiency score. 

Therefore, o  is strictly increasing in output quantities and decreasing in input quantities. 

This can also be seen in model (9), whose objective function is strictly increasing in i  

and strictly decreasing in k . 

 It is reference-set dependent. An efficiency measure is reference-set dependent if it is 

determined only by the reference set of the DMU concerned (Tone 2011). Thus, the PBM 

efficiency score of a DMU only depends on its efficiency potential and that of its 

corresponding minimum efficiency potential target. Although model (5) is sensitive to the 

normalization constants used to compute the dimensionless inputs and outputs, the PBM 

efficiency score (6) is not, as model (9) shows. In other words, although the efficiency 

potential uses the average input and output values, the PBM efficiency score does not 

depend on the value of those normalization constants. 

Note that the PBM DEA model above has a resemblance to the GDF DEA model (Portela and 

Thanassoulis 2007), which, for comparison, is formulated below. 
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GDF DEA model 

 
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j i k




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 



  

 

(10) 

It is easy to check that  GDF , o o ox y  . That is so because models (9) and (10) have the same 

feasibility region and therefore the optimal solution to model (9) is feasible in model (10). 

Denoting 
*
i  and 

*
k  the optimal values of those variables in model (9) and taking into account 

that 
* 1 i i  and 

* 1 k k , it follows that  

1 1/( )

* *

1 1
1

*
*

1
1

GDF ,



 




   
    

  
   
   
       

 



m m sm m

i i
i i

o o os s
s

k
k

k
k

x y

 





. 

It is also easy to check that  1 GDF , 1  o o ox y . Note that Portela and Thanassoulis (2007) 

did not propose solving the above GDF model to compute the corresponding efficiency measure. 

Instead they used the GDF efficiency score to decompose profit efficiency. 

The PBM DEA model also resembles, although somewhat less, the ERGM DEA model (Pastor et al. 

1999), which, for comparison, is also formulated below. Note that although, in principle, ERGM 

is a non-linear optimization model, unlike the PBM and GDF models, it can be linearized (Pastor 

et al. 1999). 
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ERGM DEA model 
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(11) 

2.4. Illustrative examples 

Consider the 1YY (i.e. two outputs and a single, constant input) dataset shown in Table 2. The 

table also shows the input and output vector of the average DMU and the efficiency potentials of 

all the DMUs. The isopotential curves ( , )P x y   for the 1YY case are 1 2
1 2 3




aver avery y
y y


. 

These are hyperbolas whose efficiency potential decreases as they move in the NE direction. 

Figure 1 shows two of those curves, one passing through DMU C and the other through DMU B. 

========================== Table 2 =========================== 

========================== Figure 1 =========================== 

As can be seen, the only inefficient DMU is C and its efficiency potential is ( , ) 1.298C CP x y . 

The MEffP computed by model (5) is * *( , ) 0.900P x y  , which corresponds to the efficiency 

potential of DMU B. Therefore, its PBM efficiency score is 
* *( , ) 0.900

0.693
( , ) 1.298

  C
C C

P x y

P x y
 . 
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Figure 1 helps to illustrate the proposed approach. Thus, it can be seen that the isopotential 

curves correspond to lower values of efficiency potential as they move north-east and that all the 

points in the region that dominates DMU C have lower efficiency potential. Actually, the more 

to the right and up an operating point is, the lower its efficiency potential. The MEffP 

corresponds to the isopotential curve that is tangent to the PPS, which occurs for DMU B. The 

output improvements from DMU C to DMU B lead, therefore, to the maximum reduction of the 

efficiency potential. And the PBM efficiency score, which reflects that reduction, measures the 

extent of those output improvements. 

Consider now the XY (i.e. single input, single output) dataset shown in Table 3 and plotted in 

Figure 2. The table also shows the input and output vector of the average DMU and the 

efficiency potentials of all the DMUs. For the XY case, the isopotential curves ( , )P x y   are 

straight lines 
2

 

aver avery x
y x


. These correspond to rays starting at the origin and whose 

slope increases as the efficiency potential decreases. Figure 2 shows two of those curves, one 

passing through DMU C and the other passing through DMUs A and B. The efficiency potential 

of DMU C is ( , ) 1.515C CP x y . The MEffP computed by model (4) is * *( , ) 0.787P x y  , 

which corresponds to the efficiency potential of both DMU A and DMU B. Note that, on 

purpose, we have considered the case in which there are multiple MEffP operating points. In 

fact, all the points in the segment C´B are MEffP and any of them can be the projection 

computed by models (5) or (9). The existence of alternative optima is dealt with in Section 4 and 

does not affect the PBM efficiency score, which is well defined. In particular, 

* *( , ) 0.787
0.519

( , ) 1.515
  C

C C

P x y

P x y
 . 

========================== Table 3 =========================== 

========================== Figure 2 =========================== 

In Figure 2, similar comments as in Figure 1 can be made. In this case, the isopotential curves, 

which are now straight lines passing through the origin, correspond to lower values of efficiency 

potential as they move north-west (i.e. in the direction of less input and more output). It is 
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apparent that the points in the region that dominates DMU C have lower efficiency potential than 

DMU C. As before, the MEffP corresponds to the isopotential curve that is tangent to the PPS, 

which occurs for the facet defined by DMUs A and B, which defines the Most Productive Scale 

Size section of the efficient frontier (Banker 1984). As indicated above, any of the operating 

points in the segment C’B can be chosen as all of them are MEffP. It may make sense, from a 

managerial point of view, to choose that point that is closest to the DMU being projected as this 

will minimize the effort required to attain efficiency. That will be dealt with in Section 4. 

3. Extensions of the proposed approach 

In this Section we will show how the proposed PBM can be extended to different situations. 

Although we will deal with each of these situations separately, in an actual application they can 

occur simultaneously. 

3.1. Non discretionary variables 

Let the set of inputs be formed by two subsets: discretionary ( DI ) and non-discretionary ( NDI ). 

Similarly, let DO  and NDO  be the corresponding discretionary and non-discretionary outputs. 

The efficiency potential is the same as before, i.e. 

1/( )

D ND

D ND

ˆ ˆ

( , )
ˆ ˆ



 

 

 
 
 
 
 
 

 

 

m s

i i

i I i I

k k

k I k I

x x

P x y
y y

 (12) 

Handling non-discretionary variables as per Banker and Morey (1986), the corresponding MEffP 

DEA model is 
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(13) 

Note, in the above formulation, the existence of some equality constraints. These are used to indicate that, 

for the non-discretionary inputs and outputs, the corresponding target is the observed value and hence it is 

not properly a decision variable. 

Using (6), the PBM efficiency score is then 

1/( ) 1/(
* * *

D ND D

* * *

* * * D ND D

D ND D

D ND D

ˆ ˆ ˆ

ˆ ˆ ˆ

( , )
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x x xP P x y

y y y


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 (14) 

The corresponding PBM DEA model is 
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(15) 

3.2. Undesirable outputs 

Let 1( ) 0
q

j bj bz z    the undesirable outputs produced by each DMU j. To construct the PPS in 

this case, we assume joint weak disposability of the desirable and the undesirable outputs and use 

Kuosmanen (2005) approach. Assuming non-uniform abatement factors for the different 

observed DMUs, as Kuosmanen (2005) proposes, is not only reasonable but also directly leads to 

a linear programming optimization model. Thus, we arrive at the following PPS 

VRS

1 1 1 1

{( , , ) | ( ) , , , ( ) 1, , 0}

   

          
n n n n

j j j j j j j j j j j
j j j j

T x y z x x y y z z         (16) 

An associated dimensionless PPS VRST̂  can analogously be defined. We can define the 

efficiency potential as the following function, defined on 
VRS  

 m s qT R  
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 (17) 

The above expression is the way the proposed PBM can be extended to handle undesirable 

outputs. Thus, in (17) the undesirable outputs are normalized, same as the inputs and the outputs. 

Also, they appear in the numerator because, same as the inputs, lower values of undesirable 

outputs are preferable and therefore lead to lower efficiency potential. Finally, the number of 

undesirable outputs is taken into account when computing the joint geometric mean of all the 

normalized variables, i.e. its m+s+q root. Therefore, (17) is a consistent and sound extension of 

the efficiency potential definition (4). 

The corresponding MEffP and PBM DEA models are 
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and the PBM efficiency score 
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3.3. Preference structure 

Let assume that the Decision Maker has a preference structure that assigns more weights to 

certain input and outputs. This may be given by a set of weights strictly positive weights 

( , )
yx

i kw w  such that 

1 1

1
m s

yx
i k

i k

w w

 

   . The corresponding efficiency potential can be defined as 
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Note that the efficiency potential (4) is a special case of (21) corresponding to 
1yx

i kw w i k
m s

   


. 

In this case it is better to compute the PBM efficiency score directly using the following model 
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(22) 

Note that model (22) is also a linearly constrained nonlinear problem and in principle should not 

be harder to solve to optimality than model (9). Note also that the GDF DEA model (10) is equal to 

the square root of the efficiency score (22) for the special case 
1 1

,
2 2

yx
i kw i w k

m s
    , in which 

1 1

1
m s

yx
i k

i k

w w

 

   . Therefore, the weighted version of the proposed approach can be said to include the 

GDF efficiency measure as a special case, one that gives the same importance to each input and the same 

importance to each output (but not the same importance to each input and output as the unweighted PBM 

efficiency measure does). In other words, GDF treats inputs symmetrically between themselves and the 

same with the outputs, but it does not give the same importance to an input as to an output. When there is 

a preference structure this (and any other weighting option) is valid but in the absence of a preference 
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structure we believe that it is more neutral and objective to give the same importance to each input and 

output, which the unweighted PBM efficiency measure does. 

4. MEffP target setting model 

As was seen in one of the illustrations of Section 2.4., the MEffP DEA model may have 

alternative optima which means that, although it can be used as is for computing the MEffP *
oP  

and the corresponding PBM efficiency score o , it requires some refining if it is to be used for 

target setting purposes. The idea is to use a secondary goal to select one among the MEffP 

operating points. This secondary criterion may be to minimize the distance to the DMU being 

projected. The literature on DEA approaches to compute closest efficient targets is abundant, 

dating back to Frei and Harker (1999). The reader is referred to Aparicio (2016) and Aparicio et 

al. (2017a, 2017b) for recent developments in the field as well as an up-to-date review of the 

literature on this topic. In particular what we propose is similar to what Zofio et al. (2013) use to 

select the closest target among the maximum profit operating points. Zofio et al. (2013) used 

Euclidean distance because they considered normalized direction vectors. Instead, in order to 

normalize the distance measure, we will use a weighted Euclidean distance, with weights 1/ iox  

for ith input and 1/ koy  for kth output. Thus, the distance between a DMUo and its corresponding 

target * *( , )o ox y  can be computed as 

* * * 2 * 2
2 2 2,2

1 1

* 2 * 2

1 1

1 1
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 (23) 

In order to compute the closest MEffP we can use a lexicographic approach in which we first 

solve model (9) and then, in a second phase, we minimize the weighted Euclidean distance 

objective function, imposing that optimal value as a constraint, i.e. 
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(24) 

This model has a quadratic objective function and one non-linear constraint. Note that the right-

hand side of the non-linear constraint is a constant, as o  has been previously computed using 

(9). Model (24) can be solved with GAMS and with solver Couenne as before. 

Note that instead of using the average values in equation (2), the median or any other typical 

value could be used to define the efficiency potential. However, this does not affect neither the 

PBM efficiency score computed with model (9) nor the MEffP targets computed with model 

(24). 

In Figure 3 we revisit the XY illustrative example of Table 3. Recall that all the points along the 

segment C´B are MEffP. Using (24) or (25) we can find the closest among those benchmarks. 

Specifically, for DMU C, its nearest MEffP operating point is * *( , ) (1.598,3.196)C Cx y  and its 

weighted l2 distance is equal to 0.705. Therefore, using * *( , )C Cx y  as target for DMU C means 

reducing its input from 5 to 1.598 (a 68% reduction) and increasing its output from 2.7 to 3.196 

(a 18.4% increase). This translates into a reduction of the efficiency potential from 1.515 to 

0.787, leading to a PBM efficiency score of 
0.787

0.519
1.515

 . Actually, among the efficient MEffP 
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operating points that dominate DMU C, * *( , )C Cx y  is the one that is closest and hence it should be 

easiest to reach as a target. 

========================== Figure 3 =========================== 

5. Case study 

In this section we apply the proposed approach to the 18 container shipping lines (CSLs) studied 

in Gutiérrez et al. (2014). This application considers three inputs (Labor, number of ships and 

fleet capacity, measured in Twenty-foot equivalent units, TEU) and two outputs: number of 

containers carried (in TEU) and turnover (in million USD). The dataset, together with the 

corresponding average DMU and efficiency potentials, are shown in Table 4. 

========================== Table 4 =========================== 

Gutiérrez et al (2014) showed that eight of the DMUs (namely Maersk, CSCL, OOCL, NYK, 

K_Line, HMM, Wan_Hai and Delmas) are technical efficient. The proposed PBM approach 

confirms that the MEffP targets of these 8 DMUs are themselves and therefore 

* *( , ) ( , ) o oP x y P x y   1o . For the inefficient DMUs, Table 5 shows the corresponding 

MEffP and PBM score computed using (5) and (6) and the optimal i  and k  variables and l2 

distance computed by model (24). The ranking of the inefficient DMUs derived from the PBM 

efficiency scores are also shown within parentheses. Thus, for example, MSC, which is the 

second largest CSL in the sample, can reduce its efficiency potential from 1.293 to a MEffP 

value of 1,059, which means a PBM efficiency score of 
1.059

0.819
1.293

 . In terms of the input and 

output improvements computed by the proposed approach it seems that most of the inefficiencies 

affect the inputs, with reductions of 23.6%, 26.6% and 30.5% for labor, number of ships and 

fleet capacity, respectively. A small increase of 5.6% in one of the outputs, namely Turnover, is 

also estimated. Even these improvements are relatively large, even larger improvements are 

computed for other DMUs, thus making MSC rank 4th among the inefficient DMUs. 

========================== Table 5 =========================== 



 

24 
 

For comparison, the GDF and ERGM scores and input and output improvements computed using 

(10) and (11) are also shown in Tables 6 and 7, respectively. Note that, as indicated in Section 2, 

the PBM efficiency score is always greater than (or at least equal to) the GDF efficiency score. 

Thus, for example, for MSC GDF is 0.704, which is lower than the PBM score (0.819). The 

ERGM score is slightly lower (0.691) and all three methods rank MSC 4th among the inefficient 

DMUs. The targets computed for MSC by the three methods are rather different, however. Thus, 

GDF estimates smaller input reductions (7.5%, 23% and 18.3% for labor, number of ships and 

fleet capacity, respectively) but a much larger increase in Turnover (40.7%). Something similar 

happens with the target computed by ERGM: the estimated input reductions are relatively small 

(1%, 20% and 15% for labor, number of ships and fleet capacity, respectively) and the estimated 

Turnover increase is rather large (54.7%). Interestingly, for MSC the three methods estimate a 

0% increase in the Containers carried output. In fact, all three methods coincide in that this 

output only has margin for improvement for two of the DMUs only, namely CSAV and 

Hamburg Süd. 

========================== Table 6 =========================== 

========================== Table 7 =========================== 

The ranking of the inefficient DMUs computed by PBM and GDF coincide, differing slightly 

with that of ERGM (Spearman rank order correlation coefficient = 0.964, significant at 0.01 

level, two-tailed test). Note also that all three methods identify more inefficiencies (and hence 

more potential for improvement) in the inputs than in the outputs. This can also be seen in Figure 

4, which shows, using parallel coordinates, the observed and corresponding target values for 

each inefficient DMUs. As can be seen, the efficiency score i  for the employees input for the 

COSCON DMU is very low in all three methods (0.047 for PBM, 0.076 for GDF and 0.105 for 

ERGM). This may be due to a mistake in the observed data for that DMU, which at 71,584 

employees is clearly an outlier. In any case, here we report the results for the dataset listed in 

Gutiérrez et al. (2014) and shown in Table 4. 

========================== Figure 4 =========================== 
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Finally, Table 8 shows, for each inefficient DMU, the intensity variables j  that determine the 

target computed by the proposed PBM approach. Thus, for example, the target computed by the 

proposed approach for MSC corresponds to combining, with a weight of practically 50% each, 

the largest DMU (Maersk) and a medium-sized efficient DMU (CSCL). Actually Maersk is only 

a reference for MSC and CMA_CGM, which are the second and third largest companies in the 

sample. Correspondingly, the smaller efficient companies (like HMM and Wan Hai) are used as 

benchmarks mainly for the smaller inefficient DMUs (like Hamburg Süd or YML). Some 

efficient DMUs, like Delmas and OOCL, are never used as benchmarks, indicating that they 

have singular operating points that do not serve as reference for the other DMUs. Note, finally, 

that the peer group of the inefficient DMUs is always formed by at most three benchmarks. 

========================== Table 8 =========================== 

6. Conclusions 

In this paper a new efficiency measure has been introduced. Although the mathematical 

formulation of the proposed PBM efficiency measure has similarities with some existing 

methods (like GDF or ERGM) its motivation is completely different. It consists in applying a 

Physics analogy so that each feasible operating point is assigned an Efficiency Potential, i.e. a 

positive value that is lower, the lower the input consumption and the higher the output 

production. The larger the input reduction and the output increase, the larger the Efficiency 

Potential reduction achieved. The proposed approach computes the MEffP associated to each 

DMU and the proposed PBM efficiency score is the ratio of the MEffP to the efficiency potential 

of the observed DMU. PBM can also be applied in non-discretionary variables, undesirable 

outputs and preference structure scenarios. An appropriate target setting DEA model has been 

also proposed for the case that there are multiple MEffP operating points.  

Note that we do not claim that the PBM efficiency score proposed in this paper has some 

advantages or is superior to existing, well-established efficiency scores like, for example, 

ERGM/SBM or GDF. The PBM efficiency score has, it is true, a number of interesting features 

such as normalization, efficiency indication, units-invariance, reference-set dependence and 

strong monotonicity, but so have also other efficiency measures. And, PBM has the drawback of 
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requiring solving a non-linear optimization model. Even so, the fact that PBM makes use of the 

novel concept of efficiency potential, which is based on a Physics analogy and presents a new 

perspective on efficiency assessment, makes it, in our opinion, a worthy proposal. The fact that 

the efficiency potential concept can be used with non-discretionary variables, and undesirable 

outputs, as shown in the paper, and may also be extended to fuzzy data, network DEA, etc. 

shows the flexibility and usefulness of this approach, which we believe is a promising research 

topic. 

The proposed approach has, nevertheless, some limitations, such as not being able to handle zero 

or negative data, nor integer variables. Some of these issues may also be topics for further 

research. 

Appendix 

In this section, the dual of model (9) is formulated. Thus, following Bazaraa et al. (1993),given a 

primal model: 

0

0

min f ( z )

s.t. g( z )

h( z )

z Z







 

its Lagrangean dual problem is 

0

00 free

*Max L ( u,u )

s.t. u , u
 

where  0 0 0
z Z z Z

L* (u,u ) inf L( z;u,u ) inf f ( z ) ug( z ) u h( z )
 

     and u  and 0u  are the dual 

variables corresponding to the inequality and equality constraints, respectively. 

The PBM model (9), where the dual variables associated to each constraint are indicated to its 

right, is reproduced below 
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In order to compute 0 0

0 m s,( , ) R
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and the dual of model (9) is 
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Solving this dual model seems to be harder than solving the primal model. In the special case 

1 0s m   , the objective function is linear and the dual of model (9) reduces to 
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As it is customary in DEA, the dual models above provide shadow prices for the inputs and 

outputs as well as the coefficients of the supporting hyperplane on which the efficient projection 
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lies. It is easy to see that in the optimum at least one of the constraints 
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Table 1. Summary of existing efficiency measures 

 Efficiency measures 

Properties CCR BCC NRRM Hyperbolic RGM ERGM DDF MED RAM GDF SBI RDM MEA EBM 

Radial   × × × × × × × × × × × × 
Non-radial × ×             

Linear    × ×   ×  ×     
Nonlinear × × ×   × ×  ×  × × × × 

Translation 

Invariance1 × 
2 


2 × ×  

3 ×  × 
3 

   

Units Invariance       
3    

3 
   

Comprehensive 

measure4 × × × ×   ×        

Reference-set 

dependence5       
3  ×  

3 × × × 

Normalized 

Score6       
3    ×    

Strong 

monononicity7 × × × ×   × × ×  
3 × ×  

Notes: 

1: For this property we assume VRS, except in the case of CCR. 

2: Input-oriented (output-oriented) is invariant w.r.t output (input) translation. 

3: It depends on the selected direction vector. 

4: The inputs or outputs cannot improve more. 

5: An efficiency measure is reference-set dependent if it is determined only by the reference set of the DMU concerned. It should not be influenced by statistics 

covering the whole data set.  

6: Normalized score: The measure is between zero and one. 

7: A technical efficient measure should be strictly increasing in output quantities and decreasing in input quantities.  
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Table 2. Data for 1YY illustrative example 

DMU A B C D Aver. DMU 

x  1 1 1 1 1.000 

1y  2 3 1.5 3.5 2.500 

2y  4 3 2 1.5 2.625 

 ,P x y  0.936 0.900 1.298 1.077 1.000 

 

 

 

Table 3. Data for XY illustrative example 

DMU A B C D E Aver. 

x  1 2 5 3 4.5 3.10 

y  2 4 2.7 5 5.5 3.84 

 ,P x y  0.787 0.787 1.515 0.862 1.007 1.000 
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Table 4. CSL dataset, average DMU and efficiency potentials 

 Inputs Outputs  

DMU Employees # ships 

Fleet 

capacity 

(TEU) 

Containers 

carried 

(TEU) 

Turnover ( , )P x y  

Maersk 24,500 430 1,753,996 13,800,000 19,962.05 1.190 

MSC 19,000 399 1,516,381 10,290,000 11,000.00 1.293 

CMA_CGM 17,000 284 944,514 7,882,000 10,600.48 1.142 

Hapag_Lloyd 6,670 112 460,241 4,637,000 6,194.31 0.843 

COSCON 71,584 142 490,836 5,200,000 4,306.71 1.513 

Evergreen_Line 4,141 167 593,443 5,815,000 2,704.17 0.985 

APL 4,980 129 528,515 4,930,000 5,485.00 0.851 

CSCL 4,311 121 457,648 6,700,000 3,090.31 0.837 

OOCL 7,748 64 297,367 4,159,000 4,350.20 0.780 

CSAV 6,972 65 194,010 1,790,500 3,028.00 0.896 

MOL 10,012 90 345,218 3,030,000 4,900.00 0.943 

NYK 1,619 77 357,686 3,550,000 4,955.44 0.618 

Hamburg_Süd 4,791 90 288,297 2,300,000 4,463.36 0.845 

K_Line 7,119 92 334,741 3,081,000 10,982.96 0.745 

YML 4,197 82 325,828 2,780,000 2,933.76 0.867 

HMM 2,038 52 255,643 2,510,000 5,256.00 0.592 

Wan_Hai 769 63 122,069 2,685,166 1,595.08 0.547 

Delmas 727 63 90,978 692,000 1,765.82 0.656 

Average DMU 11,010 140 519,856 4,768,426 5,976.31 1.000 
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Table 5. Results of proposed PBM approach for case study 

DMU 

PBM approach 

* *( , )P x y  
PBM eff. 

score 
  

(Employees) 
  

(ships) 
  (Fleet 

capacity) 

  

(Containers 

carried) 

  

(Turnover) 
2  

distance 

MSC 1.059 0.819 (4) 0.764 0.734 0.695 1.000 1.056 0.223 

CMA 

CGM 
0.965 0.846 (3) 0.671 0.875 0.736 1.000 1.000 0.193 

Hapag 

Lloyd 
0.735 0.872 (1) 0.672 0.846 0.886 1.000 1.000 0.144 

COSCON 0.740 0.489 (10) 0.047 0.834 0.713 1.000 1.000 1.018 

Evergreen 

Line 
0.775 0.787 (5) 0.858 0.724 0.651 1.000 1.337 0.332 

APL 0.740 0.870 (2) 0.839 0.756 0.785 1.000 1.000 0.131 

CSAV 0.566 0.632 (9) 0.182 0.899 0.903 1.461 1.000 0.902 

MOL 0.606 0.642 (8) 0.176 0.863 0.721 1.000 1.000 0.776 

Hamburg 

Süd 
0.584 0.691 (6) 0.368 0.786 0.604 1.108 1.000 0.613 

YML 0.572 0.660 (7) 0.282 0.578 0.765 1.000 1.000 0.748 
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Table 6. Results of GDF approach for case study 

DMU 

GDF approach 

GDF eff. 

score 
  

(Employees) 
  

(ships) 
  (Fleet 

capacity) 

  (Containers 

carried) 

  

(Turnover) 

MSC 0.704 (4) 0.925 0.770 0.817 1.000 1.407 

CMA 

CGM 
0.756 (3) 0.671 0.736 0.875 1.000 1.000 

Hapag 

Lloyd 
0.796 (1) 0.672 0.886 0.846 1.000 1.000 

COSCON 0.300 (10) 0.076 0.767 0.829 1.000 1.477 

Evergreen 

Line 
0.629 (5) 1.000 0.663 0.722 1.000 1.548 

APL 0.793 (2) 0.839 0.785 0.756 1.000 1.000 

CSAV 0.435 (9) 0.208 0.878 1.000 1.447 1.178 

MOL 0.478 (8) 0.183 0.717 0.888 1.000 1.042 

Hamburg 

Süd 
0.531 (6) 0.425 0.578 0.887 1.091 1.178 

YML 0.495 (7) 0.460 0.713 0.866 1.000 1.765 
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Table 7. Results of proposed ERGM approach for case study 

DMU 

ERGM approach 

ERGM 

eff. score 
  

(Employees) 
  (ships) 

  (Fleet 

capacity) 

  (Containers 

carried) 

  

(Turnover) 

MSC 0.691 (4) 0.990 0.800 0.850 1.000 1.547 

CMA 

CGM 
0.761 (3) 0.671 0.736 0.875 1.000 1.000 

Hapag 

Lloyd 
0.797 (1) 0.886 0.933 0.842 1.000 1.225 

COSCON 0.437 (10) 0.105 0.909 1.000 1.000 2.076 

Evergreen 

Line 
0.624 (5) 1.000 0.663 0.722 1.000 1.548 

APL 0.794 (2) 0.839 0.785 0.756 1.000 1.000 

CSAV 0.530 (8) 0.208 0.878 1.000 1.447 1.178 

MOL 0.552 (7) 0.666 0.983 0.949 1.000 2.137 

Hamburg 

Süd 
0.555 (6) 0.425 0.578 0.887 1.091 1.178 

YML 0.492 (9) 0.460 0.713 0.866 1.000 1.765 
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Table 8. Intensity variables and benchmarks for the inefficient DMUs 

 Benchmarks 

DMU Maersk CSCL OOCL NYK K Line HMM Wan Hai Delmas 

MSC 0.506 0.494       

CMA CGM 0.312 0.403   0.285    

Hapag Lloyd  0.394  0.279 0.327    

COSCON  0.532  0.411 0.057    

Evergreen 

Line 
 0.719  0.281     

APL  0.473  0.293 0.234    

CSAV      0.391 0.609  

MOL    0.491  0.452 0.057  

Hamburg 

Süd 
     0.784 0.216  

YML    0.155  0.224 0.622  
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Figure 1. Minimum efficiency potential of DMU C of 1YY illustrative example 

 
 



 

44 
 

Figure 2. Minimum efficiency potential of DMU C of XY illustrative example 
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Figure 3. Minimum efficiency potential target for DMU C of XY illustrative example 
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Figure 4. Observed and target values for the inefficient DMUs 
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Figure 4. Observed and target values for the inefficient DMUs (cont.) 

  
  

    

 


