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Abstract

Let F be a field of characteristic different of 2 and let M1|1(F)(+)
denote the Jordan superalgebra of 2 x 2 matrices over the field F.
The aim of this paper is to classify irreducible (unital and one-sided)
Jordan bimodules over the Jordan superalgebra My (F ),

Introduction

We will assume in the paper that all algebras are algebras over a field F,
charF # 2.

The theory of bimodules over simple Jordan algebras, developed by N.
Jacobson in [J], was extended to Jordan superalgebras in a series of papers
(see [7,8,...]).

Let’s remember that a superalgebra J = J5+J7 is a Zs-graded algebra. So
Jg is a subalgebra of J ( J5Jyg C J5), Ji is a module over J5 ( JJi, J1J5 C Ji)
and JiJ; C Ji. Elements lying in Jj U Jj are called homogeneous elements,
even if they lie in J; and odd if they lie in J;. The parity of a homogenous
element a is zero if the element a is even and one if it is odd and is represented
as |al.
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A Jordan superalgebra is a superalgebra J = Jj + J;i satisfying the fol-
lowing two homogeneous identities:

1) 2y = (—1)= e,

i) (vy)(zu) + (=)W 2z)(yu) + (=D ) (y2) = ((2y)2)u +
(=Dl lullyl 2l () 2)y 4 (—1)lellvitllleltlellul vl () 2) 2 | for arbitrary
homogeneous elements x, ¥y, z, u in J.

A Jordan superalgebra is called simple if it has no nontrivial graded ideals.
For more information about (simple) Jordan superalgebras we refer the reader
to [K]|, [MZ], [RZ].

If A = Ay + Aj is an associative superalgebra, that is, an associative
algebra that has a Z, grading, then we can define a new operation o given
by: aob = 1(ab+ (—1)l*lba) for arbitrary homogeneous elements a,b € A.
The superalgebra obtained in this way, with the same underlying vector
space and the same gradding of A and with the new product circ is a Jordan
superalgebra, that is denoted A

In particular, if we take A = M, (F'), the superalgebra of 2 x 2 matrices
over the field F', with even part the set of diagonal matrices and its even part
equal to the set of off-diagonal matrices,

Aoz{(g 2)}7 A1={<2 8)]’

the corresponding Jordan superalgebra J = A(f) = M1|1(F)(+) is a simple
Jordan superalgebra.

Definition. If V is a Zy-graded vector space and there exist bilinear
maps V x J =V, J xV — V, we say that V is a Jordan bimodule over
the Jordan superalgebra J if the split null extension V + J is a Jordan
superalgebra, where the multiplication in the split null extension extends the
one of J, V-V = (0) and the multiplication of elements of J and V' is given
by the bilinear maps . (see [MZ2]).

In the superalgebras setting, for each bimodule we can define the opposite
module. Let V = Vi + V7 be a Jordan bimodule over a Jordan superalgebra
J. Take copies V7 and V5* of v; and Vg with different parity. Then Vo =
VI 4+ V5 becomes a Jordan J-bimodule defining the action of J on V by:

av’? = (—1)'“‘(@1})0”, v?Pa = (va)”?

If J is a unital Jordan superalgebra and V' is a bimodule such that the
identity of J, 1, acts as the identity on V, then we say that J is a unital
Jordan bimodule over J.



A one-sided Jordan bimodule over J is a bimodule V such that {J,V, J} =
(0), where {z,v,y} = (2v)y + z(vy) — (=1)IVly(2y) represents the triple
Jordan product in J 4+ V and z,y € J,v € V are homogeneous elements.

Let’s denote U(z,y) the operator given by vU(x,y) = {z,v,y} and
D(z,y) = R(x)R(y) — (=))W R(y) R(x).

It is well known that every Jordan bimodule decomposes as a direct sum
of unital and one-sided Jordan bimodules.

The aim of this paper is to give the classification of one sided Jordan
bimodules (already announced by the authors some time ago) and one-sided
modules over the simple Jordan superalgebra J = My (F Y,

1 Unital bimodules

In the section J will denote the Jordan superalgebra J = Ml(r;) We will fix
the canonical basis {e, f,x,y}, where e = ej1, f = e, T = €12, Yy = €.

Then Jy=Fe+ Ff, Jj=Fz+Fy,ef =0, 2=2, f2=f, [z,y=e— f.

For arbitrary elements «, 5,7 € F, let us call V(«, 5, 7) the 4-dimensional
Zs-graded vector space V = F(v,w, z,t) with V5 = F(v,w), V§ = F(z,t) and
the action of J over V' defined by:

ve=wv, vf =0, ve =2z, vy =t,

we =0, wf=w, wr=(y—1)z—2at, wy =20z — (y+ 1)t,

N VI S VT
ve= g2, 2f =52 zw=av, 2y = S(y vt S,

1 1 1 1
te = §t, tf = §t’ te = 5(7 — 1w — W, ty = pv.  (1.1)

Let us notice that R(z)? = aly, R(y)? = BIy and R(z)R(y)+R(y)R(x) =
’}/[‘/.

It can be also checked that vU(z,y) = w.

To start we will prove that V(a, 3,0) is a Jordan bimodule for arbitrary

a,BeF.
Lemma 1.1. V(a, 8,0) is a (unital) Jordan bimodule over J.

Proof
Let us define an embedding from M1 (F) in Myp(F) via:

7 Ml\l(F) — MQ‘Q(F)
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Consider the J-submodule of Myo(F') with basis {v, w = vU(z,y), z =
vz, t =vy}.
This bimodule is isomorphic to V' («, 3,0).

Now let us consider arbitrary elements o, 3,7 € F. We can take elements
o', 8" € F such that v* —4af — 1 = —4a/8' — 1, that is, v* = 4(aB — ' B').

Lemma 1.2. There is an isomorphism ¢ : My (F)™ — My (F)™) such
that for every v € V(a, 8,7) we have vR(¢(z))? = /v, vR(p(y))? = B'v and
v(R(p(2))R(p(y)) + Rlp(y)) R(p(x))) = 0.

Proof.
From 2 — 4a3 = —40/f' it follow that matrices

;o 0 2 B v =2«
v ) 4= (a5 )

have the same determinant and both of them have zero trace.
Consequently both matrices are similar, that is, there is an invertible

matrix P (without loss of generality we can assume that |P| = 1) suchat
that A’ = PAP~L.
If P = CCL 2 ) we only need to consider ¢ the automorphism of

My (F)®) given by g(e) = e, ¢(f) = f, ¢(x) = az + by, ply) = cv + dy.
Notice that this lemma says that V(a,,7) is a unital module over
My (F)®) and that there is a semiisomorphism between V(a,3,7) and
Vo, [5,0).
That is, we have proved the following result.



Theorem 1.3. a) For arbitrary elements «, 3,y € F, the action of J =
Mm(F)(*) over V.=V (a, 3,7) over the graded vector space V.= F(v,w, z,t)
given by (1.1) defines a structure of unital J-bimodule V («, 3,7).

b) Given o, B,7v,d/, 8,y € F, the J bimodules V (o, B,7) and V(</, 5',7")
are isomorphic if and only if « =o', =" and v =+

¢) The J bimodules V(c, 5,7) and V(d/,',7') are semi- isomorphic if
and only if v* — 4aB =% — 40/3'.

Lemma 1.4. If v — 4a8 — 1 # 0 then the bimodule V. = V(«, 3,7) is
irreducible. If v =1 and a = 0 then Fw+ Fwy is the only proper submodule
of V.=V(a, B,7). In all other cases, Fw+ Fwx is the only proper submodule

of V.=V(a,p,7).

Proof.

Let (0) # V' a nonzero submodule of V =V («, 8,7). Then V'NVj # (0),
since otherwise V'x = V'y = (0).

Applying to an arbitrary element o in V' the following Jordan iden-
tity: R(z)R(e)R(y) — R(y)R(e) R(x) — R([z,y]e) — R(ze) R(y) + R(ye) R(x) —
R([z,y])R(e) = 0, we get that 9(R(e) — R(e — f)R(e)) = 0.

But the odd part of V = V(«, 5,7) lies in the %— Peirce component of e
and f, so v =0.

That is, if V' U V5 = (0), then V' = (0).

If {e,V' e} # (0), thenv € V' and so V' = V.

If {e,V’ e} = (0), then V'UV; = Fw. But wU(z,y) = (7*—4aB—1)v €
V. Sowv € V’, that is, V = V' as soon as 7> — 4a3 — 1 # 0. This proves
irreducibility of V = V(«, 3,7) when 42 — 4a8 — 1 # 0.

So from now on we assume that 72 —4a3 —1 =0

Now let’s consider the case v = 1 and a = 0. Then wU(z,y) = wzx =0
and wy = 2pz — 2t and V' = F(w, wz).

Otherwise, wz = (y — 1)z — 2at # 0 and wy = 2Bz — (v + 1)t implies
that (v + 1wz — 2awy = (y* —4af — 1)z — 0t = 0, that is, F(w,wz) = V.

Notation. If v2 — 4af — 1 = 0, let’s denote V'(«, 3,7) the only proper

nonzero submodule of V' = V'(a, 8,7) (that can be expressed as F'(w, wzr) ex-
cept when av = 0, 7 = 1 that can be expressed as F'(w,wy)) and V(«, 5,7) =

Vi, 8,7)/V'(a, B,7).
Now we can prove the classification result.

Theorem 1.5. FEvery irreducible finite dimensional unital Jordan bimodule
over J = Mm(F)(‘” is isomorphic to one of the bimodules V- =V (a, B,7),

if 2 —4afB —1#0, or to V'(a,3,7) or V(a, B,7) if ¥ —4af —1 =10 or
their opposite modules.



Proof.

Let V be an irreducible unital finite dimensional .J-bimodule. Up to
opposite, we can assume that Vg = {e, Vg, e} +{f, Vg, f} and Vi = {e, V4, f}.

The operators R(z)?, R(y)?, R(z)R(y) + R(y)R(z) commute with the
action of J. By Schur’s Lemma they act as scalars «, §, v respectively.

We claim that for every subspace W of {e, Vg, e} the vector space U =
W + WU(Ji, Ji) + WJ; is a J-bimodule. Indeed, since W C {e, V5, e} ,
we have that WJ; C {e, Vi, f} and WU (J;5, J7) C {f, V5, f}. Hence each
summand W, WU (Ji, J;) and W J;i is invariant under multiplication by e
and f, so under multiplication by Jj.

Now using that R(J7)R(J1) C U(Js, Ji) + D(J1, J1) + R(J5), we get that
WR(J1)R(J;) € WU(Ji, J;) + WD(Ji, J;) + WR(J;) € U. That implies
that WR(J)R(J) C U.

So, we only need to prove that WU (Ji, J1)R(J;) C WJ;. But U(Jg, J;) C
R(IDR() + R(Js) and R(J)R(IDR(E) C RU)R(J) + D(J), J)R(5).
Now using that D(J;, J;) acts as an scalar multiplication we gets what we
wanted.

In the same way we can prove that for every W C {f, Vj, f}, the subspace
W +WU(Ji, J;) + Wi is a J-bimodule.

Since we assume V' to be irreducible, it follows that dimg{e, Vj,e} < 1
and dimp{f, Vg, f} <1, dimV; < 2.

If v2 — 4a8 — 1 # 0, let us show that v ~ V(a, 3,7), where R(z)? acts
on V as aly, R(y)? acts as Iy and R(x)R(y) + R(y)R(x) acts as yIy. We
have already seen that Vi # (0). The operator U(x,y)? acts on Vj as the
multiplication by 42 —2a3—1. This implies that both {e, Vj, e} and {f, Vj, f}
are different of zero (multiplication by U(z,y) exchange them both).

Choose 0 # v € {e, V5, e} . We know that w = vU(z,y) € {f, V5, f}. Let
us prove that vz, vy € Vi are linearly independent. Suppose that vy = Avz,
A € F. Then vR(y)R(x) = (vy)r = Avx)r = daw and vU(x,y) =
vR(z)R(y)—vR(y) R(x)—vR([z, y]) = v(R(x)R(y)+R(y)R(x))—2vR(y) R(x)—
vR(e— f) = (y—2 a—1)v, that is, vU(z,y) € Fv, which is a contradiction.

Hence F(v,w = vU(z,y),vz,vy) is a J-bimodule and the multiplication
table coincides with the one of V(a, 3, 7).

Now let’s consider the case v2 —4a—1 = 0. In this case VyU (z, y)* = (0).
If {e,Vg,e} # (0) and 0 # v € {e, V5, e}, then w = vU(x,y) = 0. Indeed,
if w = ovU(z,y) # 0, then V is generated by w, wU(x,y), wz, wy. But
wU(z,y) = vU(z,y)? = 0. So, dimpVy < 1, which contradicts v,w € Vj.
Hence w = vU(z,y) = 0. This says that V ~ V'(a, 8, gamma).

If {f,Vo, f} # (0), then V ~ V(a, §,7), what proves the theorem.
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2 One sided modules

Let S = S(J) be the unital universal associative enveloping algebra of the
Jordan algebra J = Ml(ri) Denote x = €15, y = €91, e = €11, f = €99, vV =
e — f, then J = algjora(z,y) and S = algas{x,y).

We have roe = x, yoe = y,[z,y] = v. Observe that x2 52 lie in the

center Z(S) of S. Moreover, we have

[xoy,z] = [y,
[z 0y,y]

I
B
<

hence x oy € Z(S).

Lemma 2.1. Let A = F[2?, %], B = Flz* y* zovy].

1) The algebra S is a free B-module with free generators 1,x,y, zy.
2) The center Z(S) = B.

3) B = Alx oy], where (zoy)* =1+ 4z%y°.

Proof. We have yr = roy —zy, zyz = (voy)z — 2y, yry = (roy)y —
vir, (zy)? = (v o y)zy — x%y?, which proves that S is spanned over B by
elements 1, z,y, zy. Let z = a+fBx+vyy+dxy € Z(S) with «, 5,7,6 € B, then
0= [z, z] = y[z,y|+dz[x,y] = yv+dzv. Multiplying by v, we get v+dz = 0,
which gives v = ¢ = 0. Similarly, we get 5 = 0, hence Z(S) = B. The similar
argument shows that if « + Sz +yy + dzy = 0 then a« = = v =6 = 0,
which proves 1). Finally,

(zoy)? = (xy)* + (y)? + 22%y* = [2,y]oy + [y, 2)yx + 42y = v* + 42%y* = 1 + 4oy,

proving 3).
O
The algebra S has a natural Zs-grading induced by the grading of J:

S; = B+ Bxy, S = Bx + By.

The category of one-sided Jordan J-superbimodules is isomorphic to the
category of right associative Zs-graded S-modules. In particular, irreducible
superbimodules over J correspond to irreducible Zs-graded S-modules.

Let M = Mg+ Mz be an irreducible Zs-graded S-module and ¢ : S —
EndpM be the corresponding representation. Then ¢(B) lies in the even
part of the centralizer D of S-module M, which is a graded division algebra
(see, for example, [1]). Denote o = ¢(z?), 8 = o(¥?), v = p(zoy), K =
F(a,8,7), then K is a field, K = F(a, ) + F(a, 8)y where v* = 4a3 + 1.
Moreover, the graded algebra S = ¢(S) has dimension at most 4 over K.
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The algebra S and the module M may be considered over the field K,
then M is a faithful irreducible graded module over the K-algebra S. By [2,
Lemma 4.2], M up to opposing grading is isomorphic to a minimal graded
right ideal of S. Since dimg S < 4, we have dimxg M < 2. Moreover, the
case dimg M = 1 can appear only when S = K which is impossible since
[o(x), 0(y)] # 0. Therefore, dimg S = 4 and dimyg M = 2.

Observe also that by the density theorem for graded modules (see, for
example, [1]), S is a dense graded subalgebra of the algebra EndpM C
Endj!M = M (K). Clearly, this implies that S = My, (K).

Consider the elements a = WTH —zy, b = xy — ”’T_l € B. We have
a’* = a, b> = b, a+b = 1, hence up to change of indices p(a) = ey, p(b) = ea9.

We will separate the two cases:

1. Let first v # 1. Chose an element m € Mg U M;j such that ma = m,
then we have m = ”’Tﬂm — maxy, which gives

mzy = Stm, Bma = imy. (2.1)

In particular, mzy # 0, m' = mx # 0, and M = Km + Km’'. We have by

(1)

m'x = am;
28 2 /.
my = mmﬁf = 7_1m )
m'y = may= 7Tflm
2. Let now v = 1, then a = 1 — 2y, b = xy. Choose an element

m € Mg U Mj such that m = mb # 0, then m’ = ma # 0 and again
M = Km + Km'. We have

m'z = am;

my = mby = mayy = fmx = Bm/;

m'y = may = m.
Observe that for v = —1 in case 1 we obtain the formulas of case 2. The
condition v? = 1 is equivalent to a8 = 0, therefore we will distinguish four
non-isomorphic cases: v# +1; a=0,8#0; a#0, 5=0; a==0.

Resuming, we have

Theorem 2.2. Let M be an irreducible one-sided Jordan bimodule over
J = My (F)M). Then there exist an extension field K = F(«,f,7) with
v? = 4af + 1 such that dimxg M =2, M = Km + Km', and up to opposite
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grading the action of J on M is given as follows:

1. v # £1 (oraf #0).

s 33

s

2. v==1 (oraf =0).

In the second case we have 8 non-isomorphic subclasses: =10, 8 #0; a #

0,6=0; a=p=0.

The module M is finite dimensional if and only if the elements «, § are
algebraic over F'. In particular, if the field F' is algebraically closed and M

m -
m' -
m -
m -

SIS S B

is finite dimensional, then K = F.

References

[1] Alberto Elduque, Mikhail Kochetov, Gradings on Simple Lie Algebras

[2] Yuri Bahturin, Michel Goze, and Elizabeth Remm, Group Gradings on
Lie Algebras, with Applications to Geometry, I, in Developments and
Retrospectives in Lie Theory: Algebraic Methods, edited by Geoffrey
Mason, Ivan Penkov, Joseph A. Wolf, Springer, 2014, 1-51.

Q| D= N~
=
tlE

i
=

3
S
<
I
"

QS\

= 2
&8

e

N N N D=



