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Abstract

Let F be a field of characteristic different of 2 and let M1|1(F )(+)

denote the Jordan superalgebra of 2 × 2 matrices over the field F .
The aim of this paper is to classify irreducible (unital and one-sided)
Jordan bimodules over the Jordan superalgebra M1|1(F )(+).

Introduction

We will assume in the paper that all algebras are algebras over a field F ,
charF 6= 2.

The theory of bimodules over simple Jordan algebras, developed by N.
Jacobson in [J], was extended to Jordan superalgebras in a series of papers
(see [7,8,...]).

Let’s remember that a superalgebra J = J0̄+J1̄ is a Z2-graded algebra. So
J0̄ is a subalgebra of J ( J0̄J0̄ ⊆ J0̄), J1̄ is a module over J0̄ ( J0̄J1̄, J1̄J0̄ ⊆ J1̄)
and J1̄J1̄ ⊆ J1̄. Elements lying in J0̄ ∪ J0̄ are called homogeneous elements,
even if they lie in J0̄ and odd if they lie in J1̄. The parity of a homogenous
element a is zero if the element a is even and one if it is odd and is represented
as |a|.
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A Jordan superalgebra is a superalgebra J = J0̄ + J1̄ satisfying the fol-
lowing two homogeneous identities:

i) xy = (−1)|x||y|yx,
ii) (xy)(zu) + (−1)|y||z|(xz)(yu) + (−1)|y||u|+|z||u|(xu)(yz) = ((xy)z)u +

(−1)|u||z|+|u||y|+|z||y|((xu)z)y + (−1)|x||y|+|x||z|+|x||u|+|z||u|(yu)z)x , for arbitrary
homogeneous elements x, y, z, u in J .

A Jordan superalgebra is called simple if it has no nontrivial graded ideals.
For more information about (simple) Jordan superalgebras we refer the reader
to [K], [MZ], [RZ].

If A = A0̄ + A1̄ is an associative superalgebra, that is, an associative
algebra that has a Z2 grading, then we can define a new operation ◦ given
by: a ◦ b = 1

2
(ab+ (−1)|a||b|ba) for arbitrary homogeneous elements a, b ∈ A.

The superalgebra obtained in this way, with the same underlying vector
space and the same gradding of A and with the new product circ is a Jordan
superalgebra, that is denoted A(+)

In particular, if we take A = M1|1(F ), the superalgebra of 2× 2 matrices
over the field F , with even part the set of diagonal matrices and its even part
equal to the set of off-diagonal matrices,

A0̄ = {
(
a 0
0 d

)
}, A1̄ = {

(
0 b
c 0

)
}

the corresponding Jordan superalgebra J = A(+) = M1|1(F )(+) is a simple
Jordan superalgebra.

Definition. If V is a Z2-graded vector space and there exist bilinear
maps V × J → V , J × V → V , we say that V is a Jordan bimodule over
the Jordan superalgebra J if the split null extension V + J is a Jordan
superalgebra, where the multiplication in the split null extension extends the
one of J , V · V = (0) and the multiplication of elements of J and V is given
by the bilinear maps . (see [MZ2]).

In the superalgebras setting, for each bimodule we can define the opposite
module. Let V = V0̄ + V1̄ be a Jordan bimodule over a Jordan superalgebra
J . Take copies V op

1̄
and V op

0̄
of v1̄ and V0̄ with different parity. Then V op =

V op
1̄

+ V op
0̄

becomes a Jordan J-bimodule defining the action of J on V op by:

avop = (−1)|a|(av)op, vopa = (va)op

.
If J is a unital Jordan superalgebra and V is a bimodule such that the

identity of J , 1, acts as the identity on V , then we say that J is a unital
Jordan bimodule over J .
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A one-sided Jordan bimodule over J is a bimodule V such that {J, V, J} =
(0), where {x, v, y} = (xv)y + x(vy) − (−1)|x||v|v(xy) represents the triple
Jordan product in J + V and x, y ∈ J, v ∈ V are homogeneous elements.

Let’s denote U(x, y) the operator given by vU(x, y) = {x, v, y} and
D(x, y) = R(x)R(y)− (−1)|x||y|R(y)R(x).

It is well known that every Jordan bimodule decomposes as a direct sum
of unital and one-sided Jordan bimodules.

The aim of this paper is to give the classification of one sided Jordan
bimodules (already announced by the authors some time ago) and one-sided
modules over the simple Jordan superalgebra J = M1|1(F )(+).

1 Unital bimodules

In the section J will denote the Jordan superalgebra J = M
(+)
1|1 . We will fix

the canonical basis {e, f, x, y}, where e = e11, f = e22, x = e12, y = e21.
Then J0̄ = Fe+ Ff , J1̄ = Fx+ Fy, ef = 0, e2 = 2, f 2 = f, [x, y] = e− f .

For arbitrary elements α, β, γ ∈ F , let us call V (α, β, γ) the 4-dimensional
Z2-graded vector space V = F (v, w, z, t) with V0̄ = F (v, w), V1̄ = F (z, t) and
the action of J over V defined by:

ve = v, vf = 0, vx = z, vy = t,

we = 0, wf = w, wx = (γ − 1)z − 2αt, wy = 2βz − (γ + 1)t,

ze =
1

2
z, zf =

1

2
z, zx = αv, zy =

1

2
(γ + 1)v +

1

2
w,

te =
1

2
t, tf =

1

2
t, tx =

1

2
(γ − 1)v − 1

2
w, ty = βv. (1.1)

Let us notice that R(x)2 = αIV , R(y)2 = βIV and R(x)R(y)+R(y)R(x) =
γIV .

It can be also checked that vU(x, y) = w.
To start we will prove that V (α, β, 0) is a Jordan bimodule for arbitrary

α, β ∈ F .

Lemma 1.1. V (α, β, 0) is a (unital) Jordan bimodule over J .

Proof
Let us define an embedding from M1|1(F ) in M2|2(F ) via:

i : M1|1(F )→M2|2(F )
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e→
(
I2 0
0 0

)
f →

(
0 0
0 I2

)
x→

(
0 I2

A 0

)
y →

(
0 B
I2 0

)
where

A =

(
0 0
0 2α

)
, B =

(
2β 0

0 0

)
.

Consider the J-submodule of M2|2(F ) with basis {v, w = vU(x, y), z =
vx, t = vy}.

This bimodule is isomorphic to V (α, β, 0).

Now let us consider arbitrary elements α, β, γ ∈ F . We can take elements
α′, β′ ∈ F such that γ2 − 4αβ − 1 = −4α′β′ − 1, that is, γ2 = 4(αβ − α′β′).

Lemma 1.2. There is an isomorphism ϕ : M1|1(F )(+) −→ M1|1(F )(+) such
that for every v ∈ V (α, β, γ) we have vR(ϕ(x))2 = α′v, vR(ϕ(y))2 = β′v and
v(R(ϕ(x))R(ϕ(y)) +R(ϕ(y))R(ϕ(x))) = 0.

Proof.
From γ2 − 4αβ = −4α′β′ it follow that matrices

A′ =

(
0 2α′

−2β′ 0

)
, A =

(
γ −2α

2β −γ

)
have the same determinant and both of them have zero trace.

Consequently both matrices are similar, that is, there is an invertible
matrix P (without loss of generality we can assume that |P | = 1) suchat
that A′ = PAP−1.

If P =

(
a b
c d

)
we only need to consider ϕ the automorphism of

M1|1(F )(+) given by ϕ(e) = e, ϕ(f) = f , ϕ(x) = ax+ by, ϕ(y) = cx+ dy.
Notice that this lemma says that V (α, β, γ) is a unital module over

M1|1(F )(+) and that there is a semiisomorphism between V (α, β, γ) and
V (α′, β′, 0).

That is, we have proved the following result.
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Theorem 1.3. a) For arbitrary elements α, β, γ ∈ F , the action of J =
M1|1(F )(+) over V = V (α, β, γ) over the graded vector space V = F (v, w, z, t)
given by (1.1) defines a structure of unital J-bimodule V (α, β, γ).

b) Given α, β, γ, α′, β′, γ′ ∈ F , the J bimodules V (α, β, γ) and V (α′, β′, γ′)
are isomorphic if and only if α = α′, β = β′ and γ = γ′

c) The J bimodules V (α, β, γ) and V (α′, β′, γ′) are semi- isomorphic if
and only if γ2 − 4αβ = γ′2 − 4α′β′.

Lemma 1.4. If γ2 − 4αβ − 1 6= 0 then the bimodule V = V (α, β, γ) is
irreducible. If γ = 1 and α = 0 then Fw+Fwy is the only proper submodule
of V = V (α, β, γ). In all other cases, Fw+Fwx is the only proper submodule
of V = V (α, β, γ).

Proof.
Let (0) 6= V ′ a nonzero submodule of V = V (α, β, γ). Then V ′∩V0̄ 6= (0),

since otherwise V ′x = V ′y = (0).
Applying to an arbitrary element ṽ in V ′ the following Jordan iden-

tity: R(x)R(e)R(y)−R(y)R(e)R(x)−R([x, y]e)−R(xe)R(y)+R(ye)R(x)−
R([x, y])R(e) = 0, we get that ṽ(R(e)−R(e− f)R(e)) = 0.

But the odd part of V = V (α, β, γ) lies in the 1
2
- Peirce component of e

and f , so ṽ = 0.
That is, if V ′ ∪ V0̄ = (0), then V ′ = (0).
If {e, V ′, e} 6= (0), then v ∈ V ′ and so V ′ = V .
If {e, V ′, e} = (0), then V ′∪V0̄ = Fw. But wU(x, y) = (γ2−4αβ−1)v ∈

V ′. So v ∈ V ′, that is, V = V ′ as soon as γ2 − 4αβ − 1 6= 0. This proves
irreducibility of V = V (α, β, γ) when γ2 − 4αβ − 1 6= 0.

So from now on we assume that γ2 − 4αβ − 1 = 0
Now let’s consider the case γ = 1 and α = 0. Then wU(x, y) = wx = 0

and wy = 2βz − 2t and V ′ = F (w,wx).
Otherwise, wx = (γ − 1)z − 2αt 6= 0 and wy = 2βz − (γ + 1)t implies

that (γ + 1)wx− 2αwy = (γ2 − 4αβ − 1)z − 0t = 0, that is, F (w,wx) = V ′.

Notation. If γ2 − 4αβ − 1 = 0, let’s denote V ′(α, β, γ) the only proper
nonzero submodule of V = V (α, β, γ) (that can be expressed as F (w,wx) ex-
cept when α = 0, γ = 1 that can be expressed as F (w,wy)) and Ṽ (α, β, γ) =
V (α, β, γ)/V ′(α, β, γ).

Now we can prove the classification result.

Theorem 1.5. Every irreducible finite dimensional unital Jordan bimodule
over J = M1|1(F )(+) is isomorphic to one of the bimodules V = V (α, β, γ),

if γ2 − 4αβ − 1 6= 0, or to V ′(α, β, γ) or Ṽ (α, β, γ) if γ2 − 4αβ − 1 = 0 or
their opposite modules.
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Proof.
Let V be an irreducible unital finite dimensional J-bimodule. Up to

opposite, we can assume that V0̄ = {e, V0̄, e}+ {f, V0̄, f} and V1̄ = {e, V1̄, f}.
The operators R(x)2, R(y)2, R(x)R(y) + R(y)R(x) commute with the

action of J . By Schur’s Lemma they act as scalars α, β, γ respectively.

We claim that for every subspace W of {e, V0̄, e} the vector space U =
W + WU(J1̄, J1̄) + WJ1̄ is a J-bimodule. Indeed, since W ⊆ {e, V0̄, e} ,
we have that WJ1̄ ⊆ {e, V1̄, f} and WU(J1̄, J1̄) ⊆ {f, V0̄, f}. Hence each
summand W , WU(J1̄, J1̄) and WJ1̄ is invariant under multiplication by e
and f , so under multiplication by J0̄.

Now using that R(J1̄)R(J1̄) ⊆ U(J1̄, J1̄) +D(J1̄, J1̄) +R(J0̄), we get that
WR(J1̄)R(J1̄) ⊆ WU(J1̄, J1̄) + WD(J1̄, J1̄) + WR(J0̄) ⊆ U . That implies
that WR(J)R(J) ⊆ U .

So, we only need to prove that WU(J1̄, J1̄)R(J1̄) ⊆ WJ1̄. But U(J1̄, J1̄) ⊆
R(J1̄)R(J1̄) + R(J0̄) and R(J1̄)R(J1̄)R(J1̄) ⊆ R(J)R(J) + D(J1̄), J1̄)R(J1̄).
Now using that D(J1̄, J1̄) acts as an scalar multiplication we gets what we
wanted.

In the same way we can prove that for every W ⊆ {f, V0̄, f}, the subspace
W +WU(J1̄, J1̄) +WJ1̄ is a J-bimodule.

Since we assume V to be irreducible, it follows that dimF{e, V0̄, e} ≤ 1
and dimF{f, V0̄, f} ≤ 1, dimV1̄ ≤ 2.

If γ2 − 4αβ − 1 6= 0, let us show that v ' V (α, β, γ), where R(x)2 acts
on V as αIV , R(y)2 acts as βIV and R(x)R(y) + R(y)R(x) acts as γIV . We
have already seen that V0̄ 6= (0). The operator U(x, y)2 acts on V0̄ as the
multiplication by γ2−2αβ−1. This implies that both {e, V0̄, e} and {f, V0̄, f}
are different of zero (multiplication by U(x, y) exchange them both).

Choose 0 6= v ∈ {e, V0̄, e} . We know that w = vU(x, y) ∈ {f, V0̄, f}. Let
us prove that vx, vy ∈ V1̄ are linearly independent. Suppose that vy = λvx,
λ ∈ F . Then vR(y)R(x) = (vy)x = λ(vx)x = λαv and vU(x, y) =
vR(x)R(y)−vR(y)R(x)−vR([x, y]) = v(R(x)R(y)+R(y)R(x))−2vR(y)R(x)−
vR(e− f) = (γ−2λα−1)v, that is, vU(x, y) ∈ Fv, which is a contradiction.

Hence F (v, w = vU(x, y), vx, vy) is a J-bimodule and the multiplication
table coincides with the one of V (α, β, γ).

Now let’s consider the case γ2−4αβ−1 = 0. In this case V0̄U(x, y)2 = (0).
If {e, V0̄, e} 6= (0) and 0 6= v ∈ {e, V0̄, e}, then w = vU(x, y) = 0. Indeed,
if w = vU(x, y) 6= 0, then V is generated by w, wU(x, y), wx, wy. But
wU(x, y) = vU(x, y)2 = 0. So, dimFV0̄ ≤ 1, which contradicts v, w ∈ V0̄.
Hence w = vU(x, y) = 0. This says that V ' V ′(α, β, gamma).

If {f, V0̄, f} 6= (0), then V ' V̄ (α, β, γ), what proves the theorem.
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2 One sided modules

Let S = S(J) be the unital universal associative enveloping algebra of the

Jordan algebra J = M
(+)
1|1 . Denote x = e12, y = e21, e = e11, f = e22, v =

e− f , then J = algJord〈x, y〉 and S = algAs〈x, y〉.
We have x ◦ e = x, y ◦ e = y, [x, y] = v. Observe that x2, y2 lie in the

center Z(S) of S. Moreover, we have

[x ◦ y, x] = [y, x2] = 0,

[x ◦ y, y] = [x, y2] = 0,

hence x ◦ y ∈ Z(S).

Lemma 2.1. Let A = F [x2, y2], B = F [x2, y2, x ◦ y].
1) The algebra S is a free B-module with free generators 1, x, y, xy.
2) The center Z(S) = B.
3) B = A[x ◦ y], where (x ◦ y)2 = 1 + 4x2y2.

Proof. We have yx = x ◦ y − xy, xyx = (x ◦ y)x− x2y, yxy = (x ◦ y)y −
y2x, (xy)2 = (x ◦ y)xy − x2y2, which proves that S is spanned over B by
elements 1, x, y, xy. Let z = α+βx+γy+δxy ∈ Z(S) with α, β, γ, δ ∈ B, then
0 = [x, z] = γ[x, y]+δx[x, y] = γv+δxv. Multiplying by v, we get γ+δx = 0,
which gives γ = δ = 0. Similarly, we get β = 0, hence Z(S) = B. The similar
argument shows that if α + βx + γy + δxy = 0 then α = β = γ = δ = 0,
which proves 1). Finally,

(x ◦ y)2 = (xy)2 + (yx)2 + 2x2y2 = [x, y]xy + [y, x]yx+ 4x2y2 = v2 + 4x2y2 = 1 + 4x2y2,

proving 3).
2

The algebra S has a natural Z2-grading induced by the grading of J :

S0̄ = B +Bxy, S1̄ = Bx+By.

The category of one-sided Jordan J-superbimodules is isomorphic to the
category of right associative Z2-graded S-modules. In particular, irreducible
superbimodules over J correspond to irreducible Z2-graded S-modules.

Let M = M0̄ + M1̄ be an irreducible Z2-graded S-module and ϕ : S →
EndFM be the corresponding representation. Then ϕ(B) lies in the even
part of the centralizer D of S-module M , which is a graded division algebra
(see, for example, [1]). Denote α = ϕ(x2), β = ϕ(y2), γ = ϕ(x ◦ y), K =
F (α, β, γ), then K is a field, K = F (α, β) + F (α, β)γ where γ2 = 4αβ + 1.
Moreover, the graded algebra S̄ = ϕ(S) has dimension at most 4 over K.
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The algebra S̄ and the module M may be considered over the field K,
then M is a faithful irreducible graded module over the K-algebra S̄. By [2,
Lemma 4.2], M up to opposing grading is isomorphic to a minimal graded
right ideal of S̄. Since dimK S̄ ≤ 4, we have dimKM ≤ 2. Moreover, the
case dimKM = 1 can appear only when S̄ = K which is impossible since
[ϕ(x), ϕ(y)] 6= 0. Therefore, dimK S̄ = 4 and dimKM = 2.

Observe also that by the density theorem for graded modules (see, for
example, [1]), S̄ is a dense graded subalgebra of the algebra EndDM ⊆
EndgrKM = M1|1(K). Clearly, this implies that S̄ = M1|1(K).

Consider the elements a = γ+1
2
− xy, b = xy − γ−1

2
∈ B. We have

a2 = a, b2 = b, a+b = 1, hence up to change of indices ϕ(a) = e11, ϕ(b) = e22.
We will separate the two cases:

1. Let first γ 6= 1. Chose an element m ∈ M0̄ ∪M1̄ such that ma = m,
then we have m = γ+1

2
m−mxy, which gives

mxy = γ−1
2
m, βmx = γ−1

2
my. (2.1)

In particular, mxy 6= 0, m′ = mx 6= 0, and M = Km + Km′. We have by
(1)

m′x = αm;

my = 2β
γ−1

mx = 2β
γ−1

m′;

m′y = mxy = γ−1
2
m.

2. Let now γ = 1, then a = 1 − xy, b = xy. Choose an element
m ∈ M0̄ ∪ M1̄ such that m = mb 6= 0, then m′ = mx 6= 0 and again
M = Km+Km′. We have

m′x = αm;

my = mby = mxyy = βmx = βm′;

m′y = mxy = m.

Observe that for γ = −1 in case 1 we obtain the formulas of case 2. The
condition γ2 = 1 is equivalent to αβ = 0, therefore we will distinguish four
non-isomorphic cases: γ 6= ±1; α = 0, β 6= 0; α 6= 0, β = 0; α = β = 0.

Resuming, we have

Theorem 2.2. Let M be an irreducible one-sided Jordan bimodule over
J = M1|1(F )(+). Then there exist an extension field K = F (α, β, γ) with
γ2 = 4αβ + 1 such that dimKM = 2, M = Km + Km′, and up to opposite
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grading the action of J on M is given as follows:

1. γ 6= ±1 (or αβ 6= 0).

m · x = 1
2
m′;

m′ · x = 1
2
αm;

m · y = β
γ−1

m′;

m′ · y = mxy = γ−1
4
m.

2. γ = ±1 (or αβ = 0).

m · x = 1
2
m′;

m′ · x = 1
2
αm;

m · y = 1
2
βm′;

m′ · y = 1
2
m.

In the second case we have 3 non-isomorphic subclasses: α = 0, β 6= 0; α 6=
0, β = 0; α = β = 0.

The module M is finite dimensional if and only if the elements α, β are
algebraic over F . In particular, if the field F is algebraically closed and M
is finite dimensional, then K = F .
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