Jordan bimodules over the superalgebra $M_{1|1}$

Consuelo Martínez*
Departamento de Matemáticas, Universidad de Oviedo,
C/ Calvo Sotelo, s/n, 33007 Oviedo SPAIN

Ivan Shestakovov[†]
Institute of Mathematics and Statistics
R. do Matão, 1010 - Vila Universitaria, São Paulo SP, 05508-090, Brasil

Abstract

Let F be a field of characteristic different of 2 and let $M_{1|1}(F)^{(+)}$ denote the Jordan superalgebra of 2×2 matrices over the field F. The aim of this paper is to classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra $M_{1|1}(F)^{(+)}$.

Introduction

We will assume in the paper that all algebras are algebras over a field F, $char F \neq 2$.

The theory of bimodules over simple Jordan algebras, developed by N. Jacobson in [J], was extended to Jordan superalgebras in a series of papers (see [7,8,...]).

Let's remember that a superalgebra $J = J_{\bar{0}} + J_{\bar{1}}$ is a \mathbb{Z}_2 -graded algebra. So $J_{\bar{0}}$ is a subalgebra of J ($J_{\bar{0}}J_{\bar{0}} \subseteq J_{\bar{0}}$), $J_{\bar{1}}$ is a module over $J_{\bar{0}}$ ($J_{\bar{0}}J_{\bar{1}}, J_{\bar{1}}J_{\bar{0}} \subseteq J_{\bar{1}}$) and $J_{\bar{1}}J_{\bar{1}} \subseteq J_{\bar{1}}$. Elements lying in $J_{\bar{0}} \cup J_{\bar{0}}$ are called homogeneous elements, even if they lie in $J_{\bar{0}}$ and odd if they lie in $J_{\bar{1}}$. The parity of a homogeneous element a is zero if the element a is even and one if it is odd and is represented as |a|.

^{*}Partially supported by MTM 2017-83506-C2-2-P and FC-GRUPIN-ID/2018/000193 $^\dagger Partially$ supported by FAPESP-2018/21017-2

A Jordan superalgebra is a superalgebra $J=J_{\bar{0}}+J_{\bar{1}}$ satisfying the following two homogeneous identities:

i) $xy = (-1)^{|x||y|}yx$,

ii) $(xy)(zu) + (-1)^{|y||z|}(xz)(yu) + (-1)^{|y||u|+|z||u|}(xu)(yz) = ((xy)z)u + (-1)^{|u||z|+|u||y|+|z||y|}((xu)z)y + (-1)^{|x||y|+|x||z|+|x||u|+|z||u|}(yu)z)x$, for arbitrary homogeneous elements x,y,z,u in J.

A Jordan superalgebra is called simple if it has no nontrivial graded ideals. For more information about (simple) Jordan superalgebras we refer the reader to [K], [MZ], [RZ].

If $A = A_{\bar{0}} + A_{\bar{1}}$ is an associative superalgebra, that is, an associative algebra that has a \mathbb{Z}_2 grading, then we can define a new operation \circ given by: $a \circ b = \frac{1}{2}(ab + (-1)^{|a||b|}ba)$ for arbitrary homogeneous elements $a, b \in A$. The superalgebra obtained in this way, with the same underlying vector space and the same gradding of A and with the new product circ is a Jordan superalgebra, that is denoted $A^{(+)}$

In particular, if we take $A = M_{1|1}(F)$, the superalgebra of 2×2 matrices over the field F, with even part the set of diagonal matrices and its even part equal to the set of off-diagonal matrices,

$$A_{\bar{0}} = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & d \end{array} \right) \right\}, \quad A_{\bar{1}} = \left\{ \left(\begin{array}{cc} 0 & b \\ c & 0 \end{array} \right) \right\}$$

the corresponding Jordan superalgebra $J = A^{(+)} = M_{1|1}(F)^{(+)}$ is a simple Jordan superalgebra.

Definition. If V is a \mathbb{Z}_2 -graded vector space and there exist bilinear maps $V \times J \to V$, $J \times V \to V$, we say that V is a Jordan bimodule over the Jordan superalgebra J if the split null extension V + J is a Jordan superalgebra, where the multiplication in the split null extension extends the one of J, $V \cdot V = (0)$ and the multiplication of elements of J and V is given by the bilinear maps . (see [MZ2]).

In the superalgebras setting, for each bimodule we can define the opposite module. Let $V = V_{\bar{0}} + V_{\bar{1}}$ be a Jordan bimodule over a Jordan superalgebra J. Take copies $V_{\bar{1}}^{op}$ and $V_{\bar{0}}^{op}$ of $v_{\bar{1}}$ and $V_{\bar{0}}$ with different parity. Then $V^{op} = V_{\bar{1}}^{op} + V_{\bar{0}}^{op}$ becomes a Jordan J-bimodule defining the action of J on V^{op} by:

$$av^{op} = (-1)^{|a|}(av)^{op}, \quad v^{op}a = (va)^{op}$$

If J is a unital Jordan superalgebra and V is a bimodule such that the identity of J, 1, acts as the identity on V, then we say that J is a unital Jordan bimodule over J.

A one-sided Jordan bimodule over J is a bimodule V such that $\{J, V, J\} = (0)$, where $\{x, v, y\} = (xv)y + x(vy) - (-1)^{|x||v|}v(xy)$ represents the triple Jordan product in J + V and $x, y \in J, v \in V$ are homogeneous elements.

Let's denote U(x,y) the operator given by $vU(x,y) = \{x,v,y\}$ and $D(x,y) = R(x)R(y) - (-1)^{|x||y|}R(y)R(x)$.

It is well known that every Jordan bimodule decomposes as a direct sum of unital and one-sided Jordan bimodules.

The aim of this paper is to give the classification of one sided Jordan bimodules (already announced by the authors some time ago) and one-sided modules over the simple Jordan superalgebra $J = M_{1|1}(F)^{(+)}$.

1 Unital bimodules

In the section J will denote the Jordan superalgebra $J=M_{1|1}^{(+)}$. We will fix the canonical basis $\{e,f,x,y\}$, where $e=e_{11},\ f=e_{22},\ x=e_{12},\ y=e_{21}$. Then $J_{\bar{0}}=Fe+Ff,\ J_{\bar{1}}=Fx+Fy,\ ef=0,\ e^2=2,\ f^2=f,\ [x,y]=e-f.$

For arbitrary elements $\alpha, \beta, \gamma \in F$, let us call $V(\alpha, \beta, \gamma)$ the 4-dimensional \mathbb{Z}_2 -graded vector space V = F(v, w, z, t) with $V_{\bar{0}} = F(v, w)$, $V_{\bar{1}} = F(z, t)$ and the action of J over V defined by:

$$ve = v, \ vf = 0, \ vx = z, \ vy = t,$$

$$we = 0, \ wf = w, \ wx = (\gamma - 1)z - 2\alpha t, \ wy = 2\beta z - (\gamma + 1)t,$$

$$ze = \frac{1}{2}z, \ zf = \frac{1}{2}z, \ zx = \alpha v, \ zy = \frac{1}{2}(\gamma + 1)v + \frac{1}{2}w,$$

$$te = \frac{1}{2}t, \ tf = \frac{1}{2}t, \ tx = \frac{1}{2}(\gamma - 1)v - \frac{1}{2}w, \ ty = \beta v. \tag{1.1}$$

Let us notice that $R(x)^2 = \alpha I_V$, $R(y)^2 = \beta I_V$ and $R(x)R(y) + R(y)R(x) = \gamma I_V$.

It can be also checked that vU(x,y) = w.

To start we will prove that $V(\alpha, \beta, 0)$ is a Jordan bimodule for arbitrary $\alpha, \beta \in F$.

Lemma 1.1. $V(\alpha, \beta, 0)$ is a (unital) Jordan bimodule over J.

Proof

Let us define an embedding from $M_{1|1}(F)$ in $M_{2|2}(F)$ via:

$$i: M_{1|1}(F) \to M_{2|2}(F)$$

$$e \to \begin{pmatrix} I_2 & 0 \\ 0 & 0 \end{pmatrix}$$
$$f \to \begin{pmatrix} 0 & 0 \\ 0 & I_2 \end{pmatrix}$$
$$x \to \begin{pmatrix} 0 & I_2 \\ A & 0 \end{pmatrix}$$
$$y \to \begin{pmatrix} 0 & B \\ I_2 & 0 \end{pmatrix}$$

where

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 2\alpha \end{pmatrix}, B = \begin{pmatrix} 2\beta & 0 \\ 0 & 0 \end{pmatrix}.$$

Consider the *J*-submodule of $M_{2|2}(F)$ with basis $\{\mathbf{v}, \mathbf{w} = \mathbf{v}U(x, y), \mathbf{z} = \mathbf{v}x, \mathbf{t} = \mathbf{v}y\}$.

This bimodule is isomorphic to $V(\alpha, \beta, 0)$.

Now let us consider arbitrary elements $\alpha, \beta, \gamma \in F$. We can take elements $\alpha', \beta' \in F$ such that $\gamma^2 - 4\alpha\beta - 1 = -4\alpha'\beta' - 1$, that is, $\gamma^2 = 4(\alpha\beta - \alpha'\beta')$.

Lemma 1.2. There is an isomorphism $\varphi: M_{1|1}(F)^{(+)} \longrightarrow M_{1|1}(F)^{(+)}$ such that for every $v \in V(\alpha, \beta, \gamma)$ we have $vR(\varphi(x))^2 = \alpha' v$, $vR(\varphi(y))^2 = \beta' v$ and $v(R(\varphi(x))R(\varphi(y)) + R(\varphi(y))R(\varphi(x))) = 0$.

Proof

From $\gamma^2 - 4\alpha\beta = -4\alpha'\beta'$ it follow that matrices

$$A' = \begin{pmatrix} 0 & 2\alpha' \\ -2\beta' & 0 \end{pmatrix}, \ A = \begin{pmatrix} \gamma & -2\alpha \\ 2\beta & -\gamma \end{pmatrix}$$

have the same determinant and both of them have zero trace.

Consequently both matrices are similar, that is, there is an invertible matrix P (without loss of generality we can assume that |P| = 1) such at that $A' = PAP^{-1}$.

that $A' = PAP^{-1}$. If $P = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ we only need to consider φ the automorphism of $M_{1|1}(F)^{(+)}$ given by $\varphi(e) = e$, $\varphi(f) = f$, $\varphi(x) = ax + by$, $\varphi(y) = cx + dy$.

Notice that this lemma says that $V(\alpha, \beta, \gamma)$ is a unital module over $M_{1|1}(F)^{(+)}$ and that there is a semiisomorphism between $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', 0)$.

That is, we have proved the following result.

Theorem 1.3. a) For arbitrary elements $\alpha, \beta, \gamma \in F$, the action of $J = M_{1|1}(F)^{(+)}$ over $V = V(\alpha, \beta, \gamma)$ over the graded vector space V = F(v, w, z, t) given by (1.1) defines a structure of unital J-bimodule $V(\alpha, \beta, \gamma)$.

- b) Given $\alpha, \beta, \gamma, \alpha', \beta', \gamma' \in F$, the J bimodules $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', \gamma')$ are isomorphic if and only if $\alpha = \alpha'$, $\beta = \beta'$ and $\gamma = \gamma'$
- c) The J bimodules $V(\alpha, \beta, \gamma)$ and $V(\alpha', \beta', \gamma')$ are semi- isomorphic if and only if $\gamma^2 4\alpha\beta = \gamma'^2 4\alpha'\beta'$.

Lemma 1.4. If $\gamma^2 - 4\alpha\beta - 1 \neq 0$ then the bimodule $V = V(\alpha, \beta, \gamma)$ is irreducible. If $\gamma = 1$ and $\alpha = 0$ then Fw + Fwy is the only proper submodule of $V = V(\alpha, \beta, \gamma)$. In all other cases, Fw + Fwx is the only proper submodule of $V = V(\alpha, \beta, \gamma)$.

Proof.

Let $(0) \neq V'$ a nonzero submodule of $V = V(\alpha, \beta, \gamma)$. Then $V' \cap V_{\bar{0}} \neq (0)$, since otherwise V'x = V'y = (0).

Applying to an arbitrary element \tilde{v} in V' the following Jordan identity: R(x)R(e)R(y) - R(y)R(e)R(x) - R([x,y]e) - R(xe)R(y) + R(ye)R(x) - R([x,y])R(e) = 0, we get that $\tilde{v}(R(e) - R(e-f)R(e)) = 0$.

But the odd part of $V = V(\alpha, \beta, \gamma)$ lies in the $\frac{1}{2}$ - Peirce component of e and f, so $\tilde{v} = 0$.

That is, if $V' \cup V_{\bar{0}} = (0)$, then V' = (0).

If $\{e, V', e\} \neq (0)$, then $v \in V'$ and so V' = V.

If $\{e, V', e\} = (0)$, then $V' \cup V_{\bar{0}} = Fw$. But $wU(x, y) = (\gamma^2 - 4\alpha\beta - 1)v \in V'$. So $v \in V'$, that is, V = V' as soon as $\gamma^2 - 4\alpha\beta - 1 \neq 0$. This proves irreducibility of $V = V(\alpha, \beta, \gamma)$ when $\gamma^2 - 4\alpha\beta - 1 \neq 0$.

So from now on we assume that $\gamma^2 - 4\alpha\beta - 1 = 0$

Now let's consider the case $\gamma = 1$ and $\alpha = 0$. Then wU(x,y) = wx = 0 and $wy = 2\beta z - 2t$ and V' = F(w, wx).

Otherwise, $wx = (\gamma - 1)z - 2\alpha t \neq 0$ and $wy = 2\beta z - (\gamma + 1)t$ implies that $(\gamma + 1)wx - 2\alpha wy = (\gamma^2 - 4\alpha\beta - 1)z - 0t = 0$, that is, F(w, wx) = V'.

Notation. If $\gamma^2 - 4\alpha\beta - 1 = 0$, let's denote $V'(\alpha, \beta, \gamma)$ the only proper nonzero submodule of $V = V(\alpha, \beta, \gamma)$ (that can be expressed as F(w, wx) except when $\alpha = 0$, $\gamma = 1$ that can be expressed as F(w, wy)) and $\tilde{V}(\alpha, \beta, \gamma) = V(\alpha, \beta, \gamma)/V'(\alpha, \beta, \gamma)$.

Now we can prove the classification result.

Theorem 1.5. Every irreducible finite dimensional unital Jordan bimodule over $J = M_{1|1}(F)^{(+)}$ is isomorphic to one of the bimodules $V = V(\alpha, \beta, \gamma)$, if $\gamma^2 - 4\alpha\beta - 1 \neq 0$, or to $V'(\alpha, \beta, \gamma)$ or $\tilde{V}(\alpha, \beta, \gamma)$ if $\gamma^2 - 4\alpha\beta - 1 = 0$ or their opposite modules.

Proof.

Let V be an irreducible unital finite dimensional J-bimodule. Up to opposite, we can assume that $V_{\bar{0}} = \{e, V_{\bar{0}}, e\} + \{f, V_{\bar{0}}, f\}$ and $V_{\bar{1}} = \{e, V_{\bar{1}}, f\}$.

The operators $R(x)^2$, $R(y)^2$, R(x)R(y) + R(y)R(x) commute with the action of J. By Schur's Lemma they act as scalars α, β, γ respectively.

We claim that for every subspace W of $\{e, V_{\bar{0}}, e\}$ the vector space $U = W + WU(J_{\bar{1}}, J_{\bar{1}}) + WJ_{\bar{1}}$ is a J-bimodule. Indeed, since $W \subseteq \{e, V_{\bar{0}}, e\}$, we have that $WJ_{\bar{1}} \subseteq \{e, V_{\bar{1}}, f\}$ and $WU(J_{\bar{1}}, J_{\bar{1}}) \subseteq \{f, V_{\bar{0}}, f\}$. Hence each summand W, $WU(J_{\bar{1}}, J_{\bar{1}})$ and $WJ_{\bar{1}}$ is invariant under multiplication by e and e0, so under multiplication by e1.

Now using that $R(J_{\bar{1}})R(J_{\bar{1}}) \subseteq U(J_{\bar{1}},J_{\bar{1}}) + D(J_{\bar{1}},J_{\bar{1}}) + R(J_{\bar{0}})$, we get that $WR(J_{\bar{1}})R(J_{\bar{1}}) \subseteq WU(J_{\bar{1}},J_{\bar{1}}) + WD(J_{\bar{1}},J_{\bar{1}}) + WR(J_{\bar{0}}) \subseteq U$. That implies that $WR(J)R(J) \subseteq U$.

So, we only need to prove that $WU(J_{\bar{1}},J_{\bar{1}})R(J_{\bar{1}})\subseteq WJ_{\bar{1}}$. But $U(J_{\bar{1}},J_{\bar{1}})\subseteq R(J_{\bar{1}})R(J_{\bar{1}})+R(J_{\bar{0}})$ and $R(J_{\bar{1}})R(J_{\bar{1}})R(J_{\bar{1}})\subseteq R(J)R(J)+D(J_{\bar{1}})$, $J_{\bar{1}})R(J_{\bar{1}})$. Now using that $D(J_{\bar{1}},J_{\bar{1}})$ acts as an scalar multiplication we gets what we wanted.

In the same way we can prove that for every $W \subseteq \{f, V_{\bar{0}}, f\}$, the subspace $W + WU(J_{\bar{1}}, J_{\bar{1}}) + WJ_{\bar{1}}$ is a *J*-bimodule.

Since we assume V to be irreducible, it follows that $dim_F\{e, V_{\bar{0}}, e\} \leq 1$ and $dim_F\{f, V_{\bar{0}}, f\} \leq 1$, $dimV_{\bar{1}} \leq 2$.

If $\gamma^2 - 4\alpha\beta - 1 \neq 0$, let us show that $v \simeq V(\alpha, \beta, \gamma)$, where $R(x)^2$ acts on V as αI_V , $R(y)^2$ acts as βI_V and R(x)R(y) + R(y)R(x) acts as γI_V . We have already seen that $V_{\bar{0}} \neq (0)$. The operator $U(x,y)^2$ acts on $V_{\bar{0}}$ as the multiplication by $\gamma^2 - 2\alpha\beta - 1$. This implies that both $\{e, V_{\bar{0}}, e\}$ and $\{f, V_{\bar{0}}, f\}$ are different of zero (multiplication by U(x,y) exchange them both).

Choose $0 \neq v \in \{e, V_{\bar{0}}, e\}$. We know that $w = vU(x,y) \in \{f, V_{\bar{0}}, f\}$. Let us prove that $vx, vy \in V_{\bar{1}}$ are linearly independent. Suppose that $vy = \lambda vx$, $\lambda \in F$. Then $vR(y)R(x) = (vy)x = \lambda(vx)x = \lambda\alpha v$ and $vU(x,y) = vR(x)R(y)-vR(y)R(x)-vR([x,y]) = v(R(x)R(y)+R(y)R(x))-2vR(y)R(x)-vR(e-f) = (\gamma-2\lambda\alpha-1)v$, that is, $vU(x,y) \in Fv$, which is a contradiction.

Hence F(v, w = vU(x, y), vx, vy) is a *J*-bimodule and the multiplication table coincides with the one of $V(\alpha, \beta, \gamma)$.

Now let's consider the case $\gamma^2 - 4\alpha\beta - 1 = 0$. In this case $V_{\bar{0}}U(x,y)^2 = (0)$. If $\{e, V_{\bar{0}}, e\} \neq (0)$ and $0 \neq v \in \{e, V_{\bar{0}}, e\}$, then w = vU(x,y) = 0. Indeed, if $w = vU(x,y) \neq 0$, then V is generated by w, wU(x,y), wx, wy. But $wU(x,y) = vU(x,y)^2 = 0$. So, $dim_F V_{\bar{0}} \leq 1$, which contradicts $v, w \in V_{\bar{0}}$. Hence w = vU(x,y) = 0. This says that $V \simeq V'(\alpha, \beta, gamma)$.

If $\{f, V_{\bar{0}}, f\} \neq (0)$, then $V \simeq \bar{V}(\alpha, \beta, \gamma)$, what proves the theorem.

2 One sided modules

Let S = S(J) be the unital universal associative enveloping algebra of the Jordan algebra $J = M_{1|1}^{(+)}$. Denote $x = e_{12}$, $y = e_{21}$, $e = e_{11}$, $f = e_{22}$, v = e - f, then $J = alg_{Jord}\langle x, y \rangle$ and $S = alg_{As}\langle x, y \rangle$.

We have $x \circ e = x$, $y \circ e = y$, [x, y] = v. Observe that x^2, y^2 lie in the center Z(S) of S. Moreover, we have

$$[x \circ y, x] = [y, x^2] = 0,$$

 $[x \circ y, y] = [x, y^2] = 0,$

hence $x \circ y \in Z(S)$.

Lemma 2.1. Let $A = F[x^2, y^2], B = F[x^2, y^2, x \circ y].$

- 1) The algebra S is a free B-module with free generators 1, x, y, xy.
- 2) The center Z(S) = B.
- 3) $B = A[x \circ y]$, where $(x \circ y)^2 = 1 + 4x^2y^2$.

Proof. We have $yx = x \circ y - xy$, $xyx = (x \circ y)x - x^2y$, $yxy = (x \circ y)y - y^2x$, $(xy)^2 = (x \circ y)xy - x^2y^2$, which proves that S is spanned over B by elements 1, x, y, xy. Let $z = \alpha + \beta x + \gamma y + \delta xy \in Z(S)$ with $\alpha, \beta, \gamma, \delta \in B$, then $0 = [x, z] = \gamma[x, y] + \delta x[x, y] = \gamma v + \delta xv$. Multiplying by v, we get $\gamma + \delta x = 0$, which gives $\gamma = \delta = 0$. Similarly, we get $\beta = 0$, hence Z(S) = B. The similar argument shows that if $\alpha + \beta x + \gamma y + \delta xy = 0$ then $\alpha = \beta = \gamma = \delta = 0$, which proves 1). Finally,

$$(x \circ y)^2 = (xy)^2 + (yx)^2 + 2x^2y^2 = [x, y]xy + [y, x]yx + 4x^2y^2 = v^2 + 4x^2y^2 = 1 + 4x^2y^2$$
, proving 3).

The algebra S has a natural \mathbb{Z}_2 -grading induced by the grading of J:

$$S_{\bar 0}=B+Bxy,\ S_{\bar 1}=Bx+By.$$

The category of one-sided Jordan J-superbimodules is isomorphic to the category of right associative \mathbb{Z}_2 -graded S-modules. In particular, irreducible superbimodules over J correspond to irreducible \mathbb{Z}_2 -graded S-modules.

Let $M = M_{\bar{0}} + M_{\bar{1}}$ be an irreducible \mathbb{Z}_2 -graded S-module and $\varphi : S \to End_FM$ be the corresponding representation. Then $\varphi(B)$ lies in the even part of the centralizer D of S-module M, which is a graded division algebra (see, for example, [1]). Denote $\alpha = \varphi(x^2)$, $\beta = \varphi(y^2)$, $\gamma = \varphi(x \circ y)$, $K = F(\alpha, \beta, \gamma)$, then K is a field, $K = F(\alpha, \beta) + F(\alpha, \beta)\gamma$ where $\gamma^2 = 4\alpha\beta + 1$. Moreover, the graded algebra $\bar{S} = \varphi(S)$ has dimension at most 4 over K.

The algebra \bar{S} and the module M may be considered over the field K, then M is a faithful irreducible graded module over the K-algebra \bar{S} . By [2, Lemma 4.2], M up to opposing grading is isomorphic to a minimal graded right ideal of \bar{S} . Since $\dim_K \bar{S} \leq 4$, we have $\dim_K M \leq 2$. Moreover, the case $\dim_K M = 1$ can appear only when $\bar{S} = K$ which is impossible since $[\varphi(x), \varphi(y)] \neq 0$. Therefore, $\dim_K \bar{S} = 4$ and $\dim_K M = 2$.

Observe also that by the density theorem for graded modules (see, for example, [1]), \bar{S} is a dense graded subalgebra of the algebra $End_DM \subseteq End_K^{gr}M = M_{1|1}(K)$. Clearly, this implies that $\bar{S} = M_{1|1}(K)$.

Consider the elements $a=\frac{\gamma+1}{2}-xy,\ b=xy-\frac{\gamma-1}{2}\in B.$ We have $a^2=a,\ b^2=b,\ a+b=1,$ hence up to change of indices $\varphi(a)=e_{11},\ \varphi(b)=e_{22}.$ We will separate the two cases:

1. Let first $\gamma \neq 1$. Chose an element $m \in M_{\bar{0}} \cup M_{\bar{1}}$ such that ma = m, then we have $m = \frac{\gamma+1}{2}m - mxy$, which gives

$$mxy = \frac{\gamma - 1}{2}m, \ \beta mx = \frac{\gamma - 1}{2}my. \tag{2.1}$$

In particular, $mxy \neq 0$, $m' = mx \neq 0$, and M = Km + Km'. We have by (1)

$$m'x = \alpha m;$$

$$my = \frac{2\beta}{\gamma - 1} mx = \frac{2\beta}{\gamma - 1} m';$$

$$m'y = mxy = \frac{\gamma - 1}{2} m.$$

2. Let now $\gamma=1$, then a=1-xy, b=xy. Choose an element $m\in M_{\bar{0}}\cup M_{\bar{1}}$ such that $m=mb\neq 0$, then $m'=mx\neq 0$ and again M=Km+Km'. We have

$$m'x = \alpha m;$$

 $my = mby = mxyy = \beta mx = \beta m';$
 $m'y = mxy = m.$

Observe that for $\gamma = -1$ in case 1 we obtain the formulas of case 2. The condition $\gamma^2 = 1$ is equivalent to $\alpha\beta = 0$, therefore we will distinguish four non-isomorphic cases: $\gamma \neq \pm 1$; $\alpha = 0$, $\beta \neq 0$; $\alpha \neq 0$, $\beta = 0$; $\alpha = \beta = 0$.

Resuming, we have

Theorem 2.2. Let M be an irreducible one-sided Jordan bimodule over $J = M_{1|1}(F)^{(+)}$. Then there exist an extension field $K = F(\alpha, \beta, \gamma)$ with $\gamma^2 = 4\alpha\beta + 1$ such that $\dim_K M = 2$, M = Km + Km', and up to opposite

grading the action of J on M is given as follows: 1. $\gamma \neq \pm 1$ (or $\alpha \beta \neq 0$).

$$\begin{array}{rcl} m \cdot x & = & \frac{1}{2}m'; \\ m' \cdot x & = & \frac{1}{2}\alpha m; \\ m \cdot y & = & \frac{\beta}{\gamma - 1}m'; \\ m' \cdot y & = & mxy = \frac{\gamma - 1}{4}m. \end{array}$$

2. $\gamma = \pm 1$ (or $\alpha\beta = 0$).

$$m \cdot x = \frac{1}{2}m';$$

$$m' \cdot x = \frac{1}{2}\alpha m;$$

$$m \cdot y = \frac{1}{2}\beta m';$$

$$m' \cdot y = \frac{1}{2}m.$$

In the second case we have 3 non-isomorphic subclasses: $\alpha = 0$, $\beta \neq 0$; $\alpha \neq 0$, $\beta = 0$; $\alpha = \beta = 0$.

The module M is finite dimensional if and only if the elements α , β are algebraic over F. In particular, if the field F is algebraically closed and M is finite dimensional, then K = F.

References

- [1] Alberto Elduque, Mikhail Kochetov, Gradings on Simple Lie Algebras
- [2] Yuri Bahturin, Michel Goze, and Elizabeth Remm, Group Gradings on Lie Algebras, with Applications to Geometry, I, in *Developments and Retrospectives in Lie Theory: Algebraic Methods*, edited by Geoffrey Mason, Ivan Penkov, Joseph A. Wolf, Springer, 2014, 1–51.