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Abstract
The purpose of this survey is to discuss Poisson and contact brackets and related
infinite dimensional superalgebras. All vector spaces are considered over the field of
complex numbers C.
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1 Brackets

Let A be an associative commutative algebra. A binary bilinear operation [ , ] :
A × A → A is called a Poisson bracket if

(1) (A, [ , ]) is a Lie algebra,
(2) [ab, c] = a[b, c] + [a, c]b for arbitrary elements a, b, c ∈ A.

Example 1 Let A be a polynomial algebra in 2n variables A = C[p1, . . . , pn,
q1, . . . , qn]. Then
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[ f , g] =
n∑

i=1

(
∂ f

∂ pi

∂g

∂qi
− ∂g

∂ pi

∂ f

∂qi

)

is a Poisson bracket.

Example 2 Let g be a Lie algebra. Let A = Sym(g) be the symmetric tensor algebra
over g. Then the Lie bracket on g extends to a Poisson bracket on A.

A binary bilinear product [ , ] : A × A → A is called a contact bracket if

(3) (A, [ , ]) is a Lie algebra,
(4) the linear transformation D : a �→ [a, 1], a ∈ A, is a derivation of the algebra A,
(5) [ab, c] = a[b, c] + [a, c]b + abD(c) for arbitrary elements a, b, c ∈ A.

Example 3 Every Poisson bracket is a contact bracket with derivation D = 0.

Example 4 Let A be an associative commutative algebra with a derivation D. Then
[a, b] = D(a)b − aD(b) is a contact bracket (of vector field type).

Example 5 Let A = C[p1, . . . , pn, q1, . . . , qn, t] be a polynomial algebra in 2n + 1
variables. Let D = ∂

∂t . In view of the formula (5) a contact bracket is uniquely
determined by its values on generators (including 1). However, not all values on
generators extend to a contact bracket. The values

[pi , q j ] = δi j , [t, pi ] = 1

2
D(t)pi , [t, qi ] = 1

2
D(t)qi

extend to a contact bracket on A.

Question 1 Let (A, [ , ]1), (B, [ , ]2) be Poisson and contact brackets on algebras A,
B respectively. Is there always a way to define a contact bracket on A ⊗ B extending
[ , ]1 and [ , ]2?

Examples 1 and 5 lead to the infinite dimensional Lie algebras H(2n) and K (2n+1)
of Hamiltonian and contact types respectively. They should be viewed in the context
of the family of Lie algebras of Cartan type together with W (n) = DerC[t1, . . . , tn]
and

S(n) =
{
d =

n∑

i=1

fi (t1, . . . , tn)
∂

∂ti
∈ W (n)

∣∣∣∣∣ div d =
n∑

i=1

∂ fi
∂ti

= 0

}
.

The Lie algebras W (n), S(n), H(2n), K (2n + 1) are simple and finitely presented
(see [9]).

Question 2 Find reasonable conditions on aPoisson (resp. contact) bracket [ , ] for the
Lie algebra L = (A, [ , ]) or [L, L] to be (i) finitely generated, (ii) finitely presented.
Question 3 Towhich extent does the Lie algebra L = (A, [ , ]) determine the bracket?
More precisely, is an isomorphism of the Lie algebras (A, [ , ]1) → (B, [ , ]2) always
extendable to an isomorphism of brackets in some sense?
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2 Superalgebras

By a superalgebra we mean an algebra A = A0̄+ A1̄ graded by the cyclic groupZ/2Z

of order 2.

Example 6 Let m, n ≥ 1. Then the decomposition

Mm+n(C) =
(∗ 0
0 ∗
)
m
n

+
(
0 ∗
∗ 0

)

defines the structure of a superalgebra on the algebra of (m + n) × (m + n) matrices.

Example 7 Grassmann (exterior) algebra. Consider the algebra G(n) presented by
generators and relations

G(n) = 〈1, ξ1, . . . , ξn | ξiξ j + ξ jξi = 0, ξ2i = 0〉.

Then the set of ordered products 1, ξi1 · · · ξik , i1 < · · · < ik , is a basis of G(n). Let

G 0̄(n) = span(1, ξi1 · · · ξik , k is even),

G 1̄(n) = span(ξi1 · · · ξik , k is odd),

G(n) = G 0̄(n) + G 1̄(n) is a superalgebra. Let G be the union of the ascending chain
G(1) ⊂ G(2) ⊂ . . .. Clearly, G = G 0̄ + G 1̄, where

G 0̄ =
⋃

n≥1

G 0̄(n), G 1̄ =
⋃

n≥1

G 1̄(n).

Definition For a superalgebra A = A0̄ + A1̄ the subalgebra

G(A) = A0̄ ⊗ G 0̄ + A1̄ ⊗ G 1̄ < A ⊗ G

is called the Grassmann envelope of A.

Let V be a variety of algebras, i.e. a class of algebras defined by identities.

Definition We say that a superalgebra A is a V-superalgebra if G(A) ∈ V .
Considering the varieties of associative commutative, Lie, Jordan algebras we get

classes of associative commutative, Lie, Jordan superalgebras.
These classes can be defined by graded identities. If the variety V is defined by

multilinear identities and in some term of one of these identities variables xi , x j are
permuted then this term has to be multiplied by (− 1)|xi |·|x j |, where |xi |, |x j | are the
parities of the variables xi , x j .

Example 8 The Grassmann algebra G = G 0̄ + G 1̄ is an associative commutative
superalgebra.
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Example 9 If A ∈ V then A ⊗ G = A ⊗ G 0̄ + A ⊗ G 1̄ is a V-superalgebra.
The notions of Poisson and contact brackets can be easily “superized” in accordance

with the above rule.

Definition Let A = A0̄ + A1̄ be an associative commutative superalgebra. A graded
binary bilinear product [ , ] : A × A → A is called a Poisson bracket if

(6) (A, [ , ]) is a Lie superalgebra,
(7) [ab, c] = a[b, c] + (−1)|b|·|c|[a, c]b for arbitrary elements a, b, c ∈ A0̄ ∪ A1̄.

Definition A graded binary bilinear product [ , ] : A × A → A is called a contact
bracket if

(8) (A, [ , ]) is a Lie superalgebra,
(9) the linear transformation D : a �→ [a, 1], a ∈ A, is an even derivation of A,
(10) [ab, c] = a[b, c] + (−1)|b|·|c|[a, c]b + abD(c) for arbitrary elements a, b, c ∈

A0̄ ∪ A1̄.

Example 10 The bracket

[ f , g] =
n∑

i=1

(−1)| f | ∂ f

∂ξi

∂g

∂ξi

is a Poisson bracket on the Grassmann superalgebra G.

Let C[t1, t−1
1 , . . . , tm, t−1

m ] be the algebra of Laurent polynomials in m variables.
Consider the associative commutative superalgebra

�(m : n) = C[t1, t−1
1 , . . . , tm, t−1

m ] ⊗ G(n) = �(m : n)0̄ + �(m : n)1̄;
�(m : n)ī = C[t1, t−1

1 , . . . , tm, t−1
m ] ⊗ G(n)ī , i = 0 or 1.

Example 11 Let m = 2k,

�(m : n) = C[p1, p−1
1 , . . . , pk, p

−1
k , q1, q

−1
1 , . . . , qk, q

−1
k , ξ1, . . . , ξn].

Then

[ f , g] =
k∑

i=1

(
∂ f

∂ pi

∂g

∂qi
− ∂g

∂ pi

∂ f

∂qi

)
+

n∑

i=1

(−1)| f | ∂ f

∂ξi

∂g

∂ξi

is a Poisson bracket. It gives rise to the Hamiltonian Lie superalgebra H(m : n) =
(�(m : n), [ , ]).
Example 12 Let m = 2k + 1,

�(m : n) = C[p1, p−1
1 , . . . , pk, p

−1
k , q1, q

−1
1 , . . . , qk, q

−1
k , t, t−1, ξ1, . . . , ξn].
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Let

D =
{

∂
∂t Neveu–Schwarz type,

t ∂
∂t Ramond type.

Let [pi , p j ] = [qi , q j ] = 0, [pi , q j ] = δi j , [t, pi ] = 1
2D(t)pi , [t, qi ] =

1
2D(t)qi , [t, ξ�] = 1

2D(t)ξ�, [pi , ξ�] = [qi , ξ�] = 0, [ξ�, ξs] = δ�,s for all
1 ≤ i, j ≤ k; 1 ≤ �, s ≤ n. These values extend to a contact bracket on �(m : n).
The bracket gives rise to the Lie superalgebra K (m : n) = (�(m : n), [ , ]).

Along with superalgebras H(m : n) and K (m : n) we can consider other superal-
gebras of Cartan type. Denote

W (m : n) = Der�(m : n) =
⎧
⎨

⎩

m∑

i=1

fi
∂

∂ti
+

n∑

j=1

g j
∂

∂ξ j

⎫
⎬

⎭ .

For an m-tuple α = (α1, . . . , αm), αi ∈ C and tα = tα11 . . . tαmm consider the subsu-
peralgebra S(m : n, α) =
⎧
⎨

⎩D ∈ W (m : n)

∣∣∣∣∣∣
div(tαD) =

m∑

i=1

∂(tα fi )

∂ti
+

n∑

j=1

(−1)|g j | ∂(tαg j )

∂ξ j
= 0

⎫
⎬

⎭

of W (m : n).
Moreover, some even variables ti may appear without their inverses. Denote

�(m1 : m2 : n) = C[ti , t−1
i | 1 ≤ i ≤ m1]

⊗ C[t j | m1 + 1 ≤ j ≤ m1 + m2] ⊗ G(n);
W (m1 : m2 : n) = Der�(m1 : m2 : n);

S(m1 : m2 : n, α) = {D ∈ W (m1 : m2 : n) | div(tαD) = 0}.

The superalgebras H(m1 : m2 : n) and K (m1 : m2 : n) can be viewed as subsu-
peralgebras of H(m1 + m2 : n) and K (m1 + m2 : n) respectively whose underlying
subspace is �(m1 : m2 : n).

Let us discuss connections between brackets and Jordan superalgebras.
Kantor [14] noticed that if A is an associative commutative superalgebra with a

Poisson bracket [ , ] then the vector space J = A + Av with an operation that
extends the operation on A and a(bv) = abv, (bv)a = (−1)|a|(ba)v, (av)(bv) =
(− 1)|b|[a, b]; a, b ∈ A0̄ ∪ A1̄ is a Jordan superalgebra. J0̄ = A0̄ + A1̄v, J1̄ =
A1̄ + A0̄v, J = J0̄ + J1̄. We call it the Kantor double of the bracket [ , ] and
denote it by K (A, [ , ]). There exist, however, non-Poisson brackets whose Kantor
doubles are Jordan superalgebras. We call such brackets Jordan brackets. Cantarini
and Kac [4] noticed that Jordan brackets are in 1–1 correspondence with contact
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brackets. More precisely, if [a, b] is a contact bracket with derivation D(a) = [a, 1]
then 〈a, b〉 = [a, b] − 1

2 (D(a)b − aD(b)) is a Jordan bracket.
Tits [28,29] made the following observation. Let L be a Lie (super)algebra, L 0̄

contains sl2 = Ce + C f + Ch, [e, f ] = h, [h, e] = 2e, [h, f ] = − 2 f (we
call such triple e, f , h an sl2- triple). Suppose that the operator ad(h):L → L is
diagonalizable and has eigenvalues − 2, 0, 2, so L = L− 2 + L0 + L2 is a direct sum
of eigenspaces. Then J = (L2, a · b = [[a, f ], b]) is a Jordan (super)algebra.

Moreover, Tits [28,29], Kantor [13] and Koecher [16] showed that every Jordan
(super)algebra can be obtained in this way. The corresponding Lie (super)algebra
L is not unique, but any two such Lie superalgebras are centrally isogenous. Let
L = TKK(J ) be the universal Lie (super)algebra in this class (see [19]).

Let [ , ] be the Poisson bracket of Example 11 on �(m : n), if m is even, or
corresponds to the contact bracket of Example 12 on �(m : n), if m is odd. Consider
the Kantor double J (m : n) = K (�(m : n), [ , ]). Then

TKK(J (m : n)) ∼= K (m : n + 3).

3 Superconformal algebras

3.1 Basic examples

The centerless Virasoro algebra is the algebra of derivations of Laurent polynomials,

Vir = DerC[t, t−1] =
{
f (t)

∂

∂t

}
.

In view of importance of the Virasoro algebra and (especially) its central extensions
in Physics Neveu, Schwarz [24], Ramond [25] and others considered superextensions
of the algebra Vir. These superextensions became known as superconformal algebras.
In [11] Kac and van de Leur put the theory on a more formal footing and recognized
that all known superconformal algebras are in fact infinite dimensional superalgebras
of Cartan type considered in [9]. Following [11] we call a Z-graded Lie superalgebra
L =∑i∈Z Li a superconformal algebra if

(i) L is graded simple,
(ii) Vir ⊆ L 0̄,
(iii) the dimensions dim Li , i ∈ Z, are uniformly bounded.

Example 13 The superalgebra W (1 : n) = DerC[t, t−1, ξ1, . . . , ξn] graded by
degrees in t is a superconformal algebra.

Example 14 Let α ∈ C,

S(n, α) = {D ∈ W (1 : n) | div(tαD) = 0} < W (1 : n).

123

Author's personal copy



São Paulo Journal of Mathematical Sciences

The superalgebra S(n, α) is simple unless α ∈ Z. If α ∈ Z then [S(n, α), S(n, α)] is a
proper ideal in S(n, α) and the superalgebra [S(n, α], S(n, α)] is simple. In this case
we will change the notation

S(n, α) := [S(n, α), S(n, α)].

Also S(n, α) ∼= S(n, β) if and only if α − β ∈ Z, so this family of superalgebras
is parametrized by α ∈ C/Z. It appeared in Physics literature [1,27] under the name
“SU2-superconformal algebras”.

Example 15 Consider the superalgebras K (1 : n). Abusing notation we will denote
them as K (n). The superalgebra K (n) is simple except for n = 4.

For n = 4 the commutator ideal [K (4), K (4)] has codimension 1 in K (4) and
[K (4), K (4)] is a simple superalgebra. We will denote K (4) := [K (4), K (4)].

The superalgebras K (n) are Z-graded. In the Ramond case they are graded by
degrees in t . In the Neveu–Schwarz case we define deg(t iξi1 · · · ξir ) = 2(i + 1) − r .
We remark that this grading is not induced by a grading of an associative commutative
superalgebra �(1 : n).

Thus, K (n), n ≥ 1, is another family of superconformal algebras. In Physics
literature it is known as the family of “SOn-superconformal algebras” [1,26]. The
superalgebras K (1) are just the Neveu–Schwarz and Ramond superalgebras. We
remark that in the Neveu–Schwarz case the embedding Vir ↪→ K (n)0̄ is not graded
as Viri ↪→ K (n)0̄,2i .

Along with superalgebras K (n) we consider their twisted versions. Let ξ1, . . . , ξn
be the Grassmann variables involved, [ξi , ξ j ] = δi, j . The algebra �(1 : n) =
C[t, t−1, ξ1, . . . , ξn] is Z/2Z-graded: �(1 : n) = C[t, t−1, ξ1, . . . , ξn−1] +
C[t, t−1, ξ1, . . . , ξn−1]ξn = �(1 : n − 1) + �(1 : n − 1)ξn .

Consider the (twisted) algebra K (n, 1) = �(1 : n − 1) + �(1 : n − 1)t
1
2 ξn with

the bracket on it. For even n the superalgebra K (n, 1) is not isomorphic to any of the
superalgebras K (n) considered above.

Example 16 In 1996 Cheng–Kac [5] and, independently, Grozman–Leites–Shchepo-
chkina [8] introduced a new family of superconformal algebras. Following [5] we will
denote it as CK(6). In [22] for an arbitrary associative commutative superalgebra R
and an even derivation D of R we constructed a superalgebra CK(R, d) such that
CK(C[t, t−1], ∂

∂t ) = CK(6). Let us briefly recall the construction.
The simple finite dimensional Lie superalgebra P(n − 1) is the superalgebra of

2n × 2n matrices of the type

(
a k
h − aT

)
, where a, k, h are n × n matrices over C,

tr(a) = 0, kT = − k and hT = h. The superalgebras P(n) (the so-called “strange”
series), n ≥ 3 are centrally closed. However, P(3) has a nontrivial central cover
P̂(3). Its existence follows from the fact that the Lie algebra skew4(C) of skew-
symmetric 4× 4 matrices is a direct sum of two ideals skew4 = sl2(C) ⊕ sl2(C). For
an arbitrary element k ∈ skew4(C) we consider its decomposition k = k′ + k′′ and
let ϕ(k) = k′ − k′′. The universal central cover P̂(3) of P(3) can be realized as the
superalgebra of 8 × 8 matrices over the polynomial algebra C[d] of the type
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(
a k

ϕ(k)d + h − aT

)
+ αd · I8

where a, k, h are 4 × 4 matrices over C, tr(a) = 0, kT = − k, hT = h, α ∈ C and
I8 is the identity matrix.

Consider the associative Weyl algebra W =∑i≥0 Rd
i , where the variable d does

not commute with a coefficient a ∈ R, but da = ad + d(a).
The superalgebraCK(R, d) is a subsuperalgebra of 8×8matrices overW generated

by P̂(3) and by all matrices

(
ei j (a) 0
0 − e ji (a)

)
, where a ∈ R, 1 ≤ i �= j ≤

4, ei j (a) is the 4 × 4 matrix having the element a at the intersection of the i-th row
and j-th column, and zeros everywhere else.

A superalgebraCK(R, d) contains an sl2-triple e, f , h such that ad(h) has eigenval-
ues−2, 0, 2. Hence CK(R, d) is isomorphic to the Tits–Kantor–Koecher construction
of a certain Jordan superalgebra that we will denote as JCK(R, d),

CK(R, d) ∼= TKK(JCK(R, d)).

Conjecture (V. Kac–J. van de Leur) An arbitrary superconformal algebra is isomor-
phic to one of the superalgebras W (1 : n), S(n, α), α ∈ C/Z, K (n), K (n, 1), CK(6).

In [10] we proved that if J = ∑i∈Z Ji is a graded simple Jordan superalgebra
having all dimensions dim Ji , i ∈ Z uniformly bounded, then either J has finitely
many nonzero negative components or J has finitely many nonzero positive compo-
nents or J is a (twisted) superalgebra J (1 : n) (see Sect. 2) or J is isomorphic to
JCK(C[t, t−1], d) where d = ∂

∂t or t
∂
∂t .

This theorem implies that the only superconformal algebras coming from Jordan
superalgebras are K (n), n ≥ 3, and CK(6) as envisioned by the Kac–van de Leur
Conjecture.

In the next section we will consider another important case when the Conjecture
has been proved.

3.2 Polynomiality assumption

Suppose that L = ∑
i∈Z

Li is a Z-graded Lie superalgebra, dimensions dim L 0̄i =
d0, dim L 1̄i = d1 do not depend on i , d = d0 + d1. Suppose further that there exist
bases ei1, . . . , eid of Li such that all d3 structural component functions

[eip, e jq ] =
d∑

r=1

γpqr (i, j)ei+ j,r

are polynomials in i, j .

Remark This assumption holds for all known superconformal algebras W , S, K ,
CK(6).
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Wewill recall some definitions and facts concerning formal distributions (for more
details see [12]).

Let A be an arbitrary (not necessarily associative) algebra. By a formal distribution

a(z) =
∑

i∈Z
a(i)z−i−1 ∈ A[[z, z−1]]

we mean a power series over A that is infinite in both directions.

Definition Two formal distributions a(z), b(z) are said to be mutually local if there
exists an integer N = N (a, b) ≥ 0 such that

a(z)b(w)(z − w)N = b(w)a(z)(z − w)N = 0.

We will consider a countable family of operations

a(z) ◦n b(z) = Resw a(w)b(z)(w − z)n, n ≥ 0, n ∈ Z.

Here Resw denotes the coefficient at w−1.
If a(z), b(z) are mutually local then only finitely many products a ◦n b may be

different from zero.

Example 17 For L one of the Lie superalgebras discussed above, the Polynomiality
Assumption implies that the formal distributions ep(z) = ∑

i∈Z
epi z−i−1, 1 ≤ p ≤ d,

are pairwise mutually local.

Definition A vector space C ⊆ A[[z, z−1]] is called a conformal algebra of formal
distributions if ∂C ⊆ C, ∂ = d

dz , C ◦n C ⊆ C for an arbitrary n ≥ 0, and every two
elements from C are mutually local.

Dong Lemma (see [6,12]) Let A be an associative or Lie superalgebra and let distri-
butions a(z), b(z), c(z) ∈ A[[z, z−1]] be pairwise mutually local. Then
(i) for an arbitrary n ≥ 0 the distributions a ◦n b and c are mutually local,
(ii) the distributions d

dz a(z) and b(z) are mutually local.

This lemma implies that if A is an associative or Lie superalgebra, then an arbi-
trary family {ai (z)} of pairwise mutually local distributions over A (we assume that
each ai (z) is also mutually local with itself) generates a conformal algebra of formal
distributions.

Example 18 In the superconformal algebras W , S, K , CK(6) the formal distributions

ep(z) =
∑

i∈Z
epi z

−i−1

generate conformal algebras Conf W (1 : n), Conf S(n, α), Conf K (n) and
Conf CK(6).
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A conformal algebra is said to be of finite type if it is a finitely generated module
over C[∂]. Fattori and Kac [7] proved that a simple Lie conformal superalgebra of
finite type is isomorphic to a current superalgebra Conf g⊗ C[t, t−1] or to one of the
superalgebras Conf Vir, Conf W (1 : n), Conf S(n, α), Conf K (n) or Conf CK(6). In
the last two cases we include only the Neveu–Schwarz type. The conformal algebra
that corresponds to the Ramond superalgebra is not of finite type.

This confirms the Kac–van de Leur Conjecture for superconformal algebras that
correspond to conformal algebras of finite type.

3.3 Cartan subalgebras and roots

In each of the superalgebrasW , S, K , CK(6)wewill select an even toroidal subalgebra
of zero degree and describe root decompositions with respect to it.

3.3.1 In L = W (1 : n) =
{
f (t, ξ) ∂

∂t +∑n
i=1 fi (t, ξ) ∂

∂ξi

}
consider the Cartan sub-

algebra H =
{∑n

i=1 αiξi
∂

∂ξi

∣∣∣ αi ∈ C

}
and its subalgebra H (0) =

{ ∑n
i=1 αiξi

∂
∂ξi

∣∣∣

∑n
i=1 αi = 0

}
. The subalgebra H (0) is spanned by elements ξi

∂
∂ξi

− ξ j
∂

∂ξ j
. We notice

that for each 1 ≤ i �= j ≤ n the elements ξi
∂

∂ξ j
, ξi

∂
∂ξi

− ξ j
∂

∂ξ j
, ξ j

∂
∂ξi

form an
sl2-triple lying in L 0̄0.

Let ωi ∈ H∗ denote the functional
〈
ωi ,
∑n

j=1 α jξ j
∂

∂ξ j

〉
= αi , 1 ≤ i ≤ n. The

action of H on L defines a decomposition of L into the sum of the centralizer

CL(H) = C[t, t−1] ∂

∂t
+

n∑

i=1

C[t, t−1]ξi ∂

∂ξi
= C[t, t−1] ∂

∂t
+ C[t, t−1]H ,

and a finite collection of eigenspaces

L = CL(H) =
∑

0 �=α∈


Lα,


 = {ωi1 +· · ·+ωir , ωi1 +· · ·+ωir −ωi } ⊂
n⊕

i=1
Zωi . Functionals α ∈ 
 are called

roots. For a root α = ωi1 + · · · + ωir , 1 ≤ i1 < · · · < ir ≤ n we have

Lα = C[t, t−1]ξi1 . . . ξir
∂

∂t
+ C[t, t−1]ξi1 . . . ξir H .

For a root α = ωi1 + · · · + ωir − ω j , j /∈ {1, . . . , ir }, 1 ≤ i1 < · · · < ir ≤ n, we
have

Lα = C[t, t−1]ξi1 . . . ξir
∂

∂ξ j
.
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Now consider a functional f :
n⊕

i=1
Cωi → C, f (ωi ) = 2i−1, 1 ≤ i ≤ n. Clearly,

f (α) �= 0 for an arbitrary root α ∈ 
. Then 
 = 
−∪̇
+, where


− = {α ∈ 
 | f (α) < 0} = {ωi1 + · · · + ωir − ω j , ir < j}

+ = {α ∈ 
 | f (α) > 0}

= {ωi1 + · · · + ωir , ωi1 + · · · + ωir − ω j , j < ir }

Let

L− =
∑

α∈
−
Lα, L+ =

∑

α∈
+
Lα, B = CL(H) + L+.

The subsuperalgebra B is the Borel subalgebra of L .

3.3.2 Let L = S(n, γ ), γ ∈ C. For an arbitrary k ∈ Z the elements

ek = − tk+1 ∂

∂t
+ γ + k + 1

2
tk
(

ξ1
∂

∂ξ1
+ ξ2

∂

∂ξ2

)
and

tkξi
∂

∂ξ j
, tk

(
ξi

∂

∂ξi
− ξ j

∂

∂ξ j

)
, 1 ≤ i �= j ≤ n,

lie in S(n, γ ). We have [ei , e j ] = (i − j)ei+ j , hence
∑

i∈Z Cei = Vir.

The subalgebra H (0) =
{∑n

i=1 αiξi
∂

∂ξi

∣∣∣
∑n

i=1 αi = 0
}
lies in S(n, γ ) and

S(n, γ ) =
∑

α∈
∪{0}
S(n, γ ) ∩ W (1 : n)α, 
 ⊆

n⊕

i=1

Zωi ,

which defines a
n⊕

i=1
Zωi -grading on S(n, γ ). The centralizer of H (0) in S(n, γ ) is

Vir+C[t, t−1]H (0).
Let

S(n, γ )+ =
∑

α∈
+
S(n, γ ) ∩ W (1 : n)α,

S(n, γ )− =
∑

α∈
−
S(n, γ ) ∩ W (1 : n)α.

Then

S(n, γ ) = S(n, γ )+ +
(
Vir+C[t, t−1]H (0)

)
+ S(n, γ )−.
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3.3.3 Let L = K (2n), n ≥ 1. Up to a change of a basis we can assume that the
Grassmann variables are ξ1, . . . , ξn, η1, . . . , ηn, such that [ξi , ξ j ] = [ηi , η j ] = 0 and
[ξi , η j ] = δi j , 1 ≤ i, j ≤ n.

The Cartan subalgebra of L is H = {∑n
i=1 αiξiηi | αi ∈ C

}
. The centralizer of H

in L is

CL(H) = C[t, t−1] +
∑

1≤i1<···<ir≤n

C[t, t−1]ξi1ηi1 . . . ξir ηir .

In the centralizer CL(H) consider the nilpotent ideal

RadCL(H) =
∑

1≤i1<···<ir≤n, r≥2

C[t, t−1]ξi1ηi1 . . . ξir ηir .

ThenCL(H) = C[t, t−1]+C[t, t−1]H+RadCL(H). As abovewe consider function-
als ωi ∈ H∗, 〈ωi , ξ jη j 〉 = δi j . The action of H on L defines the root decomposition

L = CL(H) +
∑

α∈


Lα,


 = {ωi1 + · · · + ωi p − ω j1 − · · · − ω jq ;
1 ≤ i1 < · · · < i p ≤ n; 1 ≤ j1 < · · · < jq ≤ n;
{i1, . . . , i p} ∩ { j1, . . . , jq} = ∅}

For α = ωi1 + · · · + ωi p − ω j1 − · · · − ω jq we have

Lα = CL(H)ξi1 . . . ξi pη j1 . . . η jq .

As above, consider the functional f : H∗ → C, f (ωi ) = 2i−1, i ≤ i ≤ n. Then
f (α) �= 0 for all α ∈ 
 and therefore


 = 
+∪̇
−, 
+ = {α ∈ 
 | f (α) > 0}, 
− = {α ∈ 
 | f (α) < 0},
L = L− + CL(H) + L+, L− =

∑

α∈
−
Lα, L+ =

∑

α∈
+
Lα,

B = CL(H) + L+ is the Borel subalgebra.

3.3.4 L = K (2n + 1), n ≥ 1. Again, up to a change of basis we can assume that the
Grassmann variables are ξ1, . . . , ξn, η1, . . . , ηn, μ; the bracket on ξi , η j is the same
as in the case K (2n), [ξi , μ] = [ηi , μ] = 0 and [μ,μ] = 1.

The Cartan subalgebra is the same,

H =
{

n∑

i=1

αiξiηi

∣∣∣∣∣ αi ∈ C

}
,
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but

CL(H) =
(
C[t, t−1] + C[t, t−1]μ

)

+
∑

1≤i<···<ir≤n

(
C[t, t−1] + C[t, t−1]μ

)
ξi1ηi1 . . . ξir ηir .

As above

RadCL(H) =
∑

1≤i1<···<ir≤n, r≥2

(
C[t, t−1] + C[t, t−1]μ

)
ξi1ηi1 . . . ξir ηir ,

CL(H) = C[t, t−1, μ] + C[t, t−1, μ]H + RadCL(H).

We remark that C[t, t−1, μ] = K (1) is the Neveu–Schwarz or Ramond superalgebra.
The root system and the functional f :H∗ → C that defines the decomposition
 =


−∪̇
+ are the same as in the case of K (2n). Forα = ωi1 +· · ·+ωi p −ω j1 −· · ·−ω jq
we have Lα = CL(H)ξi1 . . . ξi pη j1 . . . η jq .

3.3.5 L = CK(6). Recall that the Lie superalgebra CK(R, d) has been realized as a
subsuperalgebra of 8×8 matrices over the Weyl algebraW =∑i≥0 Rd

i . The Cartan
subalgebra in this case is

H =
{
diag(α1, α2, α3, α4,−α1,−α2,−α3,−α4)

∣∣∣∣∣ αi ∈ C,

4∑

i=1

αi = 0

}
.

As above, define functionals ωi ∈ H∗ via

〈ωi , diag(α1, . . . , α4,−α1, . . . ,−α4)〉 = αi , 1 ≤ i ≤ 4.

The dual space H∗ can be identified with

4∑

i=1

Cωi/C(ω1 + ω2 + ω3 + ω4).

The coset of ωi maps h = diag(α1, . . . , α4,−α1, . . . ,−α4) to αi for 1 ≤ i ≤ 4.
Then the even roots are 
0̄ = {ωi − ω j | 1 ≤ i �= j ≤ 4}, and the odd roots are

1̄ = {ωi + ω j | 1 ≤ i �= j ≤ 4} ∪ {−ωi − ω j | 1 ≤ i, j ≤ 4}, 
 = 
0̄ ∪ 
1̄.

Consider the following root elements of CK(R, d):

eωi−ω j =
(
ei j 0
0 − e ji

)
, eωi−ω j (a) =

(
ei j (a) 0
0 − e ji (a)

)
,

hωi−ω j =
(
eii − e j j 0

0 e j j − eii

)
,
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hωi−ω j (a) =
(
eii (a) − e j j (a) 0

0 e j j (a) − eii (a)

)
,

qωi+ω j =
(

0 ei j − e ji
ϕ(ei j − e ji )d 0

)
,

where a ∈ R.
In [20] it was shown that

CK(R, d)ωi−ω j = eωi−ω j (R), 1 ≤ i �= j ≤ 4;
CK(R, d)−2ωi = q−2ωi (R);
CK(R, d)ωi+ω j = [qωi+ωk , eω j−ωk (R)] + q−ωk−ωl (R),

where {i, j, k, l} = {1, 2, 3, 4}.

For an arbitrary element a ∈ R consider the element

Vir(a) = [[eω4−ω1(a), qω3+ω1 ], qω2+ω1 ]
= I8(ad) −

(
e11(a′) 0

0 − e11(a′) + I4(a′)

)
,

where a′ = [a, d] = d(a), In(a) = diag(a, . . . , a︸ ︷︷ ︸
n

).

The mapping Rd → Vir(R), ad �→ Vir(a) is an isomorphism from Vir to Vir(R).
In [20] it was shown that

CCK(R,d)(H) =
∑

1≤i �= j≤4

hωi−ω j (R) + Vir(R) ∼= R ⊗ H + Vir(R).

Consider the functional

f :
4∑

i=1

Cωi/C(ω1 + ω2 + ω3 + ω4) → C

given by f (ω1) = 5, f (ω2) = − 3, f (ω3) = 2, f (ω4) = − 4. Notice that f (±ωi ±
ω j ) �= 0 unless ±ωi ± ω j = 0. This defines the decomposition 
 = 
+∪̇
−, and
the triangular decomposition

CK(R, d) = CK(R, d)− + CCK(R,d)(H) + CK(R, d)+.

4 Harish-Chandramodules and spectral gaps

Let L be a superconformal algebra. A Z-graded module V over L is called a Harish-
Chandra module if all homogeneous subspaces Vi , i ∈ Z are finite dimensional. It
looks as a natural class of representations for superconformal algebras.
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Let V̂ir be the central cover of the (centerless) Virasoro algebra Vir.
Mathieu [23] and Martin and Piard [21] (under an additional assumption) clas-

sified irreducible Harish-Chandra modules over V̂ir. Let V = ∑
i∈Z Vi be an

irreducible Harish-Chandra module over V̂ir. Then {i > 0 | Vi �= (0)} is finite or
{i < 0 | Vi �= (0)} is finite or V is a so-called intermediate module (see [15]). Being
intermediate means that as a graded vector space V is identified with the space of
Laurent polynomials, V = C[t, t−1] and there exist scalars α, β ∈ C such that

(
f (t)

d

dt

)
g(t) = − f g′ + α f ′g + β

1

t
f g.

Denote V = �(α, β). These modules are irreducible unless α ∈ Z. For α ∈ Z we add
factors of these modules to the list of intermediate modules.

Let L be a superconformal algebra and let L̂ be its central cover (in [11] Kac and
van de Leur described superconformal algebras W , S, K of small ranks that have
nontrivial central extensions).

Let S be the category of graded L̂-modules V =∑i∈Z Vi such that

(i) the center of L̂ acts trivially, so, in fact, we are talking about L-modules,
(ii) the dimensions dim Vi , i ∈ Z are uniformly bounded.

As in the case ofmodules over the Virasoro algebra the following proposition holds.

Proposition 1 Let V be an irreducible Harish-Chandra module over L̂. Then either
the set {i > 0 | Vi �= (0)} is finite or the set {i < 0 | Vi �= (0)} is finite or V belongs
to the category S.

From now on we will focus on irreducible modules from the category S.

4.1 Harish-Chandramodules over Neveu–Schwarz and Ramond superalgebras

Let A be an associative commutative superalgebra with a contact bracket [ , ], L =
(A, [ , ]). Let B be an associative commutative superalgebra that contains A, v ∈ B0̄.
Suppose that the bracket [ , ] extends to a bracket on B and [A, Av] ⊆ Av. Then Av

is a module over the Lie algebra L . We call it a bracket module.
Intermediate modules �(α, β) are bracket modules. Indeed, Vir ∼= (A, [ , ]),

A = C[t, t−1],
[ f (t), g(t)] = f ′(t)g(t) − f (t)g′(t).

Let B = C[t, t−1, v | v2 = 0]. The bracket [ , ] extends to B via [1, v] = α +
β, [t, v] = 2α + β. Then the Vir-module C[t, t−1]v is isomorphic to �(α, β).

Now we will introduce intermediate modules over Neveu–Schwarz and Ramond
superalgebras. These superalgebras are isomorphic to (A, [ , ]), A = C[t, t−1, ξ ].
Consider the superalgebra B = C[t, t−1, v, ξ | v2 = 0], where v is an even element
of degree 0. The bracket [ , ] extends to B via

[1, v] = α + β, [t, v] = (2α + β)tv, [ξ, v] = 1

2
(α + β)ξv.
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The L-module Av is irreducible unless α ∈ Z. If α ∈ Z then it has a one dimensional
submodule whose factor module is irreducible. The modules Av and their factors
(when applicable) are referred to as intermediate modules.

Theorem 4.1 Let L be a Neveu–Schwarz or Ramond superalgebra. An irreducible
L-module from the category S is intermediate.

4.2 Highest weight modules

Since irreducible modules V ∈ S over superconformal algebras W , S, K , CK(6) of
higher ranks are induced from modules over CL(H) we will start with irreducible
modules over CL(H).

Let g be the Virasoro algebra (resp. Neveu–Schwarz or Ramond superalgebra).
Let H be a finite dimensional vector space. Since g naturally acts on C[t, t−1] (resp.
C[t, t−1, μ]) it follows that C[t, t−1] ⊗ H (resp. C[t, t−1, μ] ⊗ H ) is a module over
g. Let L = g + M be the split extension, i.e. [M, M] = (0).

Theorem 4.2 Let V ∈ S be a graded irreducible L-module. Then either MV = (0)
or V = C[t, t−1] (resp. C[t, t−1, μ]) and there exists a nonzero functional λ ∈ H∗
such that

( f (t) ⊗ h)p(t) = 〈λ | h〉 f (t)p(t),

(( f (t, μ) ⊗ h) p(t, μ) = 〈λ | h〉 f (t, μ)p(t, μ), respectively).

If λ = 0 then the module above is an intermediate g-module that corresponds to some
scalars α, β ∈ C. If λ �= 0 then the module is �(α, β) for some α, β ∈ C.

In any case we will denote it as Irr(λ | α, β).

The subspace M acts on Irr(λ | α, β) as described above.
Now let L be one of the superalgebras

W (1 : n), n ≥ 2; S(n, α), n ≥ 2; K (n), n ≥ 2; CK(6).

For each of them we have the decomposition L = L− + CL(H) + L+, where H is
the Cartan subalgebra.

In the cases W , S, CK(6) we have CL(H) ∼= Vir+C[t, t−1] ⊗ H . In the case
K (2n) we have CL(H)/RadCL(H) ∼= Vir+C[t, t−1] ⊗ H and, finally, in the case
K (2n + 1) we have CL(H)/RadCL(H) ∼= g + C[t, t−1, μ] ⊗ H , where g is the
Neveu–Schwarz or Ramond superalgebra.

In all cases it allows us to view Irr(λ | α, β) as an irreducible CL(H)-module (in
the case K we assume RadCL(H) Irr(λ | α, β) = (0)).

Let Ṽ (λ | α, β) be the universal “Verma type” L-module generated by Irr(λ | α, β)

and defined by relations:

(i) L+ Irr(λ | α, β) = (0),
(ii) CL(H) acts on Irr(λ | α, β) as described above.
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The module Ṽ (λ | α, β) has a largest submodule M(λ | α, β) such that M(λ |
α, β) ∩ Irr(λ | α, β) = (0). Consider the irreducible L-module

V (λ | α, β) = Ṽ (λ | α, β)/M(λ | α, β)

over L .
Let V be a graded irreducible L-module from the category S. The action of the

Cartan subalgebra H on V is diagonalizable. For a functional ν ∈ H∗ denote

Vν = {v ∈ V | hv = 〈ν | h〉v for all h ∈ H}.

The set of weights {ν ∈ H∗ | Vν �= (0)} is finite. In the cases S, K , CK(6) it follows
from representation theory of sl2(C). In the case W (1 : n) one has to verify that
the action of the element

∑n
i=1 ξi

∂
∂ξi

∈ H is diagonalizable and has finitely many
eigenvalues.

Hence there exists a maximal weight λ. The eigenspace Vλ is an irreducible module
over CL(H). In the cases W , S, CK(6) the centralizer CL(H) ∼= Vir+C[t, t−1] ⊗ H
is a split extension of Vir. In the case K we have RadCL(H)Vλ = (0), hence Vλ is
an irreducible module over CL(H)/RadCL(H) ∼= Vir+C[t, t−1] ⊗ H for K (2n) or
g + g ⊗ H , where g is the Neveu–Schwarz or Ramond superalgebra for K (2n + 1).

In any case, we conclude that there exist scalars α, β ∈ C such that

V ∼= V (λ | α, β).

Nowwewill address the question forwhichλ ∈ H∗; α, β ∈ C themodule V (λ | α, β)

is a Harish-Chandra module?
We will discuss each case W , S, K , CK(6) separately.

4.3 L = W (1 : n), n ≥ 2.
For each 1 ≤ i �= j ≤ n the elements

ξi
∂

∂ξ j
, ξi

∂

∂ξi
− ξ j

∂

∂ξ j
, ξ j

∂

∂ξi

form an sl2-triple. It implies that for the module V (λ | α, β) to be Harish-Chandra the
highest weight λ has to be dominant, i.e.

〈
λ

∣∣∣∣ ξi
∂

∂ξi
− ξ j

∂

∂ξ j

〉
∈ Z≥0

for 1 ≤ j < i ≤ n.

Theorem 4.3 For an arbitrary dominant functional λ and arbitrary scalars α, β ∈ C

the module V (λ | α, β) is a Harish-Chandra module.

Thus graded irreducible W (1 : n)-modules from the category S are parametrized
by 3 continuous parameters
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α ∈ C/Z, β ∈ C, γ =
〈
λ

∣∣∣∣∣

n∑

i=1

ξi
∂

∂ξi

〉
∈ C,

and n − 1 discrete parameters

〈
λ

∣∣∣∣ ξi+1
∂

∂ξi+1
− ξi

∂

∂ξi

〉
, 1 ≤ i ≤ n − 1.

4.4 L = S(n, γ ), n ≥ 2.
We still call a functional λ : H (0) → C dominant if

〈
λ

∣∣∣∣ ξi
∂

∂ξi
− ξ j

∂

∂ξ j

〉
∈ Z≥0, 1 ≤ j < i ≤ n.

Thus the restriction of a dominant functional on H (in the case of W (1 : n)) to
H (0) is dominant.

Clearly, for a module V (λ | α, β) to be Harish-Chandra the functional λ has to be
dominant.

Theorem 4.4 For an arbitrary dominant functional λ ∈ (H (0))∗ and arbitrary scalars
α, β ∈ C the S(n, γ )-module V (λ | α, β) is a Harish-Chandra module.

4.5 L = K (n), n ≥ 2.
We will consider separately the cases n = 2, n = 3 and n ≥ 4.

4.5.1 L = K (2). The Cartan subalgebra H = Cξ1η1 in this case is one dimensional.
The action of the element ξ1η1 on V has finitely many eigenvalues. If λ is the maximal
eigenvalue, then V ∼= V (λ | α, β) for some α, β ∈ C. For any α, β, λ ∈ C the module
V (λ | α, β) is a Harish-Chandra module over L = K (2).

4.5.2 L = K (3) = (C[t, t−1, ξ, η, μ], [ , ]). The Cartan subalgebra H = Cξη is
still one dimensional, but now it is embeddable in sl2(C). The elements 2ξμ, 2ξη, μη

form an sl2-triple. Let V ∈ S be an irreducible L-module. The eigenvalue λ of the
action of 2ξη on V is an integer. Let V = V (λ | α, β) for some α, β ∈ C.

Theorem 4.2.2 For λ = 0 and arbitrary scalars α, β ∈ C the module V (0 | α, β)

is never Harish-Chandra. For λ = 1 the module V (1 | α, β) is Harish-Chandra if
and only if α = − 1

4 . For λ ≥ 2 the module V (λ | α, β) is Harish-Chandra for all
α, β ∈ C.

The superalgebras K (3) (there are two of them), are the TKK constructions of
Kantor doubles of brackets on C[t, t−1]. The case λ = 1 corresponds to one-sided
modules over these Jordan superalgebras. A description of such modules was given
in [18].

4.5.3 L = K (2n) or K (2n + 1), n ≥ 2. Denote λi = 〈λ | ξiμi 〉, 1 ≤ i ≤ n. For
any 1 ≤ j < i ≤ n the triples ξiη j , ξiηi − ξ jη j , ξ jηi and ξiξ j , ξiηi + ξ jη j , η jηi are
sl2-triples. In the odd case the triples μξi , 2ξiηi , 2ηiμ, 1 ≤ i ≤ n, are also sl2-triples.
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If V (λ | α, β) is a Harish-Chandra module then λi − λ j , λi + λ j ∈ Z≥0. Hence
either λ1, . . . , λn ∈ Z, λ1 ≤ · · · ≤ λn , or λ1, . . . , λn ∈ 1

2 + Z, λ1 ≤ · · · ≤ λn , and in
both cases λ1 + λ2 ∈ Z≥0. We call such functionals dominant.

Theorem 4.2.3 (1) Let λ be a dominant functional, α, β ∈ C. The module V (λ | α, β)

over K (2n), n ≥ 2 is a Harish-Chandra module if and only if λ1 + λ2 ≥ 2.
(2) The module V (λ | α, β) over K (2n + 1), n ≥ 2, is a Harish-Chandra module if

and only if λ1 ≥ 2.

4.6 L = CK (6).
The Cartan subalgebra H in this case is spanned by hωi−ω j , 1 ≤ i ≤ 4 (see Sect. 3).

If V (λ | α, β) is a Harish-Chandra module then 〈λ | hωi−ω j 〉 ∈ Z≥0 whenever
f (ωi − ω j ) > 0.
Let λ be a dominant weight and let m = 〈λ | hω1−ω3〉. Let α, β ∈ C.

Theorem 4.6 If m = 0 aand α, β ∈ C then V (λ | α, β) is never a Harish-Chandra
module. If m = 1 then V (λ | α, β) is a Harish-Chandra module if and only if
〈λ | hω2−ω3〉 = 0, β = −1. If m ≥ 2 then V (λ | α, β) is a Harish-Chandra module
for any α, β ∈ C.

Remark The numbers λ1 + λ2 in the case K (2n), n ≥ 2, λ1 in the case K (2n + 1)
and 〈λ | hω1−ω3〉 in the case CK(6) are spectral gaps that gained prominence in the
study of expanders (see [17]).

5 More open questions

Let L be one of the superconformal algebras discussed in Sects. 3, 4. For every weight
μ of an L-module V (λ | α, β) the weight space Vμ is a C[t, t−1]-module of finite
rank that we denote by rank(Vμ).

Question 4 Find a formula for the character

ch(V ) =
∑

μ

rank(Vμ)eμ.

The associative commutative superalgebras �(m : n) and �(m1 : m2 : n), m1 +
m2 = m, and the related Lie superalgebras of types W , S, H , K are graded by the
group Z

m . A Z
m-graded module

V =
∑

α∈Zm

Vα

is said to be a Harish-Chandra module if dim Vα < ∞ for all α ∈ Z
m . In [3] Billig

and Futorny classified irreducible Harish-Chandra modules over W (m : 0). On the
other hand Bakalov et al. [2] developed a theory of pseudoalgebras that, in particular,
applies to formal distributions in several variables.
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Let L be one of the superalgebras W (m1 : m2 : n), S(m1 : m2 : n, α), H(m1 :
m2 : n), K (m1 : m2 : n),m1+m2 = m. The dimensions of all nonzero homogeneous
components Lα , α ∈ Z

m , are equal to d, and in each Lα we can choose a standard
basis eα1, . . . , eαd .

We say that an L-module V = ∑α∈Zm Vα satisfies the Polynomiality Assumption
if the dimensions of all nonzero homogeneous components Vα , α ∈ Z

m , are equal to
q and in each Vα �= 0 we can choose a basis vα1, . . . , vαq such that the dq2 structural
constant functions γ r

i j (α, β), 1 ≤ i ≤ d, 1 ≤ j, r ≤ q

eαivβ j =
q∑

r=1

γ r
i j (α, β)vα+β,r

are polynomials in α1, . . . , αm, β1, . . . , βm .

Conjecture Let V be an irreducible Harish-Chandra module over L. Then either V
is a “highest weight module” (see [3]) or V satisfies the Polynomiality Assumption.

Remark 1 The Polynomiality Assumption implies that the description of irreducible
(not highest weight) Harish-Chandra modules over L = W (m : n), S(m : n, α),
H(m : n) or K (m : n) should be “parallel” to the description of conformal modules
of finite type in [2].

Remark 2 Let L be one of the superalgebras W (m1 : m2 : n), S(m1 : m2 : n, α),
H(m1 : m2 : n), K (m1 : m2 : n), m1 + m2 = m. The Polynomiality Assumption
implies that for m2 ≥ 1 the action of L on V can be extended to an action of the
corresponding superalgebra W (m : n), S(m : n, α), H(m : n) or K (m : n).
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