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Abstract—The analysis of reflectarray antennas is substantially
accelerated by using Support Vector Machines (SVMs) to model
the matrix of reflection coefficients in substitution of a full-
wave analysis based on local periodicity, the Method of Moments
(MoM-LP) in this work. The SVM model takes as input variables
two geometrical variables which control the phase-shift for
two different polarizations. Thus, the employed model is able
to analyze shaped-beam dual-linear polarized reflectarrays. As
test case, a shaped-beam reflectarray radiating a pattern for
Local Multipoint Distribution Service applications, presenting a
squared-cosecant cut in elevation and sectored-beam in azimuth,
is presented, showing a high degree of agreement in both the
copolar and crosspolar patterns between the simulations of SVM
and MoM-LP. Furthermore, the acceleration with regard to the
MoM-LP is between three and four orders of magnitude, which
demonstrates the suitability of the SVM model approach for
reflectarray direct optimization.

Index Terms—reflectarray, analysis, synthesis, optimization,
Support Vector Machine (SVM), Method of Moments (MoM),
local periodicity, shaped-beam pattern

I. INTRODUCTION

Advanced applications for reflectarrays require a fast and
accurate analysis in order to perform efficient and reliable op-
timizations [1]. In this regard, the usual Phase-Only Synthesis
(POS) is only able to control the shape of the copolar pattern
due to the simplifications imposed to obtain a fast optimization
[2]. Briefly, the POS only works with the phases of the direct
coefficients from the reflection coefficient matrix, assuming
no losses and no cross-polarization introduced by the element.
They are taken into account at a later step in the design process
[1], where no control over the radiation pattern is possible.

In order to account for the crosspolar pattern, the full matrix
of reflection coefficients must be considered [3]. This matrix
is usually obtained with a full-wave analysis based on local
periodicity. In addition, since the crosspolar pattern presents
a very low relative value with regard to the copolar pattern,
high accuracy in the computation of the reflection coefficient
matrix is required, which is the main reason for the use
of a full-wave analysis tool. However, even though it has
been demonstrated that a reflectarray synthesis using such
a tool directly in the optimization loop is feasible within a
reasonable time span [3], it would be desirable to accelerate
the process. Solutions such as look-up tables [4] or Artificial
Neural Networks (ANN) [5] have been proposed to accelerate
the analysis of reflectarray unit cells. However, they present
some issues. Databases require a very large number of samples
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Fig. 1. Representation of a single-offset reflectarray with a horn antenna as
feed.

and the use of interpolation produces a loss of accuracy, which
is critical in the cross-coefficients of the reflection coefficient
matrix. On the other hand, ANNs suffer from overfitting and
limited results have been obtained when dealing with the full
matrix of reflection coefficients [6].

In this work, we use Support Vector Machines (SVMs) to
model a reflectarray unit cell comprised of two sets of four
parallel and coplanar dipoles. Each set of dipoles controls the
phase-shift for each linear polarization. Thus, the model is
able to efficiently and accurately analyze shaped-beam dual-
linear polarized reflectarrays. Simulations between SVM and
MoM-LP show a high degree of agreement in both copolar
and crosspolar patterns, which along an obtained acceleration
better than three orders of magnitude, demonstrate the useful-
ness of employing SVMs for the analysis and optimization of
reflectarray antennas.

II. SVM CHARACTERIZATION OF THE UNIT CELL

A. Reflectarray analysis

A single-offset reflectarray is considered [1] (see Fig. 1),
comprised of a feed (usually a horn antenna) which imposes
an incident field ( ~Einc) on the reflectarray surface, which is
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Fig. 2. Employed reflectarray unit cell based on parallel and coplanar dipoles
in two layers of metallization.

planar. Thus, the reflected tangential electric field is obtained
on each element (m,n) as:

~E
X/Y
ref (xm, yn) = Rmn ~E

X/Y
inc (xm, yn), (1)

where the superscript indicates the antenna polarization,
(xm, yn) are the coordinates of element (m,n) and

Rmn =

(
ρmn
xx ρmn

xy

ρmn
yx ρmn

yy

)
, (2)

is the matrix of reflection coefficient, where ρmn
xx and ρmn

yy

are the direct coefficients, and ρmn
xy and ρmn

yx are the cross-
coefficients. In this work, we employ the MoM-LP of [7]
to obtain samples the Rmn matrix of the unit cell shown in
Fig. 2 in order to train the SVM models. The LP assumption
is an approximation in which each unit cell is embedded in an
infinite array comprised of the same cell and approximately
takes into account the losses due to the substrate, mutual
coupling between elements, the field reradiated by the element
(metallizations) and reflected by the substrate and ground
plane.

From the tangential field of (1), the radiation patterns can
be efficiently computed using the Fast Fourier Transform [1]
and then the copolar and crosspolar components obtained
using Ludwig’s third definition with the First Principle of
Equivalence [3].

B. SVM characterization of the unit cell

The considered reflectarray unit cell (see Fig. 2) is com-
prised of two sets of four parallel dipoles each. In order to
simplify the SVM model, each set will be controlled by a
variable and the dipoles lengths will be proportional to that
variable. Thus, we define Tx and Ty as the variables which
control the lengths of the dipoles oriented in the x̂ and ŷ
directions, respectively. This way, the dimensionality of the
problem is also reduced, which helps to obtain a more accurate
model. In addition, the reflection coefficients vary depending
on the angle of incidence of the impinging wave with which

the unit cell is analyzed [1]. Instead of considering the incident
angle as a variable in the SVM model, a model will be
generated for each incident angle. Finally, the chosen substrate
is the CuClad 233, which has a thickness of 0.787 mm and
complex relative permittivity of εr = 2.33 − j3.029 · 10−3,
and is used for both layers. The working frequency is set to
25.5 GHz and the periodicity of the cell is 5.84 mm in both
directions.

The LIBSVM library [8] is employed to generate models of
the real and imaginary parts of the four reflection coefficients
in (2). Also, in order to further improve the SVM model and
due to the smooth behavior shown, the magnitudes of ρxx and
ρyy are also modeled, having 10 SVM models per angle of
incidence. For the SVM training, 1750 randomly generated
samples are used per angle of incidence. A novel training
strategy is followed which resulted in a mean training time
of 70 seconds per SVM.

III. ANTENNA ANALYSIS RESULTS

A. Antenna specifications

For the radiation pattern simulations, a single-offset rectan-
gular reflectarray is employed, as the one depicted in Fig. 1.
The reflectarray is comprised of 900 elements which are
arranged in a regular grid of 30×30 elements. The feed is
modeled with a cosq θ function, imposing an illumination
taper of −19.5 dB at the edge of the reflectarray. In addition,
the feed phase center is placed at ~rf = (−94, 0, 214)mm
(see Fig. 1). Finally, as previously stated, one SVM model is
generated per angle of incidence. Thus, in order to limit the
number of models, the incident angles are discretized in θ and
ϕ in steps of 10°. This way, there are only 57 (θ, ϕ) angle
combinations.

B. Radiation patterns

The goal of modeling the reflectarray unit cell with SVMs
is to be able to compute the radiation patterns efficiently
and accurately. In this work, the radiation patterns will be
computed employing the First Principle of Equivalence [3]
for both polarizations. As an example, a shaped pattern for
Local Multipoint Distribution Service (LMDS) applications is
considered. This radiation pattern presents a squared-cosecant
cut in elevation and a sectored-beam pattern in azimuth.

Fig. 3 shows the three dimensional radiation patterns for
X polarization simulated with both MoM-LP and SVM. The
radiation patterns were computed in a far field UV grid of
512×512 points, representing only those belonging to the
visible region. The results show how similar the radiation
patterns are, including the crosspolar pattern which is more
than 25 dB below the maximum gain. Similar results were
obtained for Y polarization.

To better assess the accuracy of the radiation pattern pre-
dicted by the SVMs, the relative error between the MoM-
LP and SVM simulations is calculated with the following
expression:

RE =
‖EMoM-LP − ESVM‖
‖EMoM-LP‖

, (3)
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Fig. 3. Radiation patterns in gain (dBi) for polarization X simuluated with MoM-LP and SVM. (a) Copolar (MoM). (b) Copolar (SVM). (c) Crosspolar (MoM).
(d) Crosspolar (SVM). Similar results were obtained for polarization Y.

where ‖ · ‖ denotes the Euclidean norm and the radiation
pattern computed with MoM-LP is considered the reference
since the SVMs were trained using samples of the reflection
coefficient matrix simulated with MoM-LP. The relative error
was computed for both components of the far field as well as
both linear polarizations. For the copolar pattern, an error of
0.50% was obtained for X polarization, while it was 0.57% for
Y polarization. The crosspolar pattern yielded errors of 1.08%
and 1.16% for X and Y polarizations, respectively. Due to the
high accuracy of the SVM model, the relative errors of the far
field are very low.

Fig. 4 shows the difference in dB of the LMDS radiation
pattern between the SVM and MoM-LP simulations shown in
Fig. 3 for polarization X. The difference was computed in lin-
ear scale normalized with respect to the MoM-LP simulation

and then converted to a logarithmic scale. As it can be seen,
the error error is very low in the whole visible region, and
specially in the coverage area for the copolar pattern.

Finally, the analysis of the reflectarray using SVMs is sped
up by a factor larger than three orders of magnitude. In
particular, the analysis was parallelized and carried out in
an Intel Core i3-2100 with 4 CPU working at 3.1 GHz. The
analysis with MoM-LP of the reflectarray comprised of 900
elements took 22.3 seconds, while for the SVMs only took
0.0085 seconds, which supposes a speed-up factor of 2623.
The analysis was also performed without parallelization, and
it took 84.5 seconds using MoM-LP and 0.031 seconds using
SVMs, having this time a speed-up factor of 2725. Thus,
the SVM model is most suitable for performing reflectarray
optimization with the goal of reducing the crosspolar pattern
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Fig. 4. Difference in dB between the SVM and MoM-LP simulations of the LMDS radiation pattern for polarization X. (a) Copolar. (b) Crosspolar.

[3], since it can considerably accelerate the computations while
providing high accuracy in the prediction of the radiation
patterns, especially the crosspolar component, as shown in
Figs. 3 and 4. In this regard, the SVMs would accelerate the
computation of the gradient of the optimization algorithms
which, for instance, in [3] is the Levenberg-Marquardt (within
the framework of the generalized Intersection Approach [9]);
and in [4] the gradient minimax.

IV. CONCLUSION

In this work, Support Vector Machines (SVMs) have been
used to efficiently and accurately analyze reflectarray antennas.
The SVM model allows to analyze shape-beam dual-linear
polarized reflectarray antennas faster than a full-wave Method
of Moments based on Local Periodicity (MoM-LP). The speed
up factor is better than three orders of magnitude and the
simulations show a high degree of agreement between the
SVM model and MoM-LP in both, copolar and crosspolar
pattern, which demonstrates the suitability of SVMs for the
design and optimization of reflectarray antennas.
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