
1

Genome sequencing and analysis methods in

chronic lymphocytic leukemia

Víctor Quesada1,2*, Miguel Araujo-Voces1, José G. Pérez-Silva1, Gloria

Velasco1,2, and Carlos López-Otín1,2*

1Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto

Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain,
2Centro de Investigación Biomédica en Red de Cáncer, Spain.

*Send correspondence to:

Víctor Quesada (quesadavictor@uniovi.es) or Carlos López-Otín (clo@uniovi.es)

Departamento de Bioquímica y Biología Molecular

Facultad de Medicina, Universidad de Oviedo

33006 Oviedo-SPAIN

Tel. 34-985-104201; Fax: 34-985-103564

mailto:quesadavictor@uniovi.es
mailto:clo@uniovi.es

2

Abstract
The genomic sequencing of chronic lymphocytic leukemia (CLL) samples has provided

exciting new venues for the understanding and treatment of this prevalent disease. This

feat is possible thanks to high-throughput sequencing methods, such as Illumina

sequencing. The interpretation of these data sources requires not only appropriate

software and hardware, but also understanding the biology and technology behind the

sequencing process. Here, we provide a primer to understand each step in the analysis of

point mutations from whole-genome or whole-exome sequencing experiments of tumor

and normal samples.

Key words
Bioinformatics, Genomics, Cancer, Next-generation sequencing, leukemia.

1. Introduction

Genomic studies on hematological neoplasias have provided important insights into the

molecular mechanisms driving initiation and evolution of these diseases [1]. This is

particularly the case of chronic lymphocytic leukemia (CLL), which has benefited

enormously from Cancer Genomic initiatives aimed at elucidating the mutational

landscape of this prevalent disease [2–4]. Multiple programs exist for the interpretation

of high-throughput sequencing (HTS) data, including graphical [5] and commercial

tools. The search for somatic mutations in paired tumor/normal samples can be roughly

divided into three phases with dedicated tools: alignment of reads (frequently using

BWA [6]), mutation discovery (using for instance GATK [7] or SomaticSniper [8]) and

mutation characterization (using for instance VEP [9]). Although not exclusively, this

type of analysis is mainly used with whole-genome (WGS) or whole-exome (WES)

sequencing.

In the near future, HTS is very likely to become a fixture in research laboratories and

clinical institutions. A foreseeable consequence of this trend will be the tight integration

and standardization of every step of HTS analysis. While this will allow non-specialists

to benefit from these powerful techniques, it also means that users will be separated

from the analytical process. However, in our experience, the understanding of the

challenges posed by HTS improves the interpretation of results, independently of which

tools are used. For this reason, we provide here a typical analysis with Sidrón, our

mutation discovery pipeline [10,11]. To simplify this primer, only one sample will be

considered, and the existing variants will be obtained.

3

2. Materials
All the necessary files to follow this pipeline are provided at http://github.com/vqf/

sidron. These files are designed for Unix-based systems. Most executables are written

in Perl, and therefore can be run in Windows-based systems. However, adapting the

pipeline to Windows systems requires some programming experience. This tutorial

includes small input (fastq and bam) files, so it does not require special hardware.

Actual work with WES and particularly WGS files requires at least large memory

storage capacities, and in practice also multiple CPUs and access to large RAM. As a

reference, each full WGS file will require permanent memory in the order of hundreds

of Gb.

In addition, other external programs are necessary to follow the procedure. The first part

of the tutorial includes the alignment of the sequences, which is performed with BWA.

Once the reads are aligned, Sidrón uses Samtools to extract information from the BAM

files. Finally, one of the filtering procedures uses a second aligner, named BLAT. All

these programs are public and free:

2. 1. BWA installation files and procedures can be found at http://bio-

bwa.sourceforge.net/.

2.2. To install Samtools, follow the instructions at http://www.htslib.org/. You will also

need the corresponding Perl library (install distribution LDS/Bio-SamTools-1.43.tar.gz

from CPAN).

2.3. To install BLAT, download the file https://users.soe.ucsc.edu/~kent/src/blatSrc.zip

and follow the instructions within. Also download http://hgdownload.soe.ucsc.edu/

admin/exe/linux.x86_64/faToTwoBit.

2.4. The example uses the human genome as a template. The corresponding FASTA

sequence can be downloaded from ftp://ftp.ensembl.org/pub/release-91/fasta/

homo_sapiens/dna/Homo_sapiens.GRCh38.dna.toplevel.fa.gz. Download the file and

decompress it with gzip –d Homo_sapiens.GRCh38.dna.toplevel.fa.gz at the download

folder.

2.5. Index the reference genome with faToTwoBit

Homo_sapiens.GRCh38.dna.toplevel.fa Homo_sapiens.GRCh38.dna.toplevel.fa.2bit.

Start a BLAT server with the script provided in the example (./startHumanServer

Homo_sapiens.GRCh38.dna.toplevel.fa.2bit [port_number]). If port_number is not

specified, the script will use 9006.

4

The tutorial assumes that the executables bwa, samtools, gfClient, gfServer and

faToTwoBit are available from any folder. You can create softlinks to those executables

in a folder inside the PATH environment or change the corresponding commands to

include the path to the executable.

3. Methods
The files provided at http://github.com/vqf/sidron include two small input fastq files

(ex_1.fastq.gz and ex_2.fastq.gz). You can see the format of this file by typing zcat

ex_1.fastq.gz | head at the download folder. Although this file is small, its format is

identical to that of the typical output from HTS machines.

3.1. Alignment

1. Create a custom alignment file. In the folder where Sidrón was downloaded, run perl

align.pl. The script will ask for several pieces of data:

-Basename: name of the output file (i. e. align_mreads).

-Ref_genome: Path to the fasta file containing the reference genome.

-Read_folder: Path to the folder containing the fastq files to align (single-end or paired-

end). You can accept the default value pointing at the current folder.

-File_pattern: Common part of the fastq file names (e. g., ex). If reads are paired, the

script searches for files whose names match this pattern and afterwards contain “_1”

and “_2”. This will identify the input files ex_1.fastq.gz and ex_2.fastq.gz.

If all data are correct, the script will create an executable file called align_mreads.sh. Its

contents automate the alignment process. At the beginning of the file, two lines provide

the names of the executables for bwa and samtools. These can be changed manually.

2. Execute the custom alignment file with ./align_mreads.sh. This will create a folder

called align_mreads with two files named align_mreads.sorted.bam and

align_mreads.nodups.bam. The second file contains the alignments with duplicates

removed. In this example, we will use align_mreads.sorted.bam.

3.2. Extraction and calculation of putative variants

1. Enter the folder containing the bam file (cd align_mreads).

5

2. Use samtools to feed the pileup of the bam file into the perl script (samtools mpileup

-f path_to_genome_fasta align_mreads.sorted.bam | perl ../extract_mq.pl >mreads.mq).

The file mreads.mq contains all the positions in the alignment that show any change that

may suggest that there is a variant. Most of these positions will in fact not contain

variants, but sequencing or alignment errors. It is important to notice that for the rest of

the positions there is no indication of variant. Even if other variants exist, the current

sequencing data cannot find them.

3. Use Sidrón to assign a score to each putative variant (perl ../sidron.pl mreads.mp

../table.hsh >mreads.sidron). The output file contains three additional columns:

genotypes considered, Sidrón score and reserved.

3.3. Filtering of variants

1. Get positions with high S values (../downstream_onesample.sh mreads.sidron). This

will create a file called mreads.sidron.variants.

2. Filter by non-local criteria (bad alignment, repetitive regions, …) with polyfilter (perl

../polyfilter.pl mreads.sidron.variants align_mreads.sorted.bam >mreads.polyfilter).

3. Repeat steps 2.3 and 3.1 with the filtered positions:

perl ../sidron.pl mreads.polyfilter ../table.hsh >mreads.polyfilter.sidron

../downstream_onesample.sh mreads.polyfilter.sidron

At the end, we obtain a file called mreads.polyfilter.sidron.variants with the filtered

variants.

3.4 Exploration of variants

1. Create files with the genomic coordinates to explore. For instance, we can run head

mreads.polyfilter.sidron.variants >ex. This will create a file named ex with the first ten

variants. The only columns needed are the first and the second (chromosome and

position), the script will not read the rest of the columns.

2. Create snapshots of the interesting positions with perl ../snapshot.pl

align_mreads.sorted.bam ex. Each position will yield an html file that can be examined

with any web browser. The reference genome appears at the top in green, and each read

appears aligned below. When the read base is the same as the corresponding base in the

reference genome, we have points (read in the + strand) or commas (read in the -

6

strand). High-confidence bases are in blue, and low-confidence bases are in red. Each

read is clickable for more information.

Notes

1. Depending on the type of sequencing, we may want to remove duplicates (whole-

genome, whole-exon) or not (pooled sequencing). In general, we want to remove

duplicates when the read depth is relatively low and the probability of independently

getting exactly the same DNA fragment more than once is low. If we sequence a part of

the genome at very high read depth, this probability is much higher, and most duplicates

will not be artifacts.

2. By default, samtools mpileup cuts the read depth at 250. If necessary, this limitation

can be circumvented by adding the –d option (e. g., samtools mpileup -d 1e8 -f

path_to_genome_fasta align_mreads.sorted.bam…).

3. The table.hsh file contains the expected rates of error for each base the sequencer

reads (i. e., the probability that the machine reads A when in fact it should read C).

Ideally, one should determine those error rates with orthogonal methods, such as

genotyping microarrays. However, we have also developed specific methods to estimate

those error rates directly from the reads.

4. The genotypes in the Sidrón file are given as a pair of bases N1N2. The first base is

the most represented in the pileup, and the second base is the second most frequent base

in the same position. Sidrón considers and compares two genotypes: homozygous (N1

N1) and heterozygous (N1 N2). The S score is defined as:

𝑆 = 𝑙𝑜𝑔10 (
𝑝(𝑐|𝐻𝑒𝑡)

𝑝(𝑐|𝐻𝑧)
)

Here, log10 is the logarithm in base 10, c is the configuration (which bases were read

and with which qualities), Het is the heterozygous genotype and Hz is the homozygous

genotype. Each probability is computed from the configuration and the error table

(table.hsh). For instance, the probability that a configuration contains 3 As and one G

given a Hz genotype is the probability that 3 bases were correctly read and in one the

machine gave a G when it should have given an A.

5. The criteria to filter variants with downstream_onesample.sh are complex. An

explanation of the cutoff points can be found inside the script. The cutoff values depend

on the read depth of each position, as high-depth positions contain more information

7

and allow finer distinctions. Each parameter in this file can be overridden by creating a

file called config.txt in the run folder with the definitions. The operations and values are

stored in a file called log.txt.

6. As the name implies, polyfilter contains several filters. The most important ones

consider the probability that the variant occurs only at specific positions in each read

and the possibility that the reads with the variants can be aligned to different positions

in the genome. The first of those filters finds the position of each variant base inside its

read. Then, it calculates the maximum distance between those positions (d). The

probability that n bases chosen at random in a read of length l yield a maximum

distance of d or less is:

𝑝(𝑙, 𝑛, 𝑑) = (𝑙 − 𝑑) (
𝑑 + 1

𝑙
)

𝑛

− (𝑙 − 𝑑 − 1) (
𝑑

𝑙
)

𝑛

, ∀ 𝑑 ∈ [0, 𝑙 − 1]

If the computed probability for a position is lower than 0.2%, the configuration is

considered spurious and filtered out. The second filter performs a BLAT alignment of

each read containing a variant and filters the read out if it can be aligned with the same

or higher quality at some other place in the genome. Since BLAT has a slightly different

algorithm than BWA, this filter can improve the sensitivity to misaligned reads. On the

other hand, this filter does not remove positions, only reads. This is the reason why

Sidrón must be executed again after this step. Filtered positions are written to a file

called filtered_out.

7. We developed snapshot.pl when few alternatives existed to examine a genomic

position, and we still use it as a lightweight tool. Currently, other more sophisticated

tools exist, such as IGV (http://software.broadinstitute.org/software/igv/).

8. This primer only explores how to get variants from a single sample. To compare

tumor and normal samples, the procedure can be followed with these techniques. First,

we obtain the mq file from the tumor sample. Then, we extract the corresponding

positions from the normal sample with a different script (not provided). The Sidrón

script then computes the S values for each position in both the tumor and normal

sample. The rest of the procedure is similar to the one described above, with the only

distinction that we will look for high S values in the tumoral sample (Het) and low S

values in the normal sample (Hz).

9. We have only considered point mutations in this procedure, where Sidrón adds

resolving power. For small insertions and deletions, other considerations make this

technique insufficient. For a primer on how to find insertions and deletions, see

http://samtools.sourceforge.net/cns0.shtml.

8

Acknowledgement
We thank J.M.P. Freije and X.S Puente for helpful comments and advice. The Instituto

Universitario de Oncología is supported by Fundación Bancaria Caja de Ahorros de

Asturias. VQ is supported by Ministerio de Economía y Competitividad and Gobierno

del Principado de Asturias, including FEDER funding. CL-O is supported by grants

from European Research Council (DeAge, ERC Advanced Grant), Ministerio de

Economía y Competitividad, Instituto de Salud Carlos III (RTICC) and Progeria

Research Foundation.

References

1. Ferrando AA, López-Otín C. Clonal evolution in leukemia. Nat Med. 2017 Oct

6;23(10):1135–45.

2. Puente XS, Beà S, Valdés-Mas R, Villamor N, Gutiérrez-Abril J, Martín-Subero

JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia.

Nature. 2015 Oct 22;526(7574):519–24.

3. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al.

Mutations driving CLL and their evolution in progression and relapse. Nature.

2015 Oct 22;526(7574):525–30.

4. Valdés-Mas R, Gutiérrez-Abril J, Puente XS, López-Otín C. Chronic lymphocytic

leukemia: looking into the dark side of the genome. Cell Death Differ. 2016

Jan;23(1):7–9.

5. Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al.

The Galaxy platform for accessible, reproducible and collaborative biomedical

analyses: 2016 update. Nucleic Acids Res. 2016 Jul 8;44(W1):W3–10.

6. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics. 2010 Mar 1;26(5):589–95.

7. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.

The Genome Analysis Toolkit: a MapReduce framework for analyzing next-

generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297–303.

8. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al.

SomaticSniper: identification of somatic point mutations in whole genome

sequencing data. Bioinformatics. 2012 Feb 1;28(3):311–7.

9. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The

Ensembl Variant Effect Predictor. Genome Biol. 2016 Jun 6;17(1):122.

9

10. Puente XS, Pinyol M, Quesada V, Conde L, Ordóñez GR, Villamor N, et al.

Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic

leukaemia. Nature. 2011 Jul 7;475(7354):101–5.

11. Puente XS, Quesada V, Osorio FG, Cabanillas R, Cadiñanos J, Fraile JM, et al.

Exome sequencing and functional analysis identifies BANF1 mutation as the cause

of a hereditary progeroid syndrome. Am J Hum Genet. 2011;88(5):650–6.

