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Abstract— Evaluating driving from the point of view of 

efficiency is a complex task. The environment is continuously 

changing and there is no direct relationship between all the factors 

that affect fuel consumption. In this paper, we propose a method 

to evaluate driving that can fit any scenario. It is based on Data 

Envelopment Analysis (DEA). This technique allows us to measure 

the efficiency of the drivers and to ascertain which behaviors they 

should improve. There are many solutions to evaluate driving in 

the literature. However, these solutions have difficulties adapting 

to changes in the driving environment and the result of the 

evaluation could be inaccurate. A driver could be classified as less 

efficient when in fact the driving could be affected by factors 

beyond his or her control. In addition, they do not provide the 

sources of inefficiency. With our method, we can analyze and 

quantify the cause of inefficiency. This proposal has been used to 

evaluate drivers of a bus fleet in Spain. The results show that 

drivers who were rated as efficient achieve lower fuel 

consumption. They can save up to 9.21% in comparison with the 

least efficient drivers. It is also observed that anticipation is a skill 

that saves a large amount of fuel and that it is an aspect that most 

bus drivers have a lot of room for improvement. 

 

Index Terms— Eco-Driving Training, Data Envelopment 

Analysis, Public Transport, Intelligent Transportation System  

 

I. INTRODUCTION 

ir pollution is currently a very serious problem that has 

consequences for health, the economy and the 

environment. According to [1], heart disease and strokes are 

responsible for 80% of the cases of premature death, and they 

are attributable to air pollution. It increases the likelihood of 

suffering other respiratory and cardiovascular diseases, cancer, 

fertility problems, obesity, and diabetes [2] [3]. The main 

causes of pollution are power generation and road transport [4]. 

Different measures have been promoted in the transportation 

area in order to reduce the emission of gaseous and particulate 

pollutants such as improving the technologies related to 
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aerodynamics or engines (fleet renewal), stimulating public 

transport, choosing the best route (eco-routing) or changing the 

driver’s behavior (eco-driving). 

Eco-driving stands out among the above solutions because it 

can be applied to any type of vehicle. However, it is very 

difficult to change people’s driving habits. Driving is a complex 

task because the driver has to carry out several actions at the 

same time.  

Many transportation companies are training their workers in 

order to improve their driving style [5] [6] [7]. The drivers 

attend eco-driving courses where they learn the main driving 

rules to minimize energy consumption. In addition, efficient 

driving experts supervise the drivers on a real route and advise 

them about which aspects of driving need to be improved.  

In these cases, there are three main problems: the cost of eco-

driving classes, the number of eco-driving students, and the 

subjectivity. The first drawback causes the number of classes to 

be reduced. The trainer has to detect driver errors in a short 

time. In addition, the transport companies often have many 

drivers. The trainer needs to issue customized instructions for 

each participant. Furthermore, people can be susceptible and do 

not easily accept criticism, especially if is not well justified. 

Apart from the above-mentioned, it is also very important to 

encourage the drivers to improve their driving behavior. Many 

authors highlight the need to continuously motivate the drivers 

because many of them consider eco-driving styles “boring” or 

they forget or do not feel motivated to apply their 

knowledge[7].  

In order to motivate the drivers and help driving experts, we 

need a solution to assess the driving. The evaluation method 

should be accurate and able to provide enough information to 

identify in which areas the driver needs to improve.  

Our research group has been working in conjunction with 

ADN Context-aware Mobile Solutions S.L to develop a tool to 

help driving experts [8]. The tool provides the experts with 

information about the driving habits of bus drivers to enhance 
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the eco-driving classes. The trainer can focus on the 

deficiencies observed in the driving style. This system uses 

several metrics to show the driver's behavior from the point of 

view of energy efficiency. It also assigns a score to the drivers 

based on fuzzy logic and eco-driving rules. This score is used 

to create a ranking in which the drivers try to obtain a high 

position. The proposal has been used in bus fleets in Spain and 

Morocco. 

We have observed that the metrics and the fuzzy logic system 

proposed in [8] do not always produce good results. Evaluating 

driving is not a trivial matter. There are a large number of 

variables that can influence results and some do not depend on 

the driver. Sometimes the evaluation is inaccurate because the 

algorithm is not able to model the driving scenario. In [8] we 

have seen that there are drivers who obtain high scores (using 

the fuzzy logic system) in general taking into account all the 

bus lines where they drive. But, there are bus lines where the 

drivers get abnormally low scores. This low score is due to the 

fact that the fuzzy logic model is not adjusting properly to this 

bus line. Setting the thresholds for the membership functions of 

the fuzzy model is not an easy task.  

In this work, we propose a method to evaluate bus drivers 

based on Data Envelopment Analysis (DEA) [9] [10]. This 

solution does not require to fix the limits considered as 

permissible to establish that a driver is efficient (e.g.: fuzzy 

logic) or to label samples to train the algorithm (e.g.: support 

vector machine). The use of DEA allows us to easily adjust the 

evaluation criteria. The result is a more accurate and fair 

assessment of driving behavior. This is important for greater 

acceptance of the results and to increase motivation. A fair 

assessment system would allow us to develop a reward 

program. In addition, the solution identifies the skills that the 

driver should improve to reduce fuel consumption, enabling the 

driving expert to focus on them.  

The rest of the paper is organized as follows. Section 2 

describes the state of the art. Section 3 introduces the proposal. 

In Section 4, the solution is used to evaluate a bus fleet in Spain. 

Finally, our conclusions and future work are presented in 

Section 5. 

II. RELATED WORK 

Eco-driving techniques for reducing fuel consumption have 

been widely tried in buses. In [11], the researchers conducted a 

real test with 54 drivers. They introduced two initiatives (an 

educational program and driving assistant) in the bus line in 

order to make a comparison. Drivers saved on average 6.8% of 

fuel. The results were similar in the two cases. In addition, the 

authors observed a large decrease in hard deceleration and 

speeding. However, they also concluded that there are external 

factors that limit drivers’ ability to follow the eco-driving 

recommendations such as the weather and the need to meet 

schedules, as well as having to keep to a pre-determined route. 

This causes drivers to get discouraged. Fuel consumption in 

heavy-duty vehicles depends on a larger set of variables 

compared to light vehicles [12]. In this case, the context is 

especially important. The topography, the distance between the 

stops, the vehicle type, the traffic signs and the road type (urban 

line or extra-urban line) significantly affect energy 

consumption. 

A pilot test [13] performed with 3 drivers in the city of Rome 

concluded that driving behavior can reduce fuel consumption 

by 27%. External variables such as slope can double the fuel 

consumption and the bus load can also have an impact with 

increases of up to 26%. Other authors [14] [15] also 

demonstrated the strong relationship between driving style and 

fuel consumption.     

Educational programs and training tools allow drivers to 

improve their driving skills. These types of solutions have two 

main problems: the companies have to pay an efficient driving 

expert and the driver is not working during the training period. 

This causes that the duration of the classes is too short.   The 

trainer has to detect in a short time the student’s deficiencies. 

Despite this, the reduction of fuel consumption through training 

programs might be equal or even higher than if we added   

technological solutions to the vehicle [16]. Furthermore, these 

types of solutions avoid that the company has to install new 

elements in the bus fleet with the consequent expense. 

On the other hand, many studies highlight that the 

improvement in the driving style is degraded in the long term 

[17]. In [5] the authors conducted a study with urban bus drivers 

in order to assess the impact of an eco-driving training course 

on their driving behavior. The results showed a 10.2% decrease 

in fuel consumption immediately after the course. This value 

was reduced to 4.35% two months after the training phase. 

In the literature, many researchers have developed methods 

for classifying drivers [18] [19] [20] [21]. Classification 

methods can be divided into two sets: supervised and 

unsupervised. On the one hand, supervised proposals can 

predict how a new sample will be labeled using a previously 

labeled training dataset. This is their main drawback. This 

solution requires manual labeling. Furthermore, this task can be 

influenced by subjectivity. On the other hand, the aim of 

unsupervised classification is to find a function to describe a 

hidden structure from unlabeled data. The main advantage of 

these methods is that we do not have to label the training 

dataset. However, unexpected results may arise if the model 

does not fully reflect reality. 

In [22], the authors propose a method based on a Bayesian 

classifier to identify the type of driver. This solution was 

validated by 10 drivers with an overall accuracy of 77%. In 

[23], the researchers propose using Support Vector Machine 

(SVM) and K-Means clustering to recognize driving styles. The 

data are obtained through the vehicle's inertial sensors. In this 

work, they conclude that turning events and brake events are 

very useful to differentiate drivers. They also highlight that the 

number of features analyzed is limited and that others such as 

driver body posture, head dynamics and hand location may be 

very useful to analyze the driver. In [24], the authors develop a 

rule-based approach in order to build a driving style 

classification. The drawback of this solution is the complexity 

of modeling more general driving behaviors. This proposal was 

only validated in a simulator. 

In [25], the authors present an algorithm to classify the driver 

behavior in two types: normal and aggressive driving. This 

algorithm is based on the Auto Regressive with Exogenous 

input model (ARX). The model is validated on data recorded on 

a test track, in a vehicle driven by two different drivers (a 
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normal driver and an aggressive driver). The results were that 

the relevant sensitivity is 90.3% and the relevant specificity is 

88.6% when they only took into account the driving samples 

obtained when the road curvature was high. In the other cases, 

the sensitivity of the model obtained is 50.8%, while the 

specificity is 91.7%. 

Additionally, there are solutions based on the unsupervised 

classification method. A clustering-based approach is presented 

in [26]. They use a system for real-time vehicle tracking 

consisting of a GPS and GSM/GPRS data transmission. This 

system provides the GPS position, time, and speed values. From 

the speed values, they calculate the longitudinal acceleration 

and the mechanical work (the energy required to increase the 

speed over the time). The data is sent to a central system and 

then analyzed using two clustering methods: Hierarchical 

cluster analysis (HCA) and Principal Component Analysis 

(PCA). 

In [27] the authors also use a clustering-based solution to 

identify different driving behaviors. The algorithm segments 

and clusters car-following behaviors based on eight variables: 

the longitudinal acceleration, the lateral acceleration, the yaw 

rate, the vehicle speed, the lane offset, the yaw angle, the range, 

and the range rate. The solution is applied to a dataset obtained 

by 20 different drivers (10 car and 10 truck drivers). The results 

show that each car driver has a personal driving behavior, 

whereas truck drivers show a common driving pattern. 

A quantitative method to evaluate driving styles is presented 

in [21]. A personalized driver model is established for each 

driver by using real-world vehicle test conditions and the 

locally designed neural network. This model is employed to 

perform the simulated standard driving cycle test for driving 

behavior normalization, where the desired speed profile is 

adopted from a standard driving cycle test (FTP-75) which is 

described in [28]. Finally, they proposed an aggressiveness 

index based on the energy spectral density analysis on 

normalized behavior. This index is applied to detect abnormal 

driving behavior using a simulator. In [29], the researchers 

present an algorithm to recognize driving behaviors based on 

the Bayesian Multivariate Linear Model with a sequence 

segmentation algorithm. 

 In [30], the researchers propose a method based on sudden 

accelerations. The algorithm extracts jerk features from the 

current vehicle speed within a short window, and classifies the 

current driver style into three classes, calm, normal and 

aggressive, by comparing the extracted jerk feature with the 

statistics of the driver styles on the current roadway. The 

solution is validated using a simulator (PSAT-Powertrain 

System Analysis Toolkit). They observed that the fuel rate of a 

conventional vehicle had a positive correlation with spikes in 

the speed up profile.   

In [31], we proposed a solution to evaluate the driving 

performance based on fuzzy logic. This proposal is used in 

order to build a gamification tool. The driver obtains points 

according to his/her driving style. This score allows us to create 

a ranking. In addition, the system warns the driver when he or 

she carries out inefficient driving actions. The system was 

validated in real tests by 36 different drivers on three routes. 

The results showed an improvement of 8.65% in fuel 

consumption when the gamification tool was enabled. 

Furthermore, drivers maintain the reduction in the long term. 

Table 1 shows an overview of the solutions described above. 

These proposals described above could be used to inform the 

trainer in advance about the level of the students. However, 

these solutions do not indicate what the driver is doing wrong. 

They are limited to classifying the driver in different classes: 

calm, normal or aggressive. Other proposals simply assign them 

a score. In addition, in these solutions we have to previously 

label driving samples (efficient or inefficient) or calculate 

bounds. The building of the knowledge database is a laborious 

task that is done arbitrarily and does not accurately reflect the 

reality.  

The driving style not only depends on the driver, it is also 

strongly influenced by external factors [12] [13] [32]. 

Therefore, the result of the evaluation may not be fair. This is 

particularly important in the case of bus drivers who have to 

follow fixed routes. Two drivers of different lines cannot be 

compared directly because the routes differ. One driver may use 

inertia less than another because the distance between the stops 

is shorter.  

 

TABLE 1 

PROPOSALS TO CLASSIFY DRIVING BEHAVIOR   

Reference 
Classification 

Method 
Algorithm  Test 

[22] Supervised 
Bayesian 

Classifier 
Real 

[23] Mixed 

K-Means and 

Support Vector 

Machine 

Real 

[24] Supervised Rule-based  Simulator 

[25] Supervised 

Auto 

Regressive with 

Exogenous 

Input Model 

Real 

[26] Unsupervised 

Hierarchical 

Cluster 

Analysis 

(HCA) and 

Principal 

Component 

Analysis 

Real 

[27] Unsupervised Clustering Real 

[21] Unsupervised 

Artificial 

Neural 

Network 

Simulator 

[29] Unsupervised 

Bayesian 

Multivariate 

Linear Model  

Real 

[30] Unsupervised Fuzzy Logic Real 

[31] Unsupervised Fuzzy Logic Real 

 

Our solution calculates the efficiency comparing with a peer 

or combination of peers. Therefore, the results are realistic. The 

system highlights that a driver is less efficient if there is another 

that has better results under similar conditions. Furthermore, 

our proposal determines what causes inefficiency and quantifies 

it. Another advantage is that we can use inputs and outputs with 
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different measurement units. This is very useful in this context 

because the data can be obtained from very different sources. 

III. DESCRIPTION OF THE PROPOSAL 

The vehicle’s telemetry is required in order to evaluate the 

driving. In our case, we use the Cated Box system [33] [34] 

developed by ADN Context-aware Mobile Solutions S.L. and 

our research group. Figure 1 shows the system. This solution is 

able to obtain vehicle variables such as speed, rpm, longitudinal 

acceleration, total distance, instantaneous fuel consumption or 

engine load. The communication protocol that makes the 

gathering of these data possible is SAE J1939 [35]. In addition, 

the solution has a GPS to locate the bus. These data are used to 

detect the driving patterns. Driving patterns are different 

combinations of events captured along a temporal window. 

Other proposals are based on single events or their 

instantaneous combination. These solutions might be more 

sensitive to events outside the driver’s control such as a 

pedestrian crossing the road incorrectly, causing a harsh 

deceleration.  

The next step is to calculate the driver's performance for each 

pattern. In this case, we have defined different key performance 

indicators (KPIs). The driving patterns and the KPIs are saved 

in a relational database to allow complex queries. 

 
Fig. 1. Cated Box system. 

 

Finally, we use the KPIs to calculate the efficiency of each 

driver. The technique used to obtain efficiency is known as Data 

Envelopment Analysis (DEA). The result is a value between 

zero and one for each driver where one means the driver is 

efficient. In addition, this algorithm provides slack values for 

each driver. These values indicate how much the driver would 

have to improve a KPI in order to be efficient. This method 

allows us to ascertain the main causes why a driver does not 

drive efficiently. The solution is described in more depth in the 

following subsections.  

A. Parameters required to evaluate the driving  

One of the keys to reduce fuel consumption is to minimize 

energy loss. The first step is to detect the behaviors that have a 

strong impact on fuel consumption. We have developed driving 

patterns [36] based on the following proven facts: 

 Acceleration causes a very significant increase in 

energy demand. This action should be made when 

the driver is really sure that that energy will be taken 

advantage of. 

 There is no tractive force at the wheels when the 

vehicle is in motion with inertia. We must avoid 

losing energy due to braking force if this does not 

imply a problem for safety. The motion of the 

vehicle should only be limited by the aerodynamic 

force, the rolling force, and the gravity force in 

order to save fuel. The opposition of these forces to 

the movement is inevitable. The mechanical parts of 

the vehicle also behave as a brake, known as 

“Engine brake”.   

 The vehicle consumes fuel when the vehicle's 

engine is running and the vehicle is not in motion. 

In this case, the fuel consumption depends on the 

energy required to keep the engine running and the 

accessories. Even if the energy demand is small, the 

fuel consumption might be important if the vehicle 

is in this state for a long period of time. 

 

TABLE 2 

DESCRIPTION OF THE DRIVING PATTERNS 

 Pattern Conditions 

Inefficient 

AB 

a>0 → (t≤2s) → brakes=1 

or 

a>0 → (t≤2s) →  

a≤ -0.8882 (m/s2) 

BA 
a≤ -0.882 (m/s2); v≠0 → 

(t≤2s) → a>0 

Idling v=0 (t≥limits) 

Start-Stop  

(Stage 1) 

v=0 → (t≤2s) →  

a≤ 0.7 or a≥0.7 

Efficient 

Start-Stop  

(Stage 2) 

Start-Stop (Stage 1) -> 

brakes≠1; accelerator≠1 

Inertia 
v>0; brakes≠1; 

accelerator≠1 

 

Table 2 describes the driving patterns that we use to evaluate 

the driving style. The driving patterns can be classified into two 

groups: efficient patterns and inefficient patterns. We have used 

the following:  

Acceleration-Brake pattern (AB): it is used to detect 

situations in which the driver is not taking advantage of inertia. 

The driver presses the accelerator pedal followed by a 

deceleration (𝑎 ≤  −0.882 𝑚/𝑠2) within a maximum of two 

seconds. In this case, the energy produced by burning fuel is 

dissipated as heat through the brakes. The acceleration 

threshold (-0.882 m/s2) was calculated by experts of our partner 

company (ADN Context-aware Mobile Solutions S.L) and our 

research group after analyzing the telemetry and fuel 

consumption of more than 1000 buses from different public bus 

fleets [41]. Frequent occurrence of this pattern during driving 
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indicates that the driver does not anticipate the traffic flow. This 

is a bad practice for both fuel consumption and safety. 

Brake-Acceleration pattern (BA): it is responsible for 

describing situations in which the driver decelerates (𝑎 ≤
 −0.882 𝑚/𝑠2) and is followed by an acceleration within a 

maximum of two seconds, without having stopped the vehicle. 

This could be indicative of the driver not keeping the safety 

distance. As with the previous pattern the energy produced by 

the engine is wasted.  

Idling: this pattern occurs when the vehicle is stationary, but 

the engine is on. If this state is maintained for a long time, the 

fuel consumption is significantly affected, especially in the case 

of buses and trucks. Drivers of these vehicles have to drive for 

a significant period of time. Therefore, it is mandatory that 

drivers take a rest. During this time, they often keep the engine 

idling. The result is an increase in pollutant emissions and 

energy loss [37]. 

Inertia: when the vehicle is moving using kinetic energy there 

is no fuel consumption. The tractive force comes only from the 

accumulated energy. The gravity force and the rolling force will 

reduce the speed of the vehicle. Modern vehicles use an 

electronic injection system. This system cuts off the supply of 

fuel to the engine when it can work by inertia. The clutch must 

not be used to decouple the engine from the rest of the 

transmission. If the engine is disconnected from the traction it 

is necessary to burn fuel to keep it running. This characteristic 

of the engines allows to save fuel and reduce the brake wear of 

the vehicle. However, it requires that the driver has the ability 

to anticipate the traffic flow [38][39]. The use of inertia is a 

technique widely used in eco-driving [40].  

 
Fig. 2. Example of Data Envelopment Analysis. 
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Input Output

Driver AB  KPI BA KPI
Fuel Consumption

(km/l)

A 239,69 113,77 2,88

B 244,99 112,00 2,47

C 280,48 120,09 2,22

D 283,48 119,34 1,90

E 250,56 89,77 2,49

Driver

                  
  
  

      

Relative
Efficiency

A 0,0120 1,00

B 0,0101 0,84

C 0,0079 0,66

D 0,0067 0,56

E 0,0099 0,83

Driver

                  
  
  

      

Relative
Efficiency

A 0,0253 0,91

B 0,0221 0,80

C 0,0185 0,67

D 0,0159 0,57

E 0,0277 1,00

Production Frontier
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Stop-Start: this pattern has two stages. In the first stage, the 

vehicle is stationary and the driver begins to accelerate. In that 

case, we assess whether the driver is accelerating correctly. It 

checks if the acceleration value is near the threshold considered 

as efficient, which in our case is 0.7 m/s2. This threshold has 

been empirically calculated analyzing the driving samples 

obtained by bus fleets since 2012 [41]. In the second stage, the 

driver must maximize the time that he or she is driving using 

inertia. This stage starts when the driver stops accelerating. Our 

proposal positively evaluates that the driver uses inertia as the 

fuel consumption is zero. 

In order to measure the performance level of the driver for 

each driving pattern we have defined Key Performance 

Indicators (KPIs). The set of KPIs considered are described in 

Table 3. 

 

TABLE 3 

DESCRIPTION OF THE KPIS  

KPI Conditions 

AB 
Number of AB pattern occurrences per 

100 km.  

BA 
Number of BA pattern occurrences per 

100 km. 

Idling 
Time percentage spent idling in relation 

to the total duration of the route. 

Start-Stop  

(Stage 1) 

Difference between the ideal acceleration 

and the actual acceleration of the vehicle 

expressed as a percentage when the 

vehicle is set in motion. 

Start-Stop  

(Stage 2) 

Percentage of times not driving in inertia 

after the first stage of Start-Stop pattern. 

Non-Inertia 

Time percentage not driving with inertia 

in relation to the total duration of the 

route 

 

B. Evaluating efficient driving  

We use Data Envelopment Analysis (DEA) to assess the 

driving efficiency. It is a non-parametric method to provide a 

relative efficiency assessment (called DEA efficient) for a 

group of decision-making units (DMU) or for productive 

efficiency (aka technical efficiency) with a multiple number of 

inputs and outputs. DMUs are the elements whose efficiency 

we are going to evaluate. In this paper, each DMU represents a 

different bus driver. 

DEA was first proposed in 1978 [42] and is commonly used 

in operations research and economics to empirically measure 

productive efficiency of DMUs. In order to determine whether 

a DMU is efficient is as easy as checking if the DMU is on the 

"frontier" of the production possibility set. In this way, DEA 

identifies a "frontier" on which the relative performance of all 

the utilities in the sample can be compared. 

Figure 2 captures how Data Envelopment Analysis works. 

This technique compares the relative efficiency of DMUs when 

they perform similar tasks. In this example, the DMUs are the 

different bus drivers. They utilize similar resources to generate 

similar outputs.  In order to calculate the efficiency, it is defined 

as output/input.  

In this case, the inputs are the AB KPI (the number of times 

per 100 km that the driver accelerates and then decelerates) and 

the BA KPI (the number of times per 100 km that the driver 

decelerates and then accelerate). In both cases, there is not an 

inertia period. The output is the fuel consumption(km/l). 

Therefore, we have two ratios that we have to optimize: Fuel 

Consumption-AB branch and Fuel Consumption-BA. 

Observing Figure 2, we can see that the highest ratio of Fuel 

Consumption-AB is A. However, the highest ratio Fuel 

Consumption -BA is E. These two DMUs define the production 

frontier. The positions on the graph of drivers A and E show a 

performance level which is superior to all the other DMUs. The 

efficiency frontier ‘envelops’ the inefficient DMUs. Any DMU 

on the frontier is considered efficient (the value is 1). As a 

result, it can be used as a threshold against which to measure 

the performance. 

 There are two different DEA models: variable returns to 

scale (VRS) and constant returns to scale (CRS). On the one 

hand, VRS suggests that an increase in the amount of inputs 

utilized can result in a proportional or non-proportional change 

in the amount of outputs generated. On the other hand, the CRS 

model implies that an increase in the amount of inputs utilized 

causes a proportional increase in the amount of outputs 

generated. VRS is a more realistic model.  

 
Fig. 3. Example of DEA frontier using VRS (variable return 

scale). 

 

Furthermore, DEA has three different orientations: input 

oriented, output oriented, and input-output oriented. Each of 

these orientations assumes that we are capable of modifying 

inputs, outputs or inputs and outputs respectively. In our case, 

fuel consumption is used as output because it does not only 
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depend on driving style. Fuel consumption is influenced by 

many variables foreign to the driver such as the number of 

passengers, weather conditions or state of the traffic [12] [13]. 

For this reason, it is not always the best way to evaluate the 

driving style. Our proposal is focused on detecting the incorrect 

driving behaviors. We employ the input-oriented model of Data 

Envelopment Analysis (DEA). In this model, fuel consumption 

remains fixed and the aim is to minimize the inputs. 

 In order to evaluate the driving, we have used an input-

oriented model and variable returns to scale (VRS). In this case 

an improvement in the inputs is not translated directly into a 

proportional improvement in the output. The energy 

consumption of the vehicles depends on many factors, some of 

which are beyond the control of the driver. However, many 

research papers [43] show that eco-driving reduces fuel 

consumption, although the improvement is very variable 

depending on the situation.  

Figure 3 shows an example of a production frontier in an 

input-oriented DEA model using VRS for idle KPI. The data 

were obtained from a real bus line in Asturias (Spain). In this 

case, the DMUs A and B are efficient when forming part of the 

border. On the contrary, C is inefficient. The distance between 

C and the border on the x-axis (slack value) is what this driver 

should improve in order to be efficient. 

In our proposal, the objective is to obtain the efficiency of 

each user. Drivers whose efficiency is higher are those who act 

as models for the rest of the drivers. If we consider a set of n 

drivers (DMUs), where DMUk k=1,…,n,  the efficiency 

measure ℎ𝑘 for DMUk is calculated by solving the following 

equation: 

  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ℎ𝑘 =
∑  𝑟𝑦𝑟𝑘
𝑠
𝑟=1

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑘

  (1) 

 

Subject to: 
∑ 𝑢𝑟𝑦𝑗

𝑠
𝑟=1

∑ 𝑣 
𝑚
 =1 𝑥𝑗

 ≤ 1, 𝑗 = 1,2, … , 𝑗𝑘, … , 𝑛 

 

𝑢𝑟 ≥  𝜀, 𝑟 = 1,2, … , 𝑠 

 

𝑣 ≥  𝜀, 𝑖 = 1,2, … ,𝑚 

 

Where: 

𝑢𝑟 and 𝑣  are the weights to be determined for output r and 

input i respectively, ℎ𝑘 is the relative efficiency of DMUk, s is 

the number of outputs, m is the number of inputs, 𝜀 is a small 

positive value (typically of the order of 10-5 or 10-6), and n is the 

number of drivers (decision making units). 

The relative efficiency of a driver (DMU in DEA) is defined 

as a ratio of the weighted sums of their outputs (virtual output) 

and the weighted sums of their inputs (virtual input). Equation 

1 shows that the relative efficiency of a driver is always a value 

between 0 and 1. The weights 𝑢𝑟 and 𝑣  are determined in the 

model so that each DMU is as efficient as possible. This avoids 

us the difficult task of assigning suitable weights to each input 

and output factor. However, we can add restrictions to the 

weights if necessary [44].   

As we can see in the model, the selection of input and output 

variables has a strong effect on the behavior of the algorithm. 

In this work, we are using an input-oriented model. Therefore, 

the input variables are controlled by the drivers. However, the 

output variables cannot be adjusted directly by the driver. We 

have chosen the input-orientation model because fuel 

consumption depends on many variables that are out of the 

driver’s control [45]. 

On the one hand, a driver is considered efficient when Max 

hk is 1. On the other hand, a driver is relatively inefficient if it 

is possible to minimize any of its inputs without decreasing any 

output and without increasing any other inputs. However, an 

efficiency value approaching 1 means that the scope for 

improvement is small. The trainer should focus on the drivers 

who obtained the scores closest to zero. 

The DEA model in equation 1 is nonlinear. [46] propose a 

transformation to solve it. They fixed the denominator to a 

constant (unity) in order to change the model to an equivalent 

linear form. In this case, the aim is to maximize the numerator.  

  

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ℎ𝑘 = ∑ 𝑢𝑟𝑦𝑟𝑘
𝑠
𝑟=1   (2) 

 

Subject to: 

∑𝑣 𝑥 𝑘 = 1

𝑚

 =1

 

 

∑𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑𝑣 𝑥 𝑗 ≤ 0, 𝑗 = 1,… , 𝑛 

𝑚

 =1

 

  
𝑢𝑟 ≥  𝜀, 𝑟 = 1,2, … , 𝑠 

 

𝑣 ≥  𝜀, 𝑖 = 1,2, … ,𝑚 
 

Equation 3 shows a dual version of the previous model. It is 

built by assigning a variable to each constraint in the model 

described in equation 2. Dual form has fewer constraints. The 

difficult of solving a problem in linear programming is related 

to the number of constraints. In general, the more constraints, 

the more difficult a problem is to solve. For this reason, dual 

form is computationally simpler and it is used to make the 

evaluation of driving style. 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍𝑘 −  𝜀 ∑ 𝑠𝑟
+𝑠

𝑟=1 − 𝜀∑ 𝑠 
− 𝑚

 =1  (3) 

 

Subject to:  

∑𝜆𝑗𝑦𝑟𝑗 − 𝑠𝑟
+ =  𝑦𝑟𝑘  

 

𝑗=1

, 𝑟 = 1,… , 𝑠 

  

𝑍𝑘𝑥 𝑘 − ∑𝜆𝑗𝑥 𝑗 − 𝑠 
− =  0 

 

𝑗=1

, 𝑖 = 1, … ,𝑚 

∑𝜆𝑗 = 1

 

𝑗=1

 

   

𝑠𝑟
+, 𝑠 

−  ≥ 0 𝑗 = 1, 2, … , 𝑛. 
 

This model tries to build for each DMU a unit that overtakes 

it. The composite unit generates an output that is equal to or 
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higher than the corresponding output of the original DMU. It 

uses a proportion (Zk) of the inputs as a maximum. In this way 

it is possible to obtain the minimum amount by which the inputs 

must be proportionally reduced to make the DMU efficient. 

Sometimes, the proportional reduction applied to the inputs is 

not sufficient. In this case, we should decrease the inputs.  The 

proportion of each input (𝑠 
−   that we need to reduce is called 

slack.  ∑ 𝜆𝑗 = 1 
𝑗=1  constraint is included in order to allow 

variable returns to scale [47]”. 

We use the KPIs described above as input variables. The 

objective is to measure the performance of the drivers in each 

pattern. 

Input Variables: 

 Acceleration-Brake KPI (number of events per 100 

Km) 

 Brake-Acceleration KPI (number of events per 100 

Km) 

 Idling KPI (%) 

 Stop-Start-Phase 1 KPI (%) 

 Stop-Start-Phase 2 KPI (%) 

 Non-Inertia KPI (%) 

Output Variables: 

 Fuel consumption (Km/l) 

IV. EXPERIMENTAL EVALUATION 

A. Experimental Setting  

The proposal was validated using data from real tests. The bus 

was the same in all cases, a Mercedes-Benz Citaro. We have 

analyzed the driving behavior in two different urban transport 

lines of Asturias (Spain): route A (Figure 4, the bus line is 

represented in blue) and route B (Figure 5, the bus line is 

represented in blue). The length of Route A is 14.83 Km. The 

average trip time was 46 minutes and 6 seconds. The length of 

Route B is 10.6 Km. In that case, the average trip time was 28 

minutes and 40 seconds.  

For this study we observed 32 drivers (route A) and 11 

drivers (route B). The number of drivers differs on both routes 

because only some drivers on route A are also responsible for 

route B. The drivers were between 38 and 60 years of age. The 

average age was 49. All the participants are professional drivers 

and have previous knowledge about efficient driving. Each 

participant completed the route four times.  

The drivers were the workers of the public bus company that 

manages both routes, A and B. They had served in the company 

between 2 and 44 years (14 on average). The driving samples 

were captured between 10:00 a.m. to 13:00 p.m. and 16 p.m. to 

18 p.m. from Monday to Friday on dry days in January 2017. 

The driving tests were carried out during their normal working 

day. They had no prior knowledge about the study. Table 4 

shows driving time for both routes. 

Data Envelopment Analysis (DEA) works well if the samples 

have been captured under similar conditions. To take into 

account the external factors, we must filter and cluster the data 

before using DEA. In our case, the driving samples have been 

clustered according to the route in order to avoid that variables 

such as the slope, intersections or road curves affect the results. 

Furthermore, we consider the traffic conditions and the 

weather. For this reason, the driving tests were made in the time 

interval indicated before and when it was not raining. In this 

time interval the traffic is not heavy as most people are at work. 

 

TABLE 4 

DRIVING TIME OBTAINED IN THE DRIVING TESTS 

Variable Route A   Route B 

Average Time Driving (minutes) 49,70 29,86 

Median Value (minutes) 50,09 29,97 

Maximum Time Driving (minutes) 52,09 29,99 

Minimum Time Driving (minutes)  46,46 27,03 

Standard Deviation of Time Driving 

(minutes) 
 1,59 0,57 

 

 
Fig. 4. Route A used to conduct the driving tests.  

 

 
Fig. 5. Route B used to conduct the driving tests. 
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B. Results  

Figure 6 captures the efficiency score calculated using DEA 

for each driver on route A. 46.88% of the drivers obtained the 

highest possible score (1). However, there are 17 drivers who 

can still improve their driving style, but we can see that all 

drivers got a high score (higher than 0.87). 

Figure 7 compares the fuel consumption of the drivers 

classified as efficient (DEA output = 1) with the less efficient 

drivers (DEA output < 1) on route A. Fuel consumption is not 

a fair method to evaluate drivers due to the influence of external 

factors. Also, it does not provide information to the trainer. 

However, there is a relationship between driving style and fuel 

consumption. The eco-friendly driver will always achieve the 

lowest possible fuel consumption under the current 

environmental conditions. In Figure 7, we can see how efficient 

drivers consumed 4.6% less than the other less efficient drivers. 

These results show that low values in driving KPIs are closely 

related to a reduction in fuel consumption. 

Table 5 captures the slack values for each variable on route 

A. These values indicate how much the drivers would have to 

improve a specific pattern in order to approach the value 

considered as efficient. If the value obtained is 0, it means that 

the drivers cannot further reduce the input value.  

 

 
Fig. 6. Efficiency values on route A. 

 

 
Fig. 7. Comparison of fuel consumption between the efficient 

drivers and the less efficient drivers on route A.  

 

 

 

 

 

TABLE 5 

SLACK VALUES FOR INPUT VARIABLES ON ROUTE A 

Pattern  Value   

Acceleration-Brake (Events/100 Km) 25,34 

Brake-Acceleration (Events/100 Km) 21,66 

Idle (%) 1,93 

Start-Engine_Phase1 (%)  8,45 

Start-Engine_Phase 2 (%) 5,26 

Driving without inertia (%) 0,00 

 

As the optimal values are calculated based on the results 

obtained by other bus drivers under similar conditions, we 

ensure that the marked target is realistic. In this way, we can 

evaluate the driving without manually fixing the permissible 

statistical values for each pattern. 

On the analyzed route, we can see that the drivers should try 

to improve above all the acceleration-brake pattern and the 

brake-acceleration pattern. Drivers show poor ability when they 

have to anticipate the traffic flow. In addition, it is common that 

the vehicle is idling during the driver’s resting time.  

However, the time driving in inertia has little room for 

improvement. Buses move on urban roads. In this scenario, the 

traffic signs and bus stops make it difficult for drivers to take 

advantage of inertia to reduce energy consumption. This does 

not mean that this driving pattern is not important to save fuel, 

but in this case all drivers present similar results. Therefore, the 

possibility of improving is small according to the algorithm.  

Figure 8 captures the efficiency score obtained by the drivers 

on route B. 81.81% of the drivers were efficient (score = 1). 

Only two drivers presented a value less than 1 (maximum 

efficiency) and it was never less than 0.9. Figure 9 shows the 

fuel consumption obtained by the efficient and less efficient 

drivers on Route B. The results are better than on route A, 

despite being a similar scenario as the route is in the same city. 

This is reflected in the efficiency obtained by the different 

drivers on Route B. 

 

 
Fig. 8. Efficiency values on Route B 
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Fig. 9. Comparison of fuel consumption between efficient 

drivers and less efficient drivers.  

 

 Table 6 captures the slack values for each KPI on route B. 

As with route A, drivers should improve above all the 

acceleration-brake KPI and the brake-acceleration KPI. 

However, all participants on this route have very similar values 

and the improvement margin is not as wide as on route A. 

 

TABLE 6 

SLACK VALUES FOR INPUT VARIABLES ON ROUTE B   

Pattern  Value   

Acceleration-Brake (Events/100 Km) 5,72 

Brake-Acceleration (Events/100 Km) 5,96 

Idling (%) 0,05 

Start-Engine_Phase 1 (%) 2,06 

Start-Engine_Phase 2(%) 0,65 

Driving without inertia (%) 0 

 

Figure 10 shows a comparison of the results obtained on 

routes A and B by drivers who drove on both. We can observe 

that they present similar behavior in the two scenarios. The 

driver with the most different behavior is driver 4. In this case, 

the efficiency was reduced by 7% on route A with respect to the 

value obtained on route B. On average, drivers worsen 1.33% 

on route A in comparison with the efficiency values they obtain 

on route B. 

 
Fig. 10. Comparison of efficiency values obtained by drivers 

who drove on both routes.  

V. CONCLUSION 

In this paper, we have proposed a method to objectively 

evaluate the driving of bus drivers. The solution is based on data 

analysis envelopment (DEA) and the analysis of driving 

behavior in order to detect in what areas the driver should 

improve in order to reduce fuel consumption.  

The main strength of this proposal is that it is strongly 

adjusted to reality. Ideal acceleration or deceleration values are 

very difficult to achieve due to external factors. For this reason, 

inflexible evaluation systems discourage drivers. For example, 

if a tool requires the driver to drive 50% of the time using inertia 

in order to be classified as efficient, but there are many traffic 

signs that make this aim impossible for the driver, he or she will 

be frustrated and will disable the system. 

Another advantage of this proposal based on DEA is that it 

allows us to determine which are the behaviors that the driver 

must correct in order to take advantage of the energy generated 

by the engine. This is possible because the DEA model builds a 

production frontier. This frontier is generated by the set of 

efficient drivers. Therefore, we can calculate the proportion of 

each input that we need to reduce in order to obtain a production 

ratio (output / inputs) equal to that obtained by efficient drivers. 

We have used the proposal to analyze the driving 

performance on two bus lines in Spain. The results showed that 

in both cases all drivers have good skills in driving efficiency. 

All participants achieved a score higher than 0.8 (the scale is 

between 0 and 1). However, we also observed that many of 

them could improve patterns related to traffic anticipation, 

which is the main factor to consider in order to drive efficiently. 

The efficient driving expert should focus on showing the driver 

how to correctly process the environment information in order 

to incorporate anticipation into his or her decisions. 

The present method is suitable to evaluate the drivers and 

establish reward plans to encourage drivers to improve their 

driving. However, we must be very careful when designing 

these plans to avoid confrontation between participants. The 

method also allows companies to develop improvement 

proposals that fit the driving profiles of their employees.  

The limitation of this proposal is that drivers would have to 

follow the same route and under the same environmental 

conditions in order to make a fair comparison. This requirement 

may be overcome by introducing a previous stage where the 

driving samples with similar characteristics are clustered taking 

into account the vehicle and road type, the geometry of the road, 

and the environmental conditions (weather, traffic and 

complexity of the traffic signs). In this study, we have taken 

into account the traffic, the geometry of the road, and weather 

conditions. For this reason, we have compared drivers who 

completed the same route and in similar conditions (driving 

from Monday to Friday between 10:00-13:00 a.m. and 16:00-

18:00 p.m. and without rain). 

As future work, we want to analyze if comfort influences 

efficiency. For example, we might compare driving samples 

captured under different temperatures in the cockpit or analyze 

the air quality inside the vehicle. Furthermore, we aim to 

develop a driving assistant that minimizes the appearance of 

inefficient patterns. The idea is that the assistant recommends 
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an appropriate speed and provides information about the 

environment in order to avoid energy loss when braking. Other 

future lines of study could be the relationship between driving 

patterns, the stress of drivers and passenger safety, as all these 

issues are strongly related.  
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