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Abstract

We introduce and analyze a discontinuous Galerkin method for a time-harmonic
eddy current problem formulated in terms of the magnetic field. The scheme is
obtained by putting together a DG method for the approximation of the vector
field variable representing the magnetic field in the conductor and a DG method for
the Laplace equation whose solution is a scalar magnetic potential in the insulator.
The transmission conditions linking the two problems are taken into account weakly
in the global discontinuous Galerkin scheme. We prove that the numerical method is
uniformly stable and obtain quasi-optimal error estimates in the DG-energy norm.

1 Introduction

In this paper, we present a discontinuous Galerkin (DG) approximation of a time-harmonic
eddy current problem. The eddy current approximation of Maxwell equations is obtained
by disregarding the displacement current term. It is commonly used in applications re-
lated to induction heating, transformers, magnetic levitation and non-destructive testing.
These problems often involve composite materials and structures, complex transmission
conditions and, eventually, boundary layers due to the skin effect. The ability of DG
methods to handle efficiently unstructured meshes with hanging nodes combined with
hp-adaptive strategies make them well-suited for the numerical simulation of physical
systems related to eddy currents.
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The eddy current problem is generally written in terms of either the electric or the
magnetic field, cf. [4]. These two formulations are equivalent at the continuous level but
they lead to different numerical schemes. A discontinuous Galerkin method for a time-
harmonic eddy current problem written in terms of the electric field has been analyzed
in the pioneering work of Perugia and Schotzau [17]. For the time-domain eddy current
problem, Ausserhofer et al. used in [6] a formulation in terms of a magnetic vector
potential, thus similar to the one in terms of the electric field, and proposed a numerical
method based on edge elements, a DG approximation in the conductor and a standard
Galerkin approximation in the insulator.

When using the formulation in terms of the electric field, the presence of some con-
straints in the insulator region leads naturally to a mixed formulation with the introduc-
tion of additional unknowns, hence the total number of degrees of freedom is quite high.
It is possible to use a primal form by eliminating these additional unknowns (see [17]);
however this procedure requires the introduction of several lifting operators thus making
a little bit cumbersome the algorithm.

Here, differently from what done in these previous papers, we choose the magnetic
field as primary unknown. At the discretization level, the advantage of this approach
rests on the reduction of the number of degrees of freedom resulting from the introduc-
tion of a scalar magnetic potential in the non-conducting region; moreover, the fact that
the equation in this region is simply the Laplace equation permits to employ all the tech-
niques that have been already devised for this basic problem. It is also worth noting that
the additional unknowns possibly deriving from the topological shape of the conducting
domain are easily inserted in the problem by means of suitable elements of the first de
Rham cohomology group. In the end, the global formulation of the problem turns out
to be a rather simple H(curl)-elliptic problem for vector fields that are curl-free in the
insulator ;.

Our DG formulation is obtained by applying for the Laplace equation posed in 2; the
usual interior penalty finite element method, that can be traced back to [5], see also [9]
and the references cited therein for more details. In the conductor (2 we employ, as in
[12, 17], the interior penalty method corresponding to the Nédélec curl-conforming finite
element space of the second kind.

We prove the stability of the resulting combined DG scheme by exploiting the elliptic
character of the problem. We also obtain, under adequate regularity assumptions, quasi-
optimal asymptotic error estimates. It is worthwhile to notice that the implementation
of the DG-method presented here only requires the use of standard shape functions. On
the other hand, the theoretical convergence results in Section 5 make use of some known
properties of curl-conforming finite elements, more precisely, of the Nédélec finite elements
of the second kind.

The outline of this paper is as follows. In Section 2 we derive the model problem used in
the finite element approximation. We introduce our DG formulation in Section 3. Section
4 is devoted to the convergence analysis, and asymptotic error estimates are provided in
Section 5. Finally, in Section 6 we include a numerical experiment that confirms the order
of convergence.



2 The model problem

Let Q¢ C R? be a bounded polyhedral domain with a Lipschitz boundary I'. We denote
by nr the unit normal vector on I' that points towards Q. = R3 \ﬁc. In order to
illustrate the impact of the conductor’s topology in our method, we assume that €2- has a
toroidal shape. We notice that the eddy current problem is posed in the whole space with
asymptotic conditions on the behaviour of the electric and magnetic fields at infinity.
Depending on the nature of the eddy current problem being solved and the geometry
involved, a discretization method can be obtained for this problem by either applying a
pure finite element approach on a truncated domain or by using a combination of boundary
(BEM) and finite elements (FEM), see [2, 10, 14, 3]. The FEM-BEM formulation is posed
in the conductor but its implementation is more difficult and it leads to more complex
algebraic linear systems of equations. The FEM method needs a large computational
domain, but it is simpler and it can provide an alternative in many practical situations.
It is the option that we will consider in the following. To this end, we introduce a bounded
domain D containing in its interior Q¢ and whose connected boundary ¥ = 9D is located
at a large enough distance from the conductor Q. The bounded domain Q; := D\ Q¢
then represents the non-conducting region of the computational domain D (see Figure 1).

D

I':=00¢
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Figure 1: The geometry of the computational domain D.

Under our assumptions, the first de Rham cohomology group H!(€Q;) of Q;, namely,
the space of curl-free vector fields that are not gradients, has dimension one. If we
assume that €7 is a polyhedral domain endowed with a tetrahedral mesh, one can use
the technique given in [7] for the explicit construction of a piecewise-linear vector field p
spanning H!(£2;) and satisfying p x ng = 0 on 3, where ny denotes the outward unit
normal vector to 3. For an alternative construction of p see Alonso Rodriguez et al. [1].

The eddy current problem formulated in terms of the magnetic field h and the scalar



magnetic potential ¢ reads as follows:
wph +curle = 0 in D
e = o Ycurlh—j) in Qg
h = Viy+kp in
P = 0 on X,

where 73 is the applied current density, i is the magnetic permeability and o is the electric
conductivity. In what follows, we assume that p and o are positive piecewise constant
functions in Q¢ and that o, = po is the permeability constant of vacuum. It follows
from the first equation (1) that

0 =div(hjg,) = div(Vy + kp) in Q. (2)

We point out here that the electric field e is not uniquely determined in £2;. Nevertheless,
the tangential components of the magnetic field and the tangential components of any
admissible representation of the electric field should be continuous across the interface I,
ie.,
hlo, x nr = (V¢ + kp) X nr. (3)
and
€nc X Nr = €|, X Nr. (4)

The electric field e is considered here as an auxiliary variable, it will be removed from the
formulation. Hence, we should deduce from (4) a transmission condition relating h and
1 on I'. Applying the surface divergence operator divr to both side of (4) and recalling
that divp(e x nr) = curl e - nr we deduce that the field curl e admits continuous normal
components across . As a consequence of the first equation of (1), uh should also have
continuous normal components across I, i.e.,

ph - nr = po(Vo) + kp) - nr. (5)

Finally, we deduce from (4) and the property curl p = 0 that

/egcxnp'p:/emlxnp-p:/ curle - p,
r T Qr

o eurth =) (p xne) = [l ko) p. (6)

thus

From now on, for the sake of simplicity in notations, h will stand for h|g,.. Taking into
account (2), (3), (5) and (6), we deduce that the eddy current problem can be formulated



in terms of the magnetic field and its scalar potential representation in the insulator in
the following form: Find h : Q¢ — C?, ¢ : Q; — C and k € C such that,

wph + curl [o (curl b — §)] = 0 nQe (1)
h x nr = (V) + kp) X nr onT  (8)

ph-nr = po(VY + kp) - nr on T (9)

[ eurth =) (p ) = o [ (VUkp) 0 (10)
div(Ve + kp) = 0 mQ, (11

Y =0 ons.  (12)

We refer to [4, Section 5] for a proof of the well-posedness of problem (7)-(12).

3 The discrete problem

3.1 Notations

Given a real number r > 0 and a polyhedron O C R¢, (d = 2,3), we denote the norms
and seminorms of the usual Sobolev space H"(O) by || - |0 and | - |, o respectively (cf.
[13]). We use the convention L?(0) := H°(O) and L?(0) := [L*(O)]3. We recall that, for
any ¢t € [—1, 1], the spaces H'(0O) have an intrinsic definition (by localization) on the
Lipschitz surface 0O due to their invariance under Lipschitz coordinate transformations.
Moreover, for all 0 < ¢t < 1, H(00) is the dual of H*(0O) with respect to the pivot
space L?(00). Finally we consider H(curl, O) := {v € L*(0)? : curlv € L*(0)?} and
endow it with its usual Hilbertian norm [|v[3yeue0) := [|V]5,0 + lcurlv]|f o.

We consider a sequence {7} of conforming and shape-regular triangulations of Q¢ U
Q;. We assume that each partition 7;, consists of tetrahedra K of diameter hx and unit
outward normal to 0K denoted nx. We also assume that for all K € 7T, we have either
K C Q¢ or K C Q; and denote

Tie={KeT KcQ}, T ={KeT; KCcCQ}.

We also assume that the meshes {Egc}h are aligned with the discontinuities of the coef-
ficients o and p. The parameter h := maxge7, {hi} represents the mesh size.

We denote by F2(¢) and F2(Q;) the sets of interior faces of the triangulations 7,
and 7719’ respectively. We also introduce the sets of boundary faces

Fi={F=KnK; KeT' KT} and Fr ={F=0Kn%; KecT"}



and consider
Fe =F(Qe)UF, Fr=F (U UF and F,:=FCUF".

We notice that {]—“}; } b is a shape regular family of triangulations of I" into triangles T’
of diameter hy. Finally, we consider the set &, of edges e = T NT’ (where T and T are
two adjacent triangles from F} ).

Let Oy, be anyone of the previously introduced partitions of QcUQ;, Qc, Q7 or I' and
let E/ be a generic element of the given partition. We introduce for any s > 0 the broken
Sobolev spaces

H(04) = [] B(E) and H(O,):= [] B (E)’.

EecOy, Ee0y,

For each w := {wg} € H*(O}), the components wg represents the restriction w|g.
When no confusion arises, the restrictions will be written without any subscript.
The space H*(Oy,) is endowed with the Hilbertian norm

lwlZo, = D llwele.

Ee€Oy,

We consider identical definitions for the norm and the seminorm on the vectorial
version H*(O;,). We use the standard conventions L*(0,) := H(O}) and L*(0},) :=
H°(0},) and introduce the bilinear forms

(w, 2)o, = Z /szE, Vw, z € L*(Oy,)
E

EcOy,

and

(w, 2)o, = Z /wE-zE, Vw, z € L*(0y).
EcOy, E

Assume that (v, p,m) € H**(T2¢) x H'*5(T,2") x C, with s > 1/2. Moreover, let us
recall that p has been constructed as a piecewise-linear vector field, therefore its restriction
to any face F' has a meaning. We define curl,v € Hs(ﬁbﬂc) by (curl,v)|x = curlwvg, for

all K€ 7,79 Vi € B (T by (Vi) x = Vo, for all K € T
We also need to introduce the following quantities, that are defined on the sets of faces
of Q¢ and Q; through a local definition on each face: the averages {v}r € L*(F;'°) and

{Vip +mp}r € L3(F,") by
{’U}]:|F = {’U}F with

(Vi +vr)/2 it F=KNK € F)(Qe) (13)

{”}F:{UK if F COK and F € F},



and
{VhSD + mp}]:‘p = {VhQD + mp}p with

(Vo + Vg ) /2 +m(pg + prr)/2 (14)
(Vg + ) ifF:KﬂK’Efﬁ(QI)
m =

rp Pr Vor +mpy

if F COK and F € F;-,
and the jumps [(v, o, m)]r € LA(F¢) and [pn]z € L2(F) by

[(v, 0, m)]#|r := [(v, o, m)]F with

[vxn]rp:=vg Xng+vg X Ny

itF=KnK € F(Q0) (15)
Vg X N + (VQOK/ +mpK,) X Mg

if F=KNK' e F} with K € T, K' e T,

[[(’U, 12 m)]]F =

and '
[en] 7| r = [pn]r with

PrKNK —f-gOK/’n,K/ if FF=Kn K’ € F}?(Qj)

[en]r ;:{ - if FCOK and F € F .

Similarly, we define the edge averages {v}e € L2(&,) by
{v}ele :== {v}e with {v}. := (vk, +vk)/2

where K., K! € T,¢ are such that T = 0K,NT' € FL, T' = OK'NI' € Ff and e = TNT".
We also need to define the edge jumps [pt]e € L?(&) by

[[(Pt]]de = [[Wt]]e with [[Spt]]e = ¢kt + SOKét,ev

where K., K/ are in this case the elements from 7719[ such that T = 0K, NT € F},
T'=0K'NT € F} and e = TNT'. Here, t., t, are the tangent unit vectors along the
edge e given by t, = (nr X vr)|. and t, = (nr X v1/)|. where v and v are the outward
unit normal vector to 0T and JT" respectively that lies on the tangent plane to I'.

3.2 The DG formulation

Hereafter, given an integer & > 0 and a domain O C R3?, P.(O) denotes the space of
polynomials of degree at most k on O. For any m > 1, we introduce the finite element
spaces

Xp:= ] PuK)? and Vii= [ Pu(X),

KeT,'C KeT 't



where

B (K) = {Pm(K) if OK NT ¢ F), (17)

Pu(K)+PL(K) £T=0KNT € F

with Pl (K) representing the subspace of Pp,41(K) spanned by the elements of the
Lagrange basis corresponding to nodal points located on 7. It follows that P,,(K) C
P(K) C Pryi(K) and if T = 0K NT € F} then Py (K)|r = P (T).

Let hr € HFefh Po(F) and he € Heegh Po(e) be defined by hz|p := hr ,VF € F;, and
hele := he ,Ve € &, respectively. By virtue of our hypotheses on ¢ and on the triangulation
7%¢ we may consider that ¢ is an element of ] werc Po(K) and denote oy := o for

h

all K € T/%°. We introduce sz € [Trer, 0 Po(£) defined by sp := min(ok, o), if
F = 0KNoK' € F(Qc) and sp = ok, if F = K NT € F,. We also need to
define s¢ € [[.c¢, Po(e) given by s, = min(ok,,0k;) where K, K. € T2 are such that
T=0K.NT e F,T"=0K.NT € Fl ande=TnNT.
We consider, for s > 1/2, the Hilbert space
X(Ty€) o= {v € H(T;’9);  curlyv € HY/*H(T)}
and define on X*(7,¢) x H'"*(T,") x C the sesquilinear forms
Agc((u, o, ¢),(v,0,m)) == w (,uu,'v)ThszC + (ailcurlhu,curlhv)nnc
+ ({a—lcurlhu}}-, [(v, e, m)]]]-‘)]__}gc + ({a_lcurlh’v};, [(u, o, C)]]]-‘)]__}Qc
+a" (sz'h7' [(u, ¢, 0)] 7. [(v. 0. m)] F) poc
Q a™
Ahl((ua Cb, C)a ('177 ¥ m)) = ZWMO(VIZQS +cp, vhSO + mp)ﬁ] + UJ—,UO (h]-' H¢nﬂf7 ngn]]]:)]:}izl
— who ({Vrd +cpir, [on]F) zor —wpo ({Vap +mp}r, [on]F) zor
— ({07 curlyule, [[cpt]]g)gh — ({o " curlyvle, [[qzﬁt]]g)gh + a (sg'hg?[ot]e, [[gpt]]g)gh ,
and let
An((1,p, ), (0, 0,m)) 1= AL ((w, 6, ), (v, 0,m)) + AL ((w, 6, ), (v, 0, m).
Let us assume that o715 € Hl/”s(ﬁyc) with s > 1/2. Then we can define the linear
form Ly (-) on X5(7,%¢) x H'**(T,21) x C by
Lh((v, @, m)) = (o’flj, CuI‘th)Thnc + ({0’*1]‘}}-’ [[(U, @, m>]]]:)]-',?c — ({0’*1]’}67 [[gpt]]g)gh .
We propose the following DG formulation of problem (7)-(12):

Find (hh, wha ]fh) € Xy x V3, x C such that,
(18)
An((hn, ¥n, k), (0, 0,m)) = Li((v,0,m)) ¥V (v,0,m) € X, x Vj, x C.

The existence and uniqueness of the solution of this problem is proved in Theorem 4.1
We end this section by showing that the DG scheme (18) is consistent.
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Proposition 3.1. Let (h,,@b k) € H(curl, Q) x HY(Q7) x C be the solution of (7 ) (1
Under the assumption o5 € HY2*5(T2) and the regularity conditions (h,, k)
X5(T2€) x H(T21) x C, with s > 1/2, we have that

Ah((hﬂ% k)v (’Ua%m)) = Lh((U, Qp,m)) v('U,QO,m) e Xy, xV, xC.

Proof. Using again the notation e = o !(curlh — j) and taking into account that
[(h,, k)] =0, [Yyn]r =0, and [¢t]e = 0, it is straightforward to show that

2).
€

Ap((h, . k), (v,0,m)) — Lp((v, 0,m)) = zw/Q ph v+ /Q e - curl,v

+pa [ (T0+kp) - (Vg + mp) + (e [w.0m)]) e

—who ({VY +kptr, lon]z) zor — ({efe, [ptle)g, - (19)

Integrating by parts in each K € 77?0 and using (7) yield

/ch curlhv—K;C/curle v — Z / e v Xng
/{e}p [[vxn]]F—Z/e vxn (20

= —w / ph - v —
o FeF)(©Q TeFk

Similarly, integrating by parts in each K € 77?’ together with (10) and (11) give

zw,uo/ (VY + kp) - (Ve +mp) = —wpg Z / div(Vy + kp)p
Qr

gy Y / (Vitkp)nxpt+m | (Vitkp)p=wpo Y / {Vtkp}p-[en]r

KeT 21 FeF ()

ZWMOZ/V¢+/€P) @nr+zw#02/v¢+kp) 907124—771/ (p x mr).

TeFE TeF:
(21)
Substituting back (20) and (21) in (19) we obtain
A (k1) (0, 0,m)) — Lu((v, = / e curlyp
TeFL
— o Y / V(W +kp) - prr = ({eke, [otle)s, - (22)
TeF}



Finally, using the integration by parts formula
Z /e-curl;mp: Z /(curlTe)go— Z / e-gotaT:/(Curlpe)go—({e}g,[[cpt]]g)gh,
TeF} T TeF} T TeF; or r

we deduce from (22) that

A((h, . K). (0, . m)) — Ln((v,0,m)) = — / (curlre)p

r
— Wil Z /:FV(¢+kp) - np.

TeF},

and the result follows from the identity curlre = curle - n, equation (7) and the trans-
mission condition (9). O

4 Convergence analysis of the DG-FEM formulation

The aim of this Section is to prove that the DG-FEM formulation (18) is stable in the
DG-norm defined on X*(7,¢) x H'**(T1) x C by
12 :=l(wm)o§ o + o™ 2eurlw[§ o, +wpol Vag +mplliq,

~1/2,-1/2 —1/2
+||sf/ hz / [(v, ap,m)]]f”gfl% +WM0||hf/ [[‘Pn]].FH(Q)’]_-}?I

(v, p,m)
—1/2, _
+Hisz g Tetlell3 s, (23)
We also need to introduce

1/2,1/2 —
[0, 0.m)2 = (0. 0.m)I” + ||s*hf* (o eurliw) [} o,

1/2 — 1/2
+ |l *he{o curlyvle |3, + IR { Vg + mp}fH?)f}?r

The following discrete trace inequality is standard, (see, e.g. [9, Lemma 1.46]).

Lemma 4.1. For all integer k > 0 there exists a constant C* > 0 independent of h such
that,
hollvllsaq < C*lIvllsg Vv ePu@Q), YQ € {Th, Fi}- (24)

It is used to prove the following auxiliary result.

Lemma 4.2. For all k > 0, there exist constants Cq., > 0 and Cq, > 0 independent of
the mesh size and the coefficients such that

Is&he{o  Whellog, + sL°h 2 {07 WA, roe < Caullo?wlloae,  (25)

0,F,¢

10



for all w € [, o0 Pe(K)?, and
h
Ih* (W}l or < Coywllo (26)

for allw € HKeThQI Pr(K)3.
Proof. By definition of sz, for any w € HKGTQC Pr(K)3,
h

1/2,1/2 _ 1/2 _
Is#n* o0 Wizl poe = D hellsi* (o7 Wil s
FE]-'QC
< Z Z hFHSF Of WKHOF Z hK”UK WKHOBK (27)
KG«ThQC FG}—(K) KGThQC
Similarly,
s he{o whellZe, = > B2Ist* (o7 Whl2,
ecéy
—1/2
<3N RsPotwialie < > Wl Wi R or, (28)
TE]-—F 665 T) Te]:l"

where Ky € T, is such that T = 0K NT. It follows from (24) that

1/2 — —1
s he{o el o, < € hrllol*wier i < €732 huclloridwicll o

TGJ‘—F Ke']’hﬂc

and (25) follows by applying again the discrete trace inequality (24) in the last estimate

and in (27). Finally, for any w € HKE,TQI Pr(K)3,
Hh}/Q{W}fHﬁ,fi Z hel{whellsr < ) helwlfox (29)
Fe]—‘h KeTh
and (26) follows again from (24). O

Proposition 4.1. There exists a constant M > 0 independent of h such that

[An((w, @, ¢), (v, 0,m))| < M||(u, ¢, ) [|[|(v, @, m)]|
for all (w, ¢,¢), (v,,m) € X5(T,2¢) x H**(T21) x C, with s > 1/2.
Proof. By the Cauchy-Schwarz inequality, we have that
AL (w0, 0), (v,0,m))|
< wllpPullogc|u'?
His#*hF o eurliu 7, oo llsz*hy[(v, 0, m)] |, poc
sy o eurlyo} o |87 05 1w, 6, 0) Ll o

1/2, —-1/2 —1/2, -1/2
a0 s, Nl poc 57205 21w, 0 m)Lel o

v|o.ao + o7 2curl,ul|oo. |0~ 2curl,v]|o.qo.

11



Applying (25) with w = curl,v we obtain
A5 ((u, 9, ¢), (v, 0,m))| < (1+ Co + %) |[(u, 6, ¢)|. ]| (v, o, m) |

for all (u, ¢, c) and (v, @, m) € X*(T,2) x H**(T,2") x C. On the other hand,

LAY (w6, ¢), (v, 0,m))| < wpno| Vo + cpllo, Vg + mpllog,

twpoll B { Vg + mp}zll, zor 15 [onll, o

twpo|hf* (Vad + ep} ey po 1z [onl ], 5o

+als7hg [otlellos, 7z Totlello.e,

+s¥2he{o  curlyv)ellog, lIsF s Tot]ello.,

+H|s 2 he{o  eurlyultellog, |17 hz [ot]e lo.s,

+a |l [on] £l o 05 [on] o7,
and it follows from (26) (applied with w = V,p+mp ) and (25) (applied with w = curl,v)
that

A (w,0,¢), (v, 0,m))| < (14 Co, + Co +a™ +a) [[(w, 6, ¢)|[.[|(v, o, m)|,
which gives the result. O

Proposition 4.2. There exists a constant ag > 0 independent of the mesh size and the
coefficients such that if min(ac,a, a) > aq then,

(v, o, m)|? V(v,o,m) € X x Vi x C. (30)

N | —

Re[(1 =) An((v,0,m), (v,5,m))] >
Proof. By definition of Ap(-, ),

Re [(1—2)An((v,0,m), (9,5, m))] = wl|n*v[Fq, + o 2curlyv|q,.

+2Re ({a_lcurlh'v}f, [[(E, 0, m)]]}-)}_}sbzc + aftc ”h;1/2ﬂ(v, ©, m)]];Hi 9
h

_ 31
ool Voo + mplp — ZooRe ({Vagp + mphr, [n]) o 3y
+a® |75 [onl#II; zo; = 2Re({o curlyvle, [Bt]e)e, + allhe letlell e, -
It follows from the Cauchy-Schwarz inequality and (25) that,
2|R€ ({a_lcurlhv}fa [[(67 P, m)]]]:)]:}ffc |
< 2lls* o eurly v} £, poc 577 hE (0, 0.m)] £l poc )
< 200, [l Peurlwloag sz 7 (0. 0. m)]F ]l o

< Hllo ™ eurlolff o +4CE, 1855 [0, 0. M o

12



Similarly, by virtue of (26),

2IRe ({Vagp +mp}r, [onl7) oo | < 200 (Vg + mp} izl por 11"l [l s
< 200, | Vg +mploalltz"lenlzll,
—-1/2
< 31Vug + mplliq + 4C3, |h5*Lenl 2 o,

(33)
Finally, using (25) we have that
2[Re ({0~ curlyole, [Ptle)g, | < 2[5 *he{o curlvlellog, llss " *hs etlellog,
Crlloeurlw (3o, llss"*hs Totlelloe, (34)

<2
< Yo~ 2curlyv|2,,. + 4CE sz [pt]s |2
> 0,00 QclIBe e L¥PCello,g, -

Combining (31) with (32)-(34) and choosing ag = 1/2 4+ 4C3 + 4C3 we obtain (30). O
We are now in a position to prove the ||-||-stability of the DG scheme (18).

Theorem 4.1. Assume that o~'j € HY?**5(T2¢) and min(a® a®™,a) > ag. Then,
there exits a unique (hy,vn, ky) € Xy X Vi, x C solution of Problem (18). Moreover if
(h,¢,k) € [H(curl, Q) x HY(Q;) x C] N [X*(T2€) x H(T,) x C] is the solution to
(7)-(12) then

(R =Ry = Gk = Rl < (L+2v2M)  inf  [[(h =, = ¢,0).. (35)

(v,P)EXp XV,

Proof. The well posedness of Problem (18) follows immediately from Proposition 4.2.
Moreover we deduce from Proposition 4.2 and the consistency of the scheme that

%H(h‘h - vawh - ¥, kh - m)”2
< Re [(1 - Z)Ah((hh - Uﬂ/’h — ¥, kh - m)> (hC,h - U:wh - ¥, kh - m))]
=Re[(1—0)Ap((h — v, —p,k—m),(h —v,¢ — @,k —m))]

for all (v,p,m) € X, x Vj, x C. Then from Proposition 4.1 we have
[(hi = 0,00 = . b = m)|| < 2V2M || (R = 0,0 = o,k = m)|.

The result follows now from the triangle inequality. O

5 Asymptotic error estimates

We denote by HZ“;IL the m-order H(curl, Q¢)-conforming Nédélec interpolation operator
of the second kind, see for example [16] or [15, Section 8.2]. It is well known that H}?Lu,ﬁi is
bounded on H(curl, Q¢) N H*(curl, 7,7°¢) for s > 1/2, where

H*(curl, 7,7°¢) == {ve H*(7,%°); curl,v € Hs(ﬁlﬂc)} :

13



Moreover, there exists a constant C; > 0 independent of h such that (cf. [4])

Ju=TI5 oo+ leurl(u—TE ) o e < Cl™™ e (] e+ leurlyul] oc). (36)

,m

We introduce L?(T") = {¢ € L*(T'); ¢ -n =0} and consider the m-order Brezzi-
Douglas-Marini (BDM) finite element approximation of the space

H(divr,T) := {p € L}(I); divre € L*(I)}
relatively to the mesh F} (see, e.g. [8]). It is given by
BDM(F;) = {¢ € H(divy,I');  @lr € Pu(T)*, VT € Fp}.

The corresponding interpolation operator IT;DM is bounded on H(divp, I)N]] e Fr HO(T)?

for all § > 0 and we recall that it is uniquely characterized on each T" € F} by the
conditions

/HE,]?,LM@ SOVES /‘P ‘nrq Vg € Pu(e), Ve € E(T), (37)

/HE,%MSO'QZ/SO'Q Vq € Ppa(T)* + Sy (1), (38)
T T

X
X2

where S, 1(T) := {q € Pmi(T)? q- ( ) = O} with P,,_1(T) representing the set

of homogeneous polynomials of degree m — 1 and il being the local variable on the
2

plane containing 7'.
The commuting diagram property

(quiu) X Np = HE%M(u X nr) (39)

holds true for all w € H(curl, Q¢) N H*(curl, 7,%9), s > 1/2, see [11, section 9] for more
details.

For all K € 7" we define the local interpolation operator g, : H'**(K) — P,,(K),
s > 1/2 as follows: recalling the definition of P,,(K) given in (17)

o if DK NT ¢ FI then Pp(K) = P,(K) and we take T, = Tim, Where mg , is
defined as in [15, Section 5.6];

e if OKNT =T € F} then P, (K) = Pp(K) + PL, (K) and 7, is defined by
changing the conditions defining 7 ,, on 7" and on the edges composing 7" into

/ TR mPq = / pqg Vg € Pn_oT) (40)
T T

and
/ﬁK,mpq = /pq Vg € Pm-i(e), Vee€ E(F) (41)

respectively. The remaining degrees of freedom are the same as those defining 7,
see [15, Section 5.6].
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We notice that dim(P,,(K) + PL.(K)) = dim(P,,(K)) + m + 1 and the number of
degrees of freedom defining 7 ,, is equal to the number of degrees of freedom of 7,
plus dim(P,,—2(T")) — dim(P,,,—3(7")) = m — 1 additional degrees of freedom on T and
one additional degree of freedom on each of the three edges of T', which gives a total of
dim(P,,,(K))+m+1 degrees of freedom. Using this fact, it is straightforward to show that
TK,m 1s uniquely determined on elements K € 7;52’ with a face T lying on I". Moreover,
it is clear that the corresponding global H'(Q)-conforming interpolation operator 7,
satisfies the following interpolation error estimate.

Proposition 5.1. If p € HY(Q;) NH**(T,27) with s > 1/2, there exists a constant C' > 0
independent of h such that

IV (0 — Fnmp) o0, < CREp| (42)

1+s,'7'hQI'
Proof. See [15, Lemma 5.47] and [15, Theorem 5.48]. O

The commuting diagram property stated in the next proposition is the reason for
which we use 7, instead of the usual Lagrange interpolation operator.

Proposition 5.2. For any p € H'(Q) N H™ (T2, with s > 1/2, it holds
Vﬁ'h’mp X Nr = Hﬁan(Vp X ’nr‘).

Proof. We first notice that V7, ,,p X np € H(divp,I') and V7, ,,p x np € Py, (T) for all
T € F. Hence, V7, mp x nr € BDM(F}). To show that Vi, ,,p x np = DM (curlpp),
it is sufficient to compare the degrees of freedom of these two tangential fields on each
triangle T' € F}. On the one hand, for all ¢ € P,,(e), e € E(T),

/(Vﬁh,mp x np — 1M (Vp x nr)) - npg

~ 8~ m. -
Z/V((ﬂh,mp—p) an)-nqu/Wq

€ €

=~ [ G = D)5 + (nanp = B)(@)a(20) = G — P)(bJa(b) =0,

where the last identity follows from the fact that 7 ,,,p and p must coincide at the end-
points a, and b, of edge e (by definition of the 7, ,,) and from (41), taking into account
that g—i € Pm—1(e).

On the other hand, for any q € P,,_2(T)* + S,,_1(T), we have that

/(V%hmp X mp — HE%M(Vp X nr))-q
T
= / V(Thmp —p) X mr-q = —/ V(Tnmp —p) - (4 X nr)
T

= ]T (Fnmp —p) dive(a x nr) = > [ (Famp —p) (a x nr) -vr

ecE(T) "V €
= /(frh,mp —p)dive(qx nr) = > /(frh,mp —p)q-t.=0
T ec&(T) " €
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by virtue of (40) and (41), since divr(q X nr) € P,,_o(F) and q - t. € P,,_1(e). O
Finally, we consider the L2(7,¢)-orthogonal projection P’;_ ac onto [, oc Pr(K)?
h h

o; Pr(K)3, k > 0. We denote

KeT,

and the L?(7,*)-orthogonal projection P%QI onto ]
indifferently by II% the restriction of H’fr o, and H’frgj to an element K.
h h

Lemma 5.1. For all K € Tj, and w € H"(K), r > 1/2, we have

he W = Piewloor + hil”|lw = Plwlloor + [w = Plwllox < O™ 1wl e, (43)
with a constant C' > 0 independent of h.
Proof. See [9], Lemma 1.58 and Lemma 1.52. O

We are now in a position to prove the main result of this section.

Theorem 5.1. Let (h,v, k) € H(curl, Q¢) x HY(Q;) x C and (hy,, Yp, k) € X, x Vi, x C
be the solutions to (7)-(12) and (18) respectively. If o='5 € HY*(T2), (h,¢) €
X5(T2€) x HF (T2, with s > 1/2, and min(a®c,a® | o) > ay, then

(B = Byt — g, b — k)| < CR™E™) (HhHs,T,y + lleurlhffy o4 70 + HwHHS,T}yI),

where C' > 0 is a constant independent of h.

Proof. Taking (v,¢) = (II;" h, 75 1) in (35) yields

[(h = R, o — o, k= k)| < (14 2vV2M)|[(R — T By o) — T, )]
All the jumps terms in the right-hand side of the last inequality are zero since the identities
(T k) x n = IVM (R x np) = ILDM((VY + kp) x nr) = (Vg + kp) x np (44)
holds true on I' and we also have that

[(¢ = Fnm)n]r = [(¢ = Tnm)t]e = 0,

by construction. Note that in the last equality of (44) we have used the fact that p
belongs to H(curl; ;) and is a piecewise-linear polynomial. It follows that,

H(h’ - H;:zl,l;}bha w - 7~rh,mwa 0)||3
= [[(wp) 2 (h = TR [ o, + lo™2curl(h — TIA) [ g,
ol Va(y = Fnmt) B, + 180 o curl(h — IR} A2 o

s *he{o™ curl(h — TG R)YelFs, + 11°{V (0 = Fnmt )} 22 o
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We deduce from the triangle inequality that,
||s;/2h;!2{a—1cur1(h—H;?;ih)}Fnofgc = ||s;/2h;/2{0_1(curlh—P;’;gclcurlh)}fuofzzc
+||sY2hY? {g*l(P%*gcurl h — curl H;‘};}Lh)}fuof}?c = Aq. + Ba,. -
Using (25) yields
Bq. < C’QC||0_1/2(P%§Clcurlh — curl HZ‘fﬁh)HQgc

= Co,. ||J_1/2P:§é(curl h — curl H;“f,ih) lo.oe < Ca ||a_1/2(:url(h - Hzl’l:rth>||07QC
h

and by virtue of (27) we obtain

Abe < Y hxllo(curlh — PR leurl B .

KeT'¢

Similarly, we consider the splitting

Is&he{o teurl(h — T h) Yellos, < |lse*he{o (curlh — P curlh)}elog,
h

+ |lsg*he{o (PTG curl b — curl I R) Yellog, = Ar + Br
h
and use (25) to obtain

Br < CFHJ_I/Q(Pigécurl h — curl HZ?;éh)HO,QC
h

= CpHa_l/ngfgé (curl(h — chrlh)) lo.ae < CFHJ_l/zcurl(h — chrlh)Hoygc.
h

h,m h,m

Moreover, it follows from (28) that

AR < 3 Wllog(eurlh — P curl h)[{ 7.

TeFL
Finally,
1/2 - 1/2 m
109 (0 = )bl or < 02 (V0 = P, VY7 po
+ ]\h¥2{P%Q, VY = Vitnm)}Flly zor = Ag, + Be,
and we derive from (26) and (29) the following estimates

BQJ < CQIHP;—’;QI V%U - Vﬁh,mwnilﬂf < CQ[HV(w - ﬁh,m@b)noﬂlv

Aby <) hillVY = PRV o

KeT 1
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Combining the last inequalities we deduce that

(b = TR, = ) |2 < C (b = TRIR g, + eurl(h — TIR) |2,
+ | Vi(y — ﬁh7mw>||agl + Z h|lcurlh — P%’lcurthO,aK

KeT'¢

+ Y Bllewrlh — P tourlhl pr + >0 Al Ve = PRVG|Z o1 )

TeF; KEThQI

with C' > 0 independent of h. Applying the interpolation error estimates given by (36),
(42) and (43) we obtain

|(h=TE2R, 6~ )]s < © (R (Rl o+ [lcurTh] poc)+Hmm) |

+ hmin(1/2+s,m) chrlh H

1+s,7'hQI

Joc + RO Ty o)

1/2+s,

and the result follows. O

6 Numerical results

We performed numerical experiments consisting in the implementation (in a MATLAB
code) of the DG method (18) to solve the eddy current problem (7)-(12). Actually, in
order to have at our disposal an analytical solution of the problem we considered the
associated transmission problem

1h + curl (curl h) = f in Q¢
h xnpr=Vy xnr+g, on I’
h-nr=V¢- -nr+ g on I

Ay =0 in

Y =1y on X,

in the domains Q¢ := (0.25,0.75)% and ; := (0,1)® \ Q¢ and with data f, g,, g» and 1,
chosen in such a way that the exact solutions are

sin(2mxy) sin(2mwxs) sin(27x3)

h(x) = (1+1) | sin(27z) sin(27z,) sin(27z3) in Q¢,
sin(27xy) sin(27xs) sin(27x3)

(

and ¢(x) = ‘m R x*|z in Q; (having set x, = (2,0,0)* and * = (0,0, 3)*).
We use the followmg notations:

en(h, ¥) := [|(h = hn, v — )|l (45)
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namely, the error of the method in the DG norm (23), and

en(h)® = [[(w)*(h = ha)|lg o, + o 2eurly(h — )3 g,

12— (46)

+s7h7 21k = byt = 0, O)]FI? Lo

h,
e e P
sz 2he 10 — va)tlell e, -
Note that ep,(h,1)?* = en(h)? + e, ().
We consider the experimental rate of convergence defined by
1 h (h

rh(h,w) = Og(eh( 7¢)/eh( 777D)) ’ (48)

log(h/h)

where h and & denote two different mesh sizes with corresponding errors e, (h, ) and
ej (h,1). We use a similar definition for rj,(h) and rj(¢).

We report in Table 1 the errors and the convergence orders obtained for different
meshes for m = 1 and by considering stabilization parameters a?¢ = a® = a = 50. The
meshes are obtained by dividing the domain in small cubes of size 1/M and then dividing
each small cube in 6 tetrahedra. Thus the total number of elements is nelem = 6 M3,
the number of elements in the conductor is nec = %nelem, the number of elements in the
insulator is nei = %nelem and the number of faces on the interface is nfg = 3 M?. Let
us recall that the finite element space V}, is defined through (17), hence the number of
degrees of freedom reported in Table 1 is ndof = 12nec + 4nei + 6nfg.

M | ndof en(h,v) rh(h, 1) en(h) ry(h) en(?) ry (1)
4 2208 | 2.044e—00 — 2.007e—00 — 3.943e—01 —

8 | 16512 | 1.010e—00  1.018 | 1.009¢e—00 0.992 | 5.265e—02 2.905
12 | 54432 | 6.675e—01 1.021 6.671e—01 1.020 | 2.477e—02 1.859
16 | 127488 | 4.978e—01 1.020 | 4.975e—01 1.020 | 1.733e—02 1.242
20 | 247200 | 3.967e—01 1.017 | 3.965e—01 1.017 | 1.362e—02 1.080
24 | 425088 | 3.297e—01 1.015 | 3.295e—01 1.015 | 1.128e—02 1.034

Table 1: Convergence history of the DG method with m = 1.

It is easily verified that the correct linear convergence rate is achieved.

Let us underline that the DG discretization of the eddy current model written in
terms of the electric field e (see the formulation proposed in [17]) would have a larger
number of degrees of freedom when using polynomials of degree m = 1: precisely, ndof =
12 (nec + nei).

We have repeated the computations using polynomial of degree m+1 = 2 in the whole
insulator and not only in the faces of the interface. Therefore the number of degrees of
freedom reported in Table 2 is ndof = 12nec + 10nei.
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M | ndof en(h,v) rh(h,v) en(h) ry(h) en(¥) ri ()
4 3936 | 2.099¢—00 — 2.031e—-00 — 5.319e—01 —
8

2

31488 | 1.011e—00  1.054 | 1.009e—00 1.009 | 5.811e—02 3.194
12 | 106272 | 6.673e—01  1.025 | 6.671e—01 1.021 | 1.528e—02 3.295
16 | 251904 | 4.975e—01  1.020 | 4.975e—01 1.020 | 6.158e—03 3.158
20 | 492000 | 3.965e—01  1.017 | 3.965e—01 1.017 | 3.231e—03 2.891

Table 2: Convergence history of the DG method with m = 1 in the conductor and m = 2
in the insulator.

As expected, in the insulator one sees a higher order of convergence than in the previous

case. A reasonable guess is in fact a second order convergence in the insulator. However,
for the same M the number of degrees of freedom is around the double.
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