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Abstract

We introduce and analyze a discontinuous Galerkin method for a time-harmonic
eddy current problem formulated in terms of the magnetic field. The scheme is
obtained by putting together a DG method for the approximation of the vector
field variable representing the magnetic field in the conductor and a DG method for
the Laplace equation whose solution is a scalar magnetic potential in the insulator.
The transmission conditions linking the two problems are taken into account weakly
in the global discontinuous Galerkin scheme. We prove that the numerical method is
uniformly stable and obtain quasi-optimal error estimates in the DG-energy norm.

1 Introduction

In this paper, we present a discontinuous Galerkin (DG) approximation of a time-harmonic
eddy current problem. The eddy current approximation of Maxwell equations is obtained
by disregarding the displacement current term. It is commonly used in applications re-
lated to induction heating, transformers, magnetic levitation and non-destructive testing.
These problems often involve composite materials and structures, complex transmission
conditions and, eventually, boundary layers due to the skin effect. The ability of DG
methods to handle efficiently unstructured meshes with hanging nodes combined with
hp-adaptive strategies make them well-suited for the numerical simulation of physical
systems related to eddy currents.
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The eddy current problem is generally written in terms of either the electric or the
magnetic field, cf. [4]. These two formulations are equivalent at the continuous level but
they lead to different numerical schemes. A discontinuous Galerkin method for a time-
harmonic eddy current problem written in terms of the electric field has been analyzed
in the pioneering work of Perugia and Schotzau [17]. For the time-domain eddy current
problem, Ausserhofer et al. used in [6] a formulation in terms of a magnetic vector
potential, thus similar to the one in terms of the electric field, and proposed a numerical
method based on edge elements, a DG approximation in the conductor and a standard
Galerkin approximation in the insulator.

When using the formulation in terms of the electric field, the presence of some con-
straints in the insulator region leads naturally to a mixed formulation with the introduc-
tion of additional unknowns, hence the total number of degrees of freedom is quite high.
It is possible to use a primal form by eliminating these additional unknowns (see [17]);
however this procedure requires the introduction of several lifting operators thus making
a little bit cumbersome the algorithm.

Here, differently from what done in these previous papers, we choose the magnetic
field as primary unknown. At the discretization level, the advantage of this approach
rests on the reduction of the number of degrees of freedom resulting from the introduc-
tion of a scalar magnetic potential in the non-conducting region; moreover, the fact that
the equation in this region is simply the Laplace equation permits to employ all the tech-
niques that have been already devised for this basic problem. It is also worth noting that
the additional unknowns possibly deriving from the topological shape of the conducting
domain are easily inserted in the problem by means of suitable elements of the first de
Rham cohomology group. In the end, the global formulation of the problem turns out
to be a rather simple H(curl)-elliptic problem for vector fields that are curl-free in the
insulator ΩI .

Our DG formulation is obtained by applying for the Laplace equation posed in ΩI the
usual interior penalty finite element method, that can be traced back to [5], see also [9]
and the references cited therein for more details. In the conductor ΩC we employ, as in
[12, 17], the interior penalty method corresponding to the Nédélec curl-conforming finite
element space of the second kind.

We prove the stability of the resulting combined DG scheme by exploiting the elliptic
character of the problem. We also obtain, under adequate regularity assumptions, quasi-
optimal asymptotic error estimates. It is worthwhile to notice that the implementation
of the DG-method presented here only requires the use of standard shape functions. On
the other hand, the theoretical convergence results in Section 5 make use of some known
properties of curl-conforming finite elements, more precisely, of the Nédélec finite elements
of the second kind.

The outline of this paper is as follows. In Section 2 we derive the model problem used in
the finite element approximation. We introduce our DG formulation in Section 3. Section
4 is devoted to the convergence analysis, and asymptotic error estimates are provided in
Section 5. Finally, in Section 6 we include a numerical experiment that confirms the order
of convergence.
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2 The model problem

Let ΩC ⊂ R3 be a bounded polyhedral domain with a Lipschitz boundary Γ. We denote
by nΓ the unit normal vector on Γ that points towards Ωe := R3 \ ΩC . In order to
illustrate the impact of the conductor’s topology in our method, we assume that ΩC has a
toroidal shape. We notice that the eddy current problem is posed in the whole space with
asymptotic conditions on the behaviour of the electric and magnetic fields at infinity.
Depending on the nature of the eddy current problem being solved and the geometry
involved, a discretization method can be obtained for this problem by either applying a
pure finite element approach on a truncated domain or by using a combination of boundary
(BEM) and finite elements (FEM), see [2, 10, 14, 3]. The FEM–BEM formulation is posed
in the conductor but its implementation is more difficult and it leads to more complex
algebraic linear systems of equations. The FEM method needs a large computational
domain, but it is simpler and it can provide an alternative in many practical situations.
It is the option that we will consider in the following. To this end, we introduce a bounded
domain D containing in its interior ΩC and whose connected boundary Σ = ∂D is located
at a large enough distance from the conductor ΩC . The bounded domain ΩI := D \ ΩC

then represents the non-conducting region of the computational domain D (see Figure 1).

D

ΩC

Σ := ∂D

ΩI := D \ ΩC

Γ := ∂ΩC

Figure 1: The geometry of the computational domain D.

Under our assumptions, the first de Rham cohomology group H1(ΩI) of ΩI , namely,
the space of curl-free vector fields that are not gradients, has dimension one. If we
assume that ΩI is a polyhedral domain endowed with a tetrahedral mesh, one can use
the technique given in [7] for the explicit construction of a piecewise-linear vector field ρ
spanning H1(ΩI) and satisfying ρ × nΣ = 0 on Σ, where nΣ denotes the outward unit
normal vector to Σ. For an alternative construction of ρ see Alonso Rodŕıguez et al. [1].

The eddy current problem formulated in terms of the magnetic field h and the scalar
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magnetic potential ψ reads as follows:

ıωµh+ curl e = 0 in D

e = σ−1(curlh− j) in ΩC

h = ∇ψ + kρ in ΩI

ψ = 0 on Σ ,

(1)

where j is the applied current density, µ is the magnetic permeability and σ is the electric
conductivity. In what follows, we assume that µ and σ are positive piecewise constant
functions in ΩC and that µ|ΩI

= µ0 is the permeability constant of vacuum. It follows
from the first equation (1) that

0 = div(h|ΩI
) = div(∇ψ + kρ) in ΩI . (2)

We point out here that the electric field e is not uniquely determined in ΩI . Nevertheless,
the tangential components of the magnetic field and the tangential components of any
admissible representation of the electric field should be continuous across the interface Γ,
i.e.,

h|ΩC
× nΓ = (∇ψ + kρ)× nΓ . (3)

and
e|ΩC

× nΓ = e|ΩI
× nΓ. (4)

The electric field e is considered here as an auxiliary variable, it will be removed from the
formulation. Hence, we should deduce from (4) a transmission condition relating h and
ψ on Γ. Applying the surface divergence operator divΓ to both side of (4) and recalling
that divΓ(e×nΓ) = curl e ·nΓ we deduce that the field curl e admits continuous normal
components across Γ. As a consequence of the first equation of (1), µh should also have
continuous normal components across Γ, i.e.,

µh · nΓ = µ0(∇ψ + kρ) · nΓ . (5)

Finally, we deduce from (4) and the property curlρ = 0 that∫
Γ

e|ΩC
× nΓ · ρ =

∫
Γ

e|ΩI
× nΓ · ρ =

∫
ΩI

curl e · ρ,

thus ∫
Γ

σ−1(curlh− j) · (ρ× nΓ) = ı ω

∫
ΩI

µ0(∇ψ + kρ) · ρ . (6)

From now on, for the sake of simplicity in notations, h will stand for h|ΩC
. Taking into

account (2), (3), (5) and (6), we deduce that the eddy current problem can be formulated
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in terms of the magnetic field and its scalar potential representation in the insulator in
the following form: Find h : ΩC → C3, ψ : ΩI → C and k ∈ C such that,

ıωµh+ curl [σ−1(curlh− j)] = 0 in ΩC (7)

h× nΓ = (∇ψ + kρ)× nΓ on Γ (8)

µh · nΓ = µ0(∇ψ + kρ) · nΓ on Γ (9)∫
Γ

σ−1(curlh− j) · (ρ× nΓ) = ı ωµ0

∫
ΩI

(∇ψ + kρ) · ρ (10)

div(∇ψ + kρ) = 0 in ΩI (11)

ψ = 0 on Σ . (12)

We refer to [4, Section 5] for a proof of the well-posedness of problem (7)-(12).

3 The discrete problem

3.1 Notations

Given a real number r ≥ 0 and a polyhedron O ⊂ Rd, (d = 2, 3), we denote the norms
and seminorms of the usual Sobolev space Hr(O) by ‖ · ‖r,O and | · |r,O respectively (cf.
[13]). We use the convention L2(O) := H0(O) and L2(O) := [L2(O)]3. We recall that, for
any t ∈ [−1, 1], the spaces Ht(∂O) have an intrinsic definition (by localization) on the
Lipschitz surface ∂O due to their invariance under Lipschitz coordinate transformations.
Moreover, for all 0 < t ≤ 1, H−t(∂O) is the dual of Ht(∂O) with respect to the pivot
space L2(∂O). Finally we consider H(curl,O) := {v ∈ L2(O)3 : curlv ∈ L2(O)3} and
endow it with its usual Hilbertian norm ‖v‖2

H(curl,O) := ‖v‖2
0,O + ‖curlv‖2

0,O.

We consider a sequence {Th}h of conforming and shape-regular triangulations of ΩC ∪
ΩI . We assume that each partition Th consists of tetrahedra K of diameter hK and unit
outward normal to ∂K denoted nK . We also assume that for all K ∈ Th we have either
K ⊂ ΩC or K ⊂ ΩI and denote

T ΩC
h :=

{
K ∈ Th; K ⊂ ΩC

}
, T ΩI

h :=
{
K ∈ Th; K ⊂ ΩI

}
.

We also assume that the meshes {T ΩC
h }h are aligned with the discontinuities of the coef-

ficients σ and µ. The parameter h := maxK∈Th{hK} represents the mesh size.
We denote by F0

h(ΩC) and F0
h(ΩI) the sets of interior faces of the triangulations T ΩC

h

and T ΩI
h respectively. We also introduce the sets of boundary faces

FΓ
h :=

{
F = K ∩K ′; K ∈ T ΩC

h , K ′ ∈ T ΩI
h

}
and FΣ

h :=
{
F = ∂K ∩ Σ; K ∈ T ΩI

h

}
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and consider

FΩC
h := F0

h(ΩC) ∪ FΓ
h , FΩI

h := F0
h(ΩI) ∪ FΣ

h and Fh := FΩC
h ∪ FΩI

h .

We notice that
{
FΓ
h

}
h

is a shape regular family of triangulations of Γ into triangles T

of diameter hT . Finally, we consider the set Eh of edges e = T ∩ T ′ (where T and T ′ are
two adjacent triangles from FΓ

h ).
Let Oh be anyone of the previously introduced partitions of ΩC ∪ΩI , ΩC , ΩI or Γ and

let E be a generic element of the given partition. We introduce for any s ≥ 0 the broken
Sobolev spaces

Hs(Oh) :=
∏
E∈Oh

Hs(E) and Hs(Oh) :=
∏
E∈Oh

Hs(E)3 .

For each w := {wE} ∈ Hs(Oh), the components wE represents the restriction w|E.
When no confusion arises, the restrictions will be written without any subscript.

The space Hs(Oh) is endowed with the Hilbertian norm

‖w‖2
s,Oh

:=
∑
E∈Oh

‖wE‖2
s,E.

We consider identical definitions for the norm and the seminorm on the vectorial
version Hs(Oh). We use the standard conventions L2(Oh) := H0(Oh) and L2(Oh) :=
H0(Oh) and introduce the bilinear forms

(w, z)Oh
=
∑
E∈Oh

∫
E

wEzE, ∀w, z ∈ L2(Oh)

and

(w, z)Oh
=
∑
E∈Oh

∫
E

wE · zE, ∀w, z ∈ L2(Oh).

Assume that (v, ϕ,m) ∈ H1+s(T ΩC
h )×H1+s(T ΩI

h )×C, with s > 1/2. Moreover, let us
recall that ρ has been constructed as a piecewise-linear vector field, therefore its restriction
to any face F has a meaning. We define curlhv ∈ Hs(T ΩC

h ) by (curlhv)|K = curlvK , for
all K ∈ T ΩC

h ; ∇hϕ ∈ Hs(T ΩI
h ) by (∇hϕ)|K = ∇ϕK , for all K ∈ T ΩI

h .
We also need to introduce the following quantities, that are defined on the sets of faces

of ΩC and ΩI through a local definition on each face: the averages {v}F ∈ L2(FΩC
h ) and

{∇hϕ+mρ}F ∈ L2(FΩI
h ) by

{v}F |F := {v}F with

{v}F :=

{
(vK + vK′)/2 if F = K ∩K ′ ∈ F0

h(ΩC)

vK if F ⊂ ∂K and F ∈ FΓ
h ,

(13)
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and
{∇hϕ+mρ}F |F := {∇hϕ+mρ}F with

{∇hϕ+mρ}F :=


(∇ϕK +∇ϕK′)/2 +m(ρK + ρK′)/2

if F = K ∩K ′ ∈ F0
h(ΩI)

∇ϕK +mρK
if F ⊂ ∂K and F ∈ FΣ

h ,

(14)

and the jumps J(v, ϕ,m)KF ∈ L2(FΩC
h ) and JϕnKF ∈ L2(FΩI

h ) by

J(v, ϕ,m)KF |F := J(v, ϕ,m)KF with

J(v, ϕ,m)KF :=


Jv × nKF := vK × nK + vK′ × nK′

if F = K ∩K ′ ∈ F0
h(ΩC)

vK × nK + (∇ϕK′ +mρK′)× nK′
if F = K ∩K ′ ∈ FΓ

h with K ∈ T ΩC
h , K ′ ∈ T ΩI

h ,

(15)

and
JϕnKF |F := JϕnKF with

JϕnKF :=

{
ϕKnK + ϕK′nK′ if F = K ∩K ′ ∈ F0

h(ΩI)

ϕKnΣ if F ⊂ ∂K and F ∈ FΣ
h .

(16)

Similarly, we define the edge averages {v}E ∈ L2(Eh) by

{v}E |e := {v}e with {v}e := (vKe + vK′e)/2

where Ke, K
′
e ∈ T

ΩC
h are such that T = ∂Ke∩Γ ∈ FΓ

h , T ′ = ∂K ′e∩Γ ∈ FΓ
h and e = T ∩T ′.

We also need to define the edge jumps JϕtKE ∈ L2(Eh) by

JϕtKE |e := JϕtKe with JϕtKe := ϕKete + ϕK′et
′
e ,

where Ke, K
′
e are in this case the elements from T ΩI

h such that T = ∂Ke ∩ Γ ∈ FΓ
h ,

T ′ = ∂K ′e ∩ Γ ∈ FΓ
h and e = T ∩ T ′. Here, te, t

′
e are the tangent unit vectors along the

edge e given by te = (nΓ×νT )|e and t′e = (nΓ×νT ′)|e where νT and νT ′ are the outward
unit normal vector to ∂T and ∂T ′ respectively that lies on the tangent plane to Γ.

3.2 The DG formulation

Hereafter, given an integer k ≥ 0 and a domain O ⊂ R3, Pk(O) denotes the space of
polynomials of degree at most k on O. For any m ≥ 1, we introduce the finite element
spaces

Xh :=
∏

K∈T ΩC
h

Pm(K)3 and Vh :=
∏

K∈T ΩI
h

P̃m(K),

7



where

P̃m(K) :=

{
Pm(K) if ∂K ∩ Γ /∈ FΓ

h

Pm(K) + PTm+1(K) if T = ∂K ∩ Γ ∈ FΓ
h

(17)

with PTm+1(K) representing the subspace of Pm+1(K) spanned by the elements of the
Lagrange basis corresponding to nodal points located on T . It follows that Pm(K) ⊂
P̃m(K) ⊂ Pm+1(K) and if T = ∂K ∩ Γ ∈ FΓ

h then P̃m(K)|T = Pm+1(T ).

Let hF ∈
∏

F∈Fh
P0(F ) and hE ∈

∏
e∈Eh P0(e) be defined by hF |F := hF ,∀F ∈ Fh and

hE |e := he ,∀e ∈ Eh respectively. By virtue of our hypotheses on σ and on the triangulation
T ΩC
h , we may consider that σ is an element of

∏
K∈T ΩC

h

P0(K) and denote σK := σ|K for

all K ∈ T ΩC
h . We introduce sF ∈

∏
F∈Fh(ΩC)P0(F ) defined by sF := min(σK , σK′), if

F = ∂K ∩ ∂K ′ ∈ F0
h(ΩC) and sF := σK , if F = ∂K ∩ Γ ∈ FΓ

h . We also need to
define sE ∈

∏
e∈Eh P0(e) given by se = min(σKe , σK′e) where Ke, Ke ∈ T ΩC

h are such that

T = ∂Ke ∩ Γ ∈ FΓ
h , T ′ = ∂K ′e ∩ Γ ∈ FΓ

h and e = T ∩ T ′.

We consider, for s > 1/2, the Hilbert space

Xs(T ΩC
h ) :=

{
v ∈ Hs(T ΩC

h ); curlhv ∈ H1/2+s(T ΩC
h )

}
and define on Xs(T ΩC

h )× H1+s(T ΩI
h )× C the sesquilinear forms

AΩC
h ((u, φ, c),(v, ϕ,m)) := ıω (µu,v)T ΩC

h

+
(
σ−1curlhu, curlhv

)
T ΩC
h

+
(
{σ−1curlhu}F , J(v, ϕ,m)KF

)
FΩC

h

+
(
{σ−1curlhv}F , J(u, φ, c)KF

)
FΩC

h

+ aΩC
(
s−1
F h

−1
F J(u, φ, c)KF , J(v, ϕ,m)KF

)
FΩC

h

,

AΩI
h ((u, φ, c), (v, ϕ,m)) := ıωµ0(∇hφ+ cρ,∇hϕ+mρ)T ΩI

h

+
aΩI

ωµ0

(
h−1
F JφnKF , JϕnKF

)
FΩI

h

− ıωµ0 ({∇hφ+ cρ}F , JϕnKF)FΩI
h

− ıωµ0 ({∇hϕ+mρ}F , JφnKF)FΩI
h

−
(
{σ−1curlhu}E , JϕtKE

)
Eh
−
(
{σ−1curlhv}E , JφtKE

)
Eh

+ α
(
s−1
E h

−2
E JφtKE , JϕtKE

)
Eh
,

and let

Ah((u, p, c), (v, ϕ,m)) := AΩC
h ((u, φ, c), (v, ϕ,m)) + AΩI

h ((u, φ, c), (v, ϕ,m)) .

Let us assume that σ−1j ∈ H1/2+s(T ΩC
h ) with s > 1/2. Then we can define the linear

form Lh(·) on Xs(T ΩC
h )× H1+s(T ΩI

h )× C by

Lh((v, ϕ,m)) := (σ−1j, curlhv)T ΩC
h

+
(
{σ−1j}F , J(v, ϕ,m)KF

)
FΩC

h

−
(
{σ−1j}E , JϕtKE

)
Eh
.

We propose the following DG formulation of problem (7)-(12):

Find (hh, ψh, kh) ∈ Xh × Vh × C such that,

Ah((hh, ψh, kh), (v, ϕ,m)) = Lh((v, ϕ,m)) ∀ (v, ϕ,m) ∈ Xh × Vh × C .
(18)

The existence and uniqueness of the solution of this problem is proved in Theorem 4.1
We end this section by showing that the DG scheme (18) is consistent.
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Proposition 3.1. Let (h, ψ, k) ∈ H(curl,ΩC)×H1(ΩI)×C be the solution of (7)-(12).
Under the assumption σ−1j ∈ H1/2+s(T ΩC

h ) and the regularity conditions (h, ψ, k) ∈
Xs(T ΩC

h )× H1+s(T ΩI
h )× C, with s > 1/2, we have that

Ah((h, ψ, k), (v, ϕ,m)) = Lh((v, ϕ,m)) ∀ (v, ϕ,m) ∈ Xh × Vh × C.

Proof. Using again the notation e = σ−1(curlh − j) and taking into account that
J(h, ψ, k)KF = 0, JψnKF = 0, and JψtKE = 0, it is straightforward to show that

Ah((h, ψ, k), (v, ϕ,m))− Lh((v, ϕ,m)) = ıω

∫
ΩC

µh · v +

∫
ΩC

e · curlhv

+ ıωµ0

∫
ΩI

(∇ψ + kρ) · (∇hϕ+mρ) + ({e}F , J(v, ϕ,m)KF)FΩC
h

− ıωµ0 ({∇ψ + kρ}F , JϕnKF)FΩI
h

− ({e}E , JϕtKE)Eh . (19)

Integrating by parts in each K ∈ T ΩC
h and using (7) yield∫

ΩC

e · curlhv =
∑

K∈T ΩC
h

∫
K

curl e · v −
∑

K∈T ΩC
h

∫
∂K

e · v × nK

= −ıω
∫

ΩC

µh · v −
∑

F∈F0
h(ΩC)

∫
F

{e}F · Jv × nKF −
∑
T∈FΓ

h

∫
T

e · v × n. (20)

Similarly, integrating by parts in each K ∈ T ΩI
h together with (10) and (11) give

ıωµ0

∫
ΩI

(∇ψ + kρ) · (∇hϕ+mρ) = −ıωµ0

∑
K∈T ΩI

h

∫
K

div(∇ψ + kρ)ϕ

+ıωµ0

∑
K∈T ΩI

h

∫
∂K

(∇ψ+kρ)·nKϕ+m

∫
ΩI

(∇ψ+kρ)·ρ = ıωµ0

∑
F∈F0

h(ΩI)

∫
F

{∇ψ+kρ}F ·JϕnKF

− ıωµ0

∑
T∈FΓ

h

∫
F

(∇ψ + kρ) · ϕnΓ + ıωµ0

∑
T∈FΣ

h

∫
F

(∇ψ + kρ) · ϕnΣ +m

∫
Γ

e · (ρ× nΓ).

(21)

Substituting back (20) and (21) in (19) we obtain

Ah((h, ψ, k), (v, ϕ,m))− Lh((v, ϕ,m)) = −
∑
T∈FΓ

h

∫
T

e · curlTϕ

− ıωµ0

∑
T∈FΓ

h

∫
T

∇(ψ + kρ) · ϕnΓ − ({e}E , JϕtKE)Eh . (22)
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Finally, using the integration by parts formula∑
T∈FΓ

h

∫
T

e·curlTϕ =
∑
T∈FΓ

h

∫
T

(curlTe)ϕ−
∑
T∈FΓ

h

∫
∂T

e·ϕt∂T =

∫
Γ

(curlΓe)ϕ−({e}E , JϕtKE)Eh ,

we deduce from (22) that

Ah((h, ψ, k), (v, ϕ,m))− Lh((v, ϕ,m)) = −
∫

Γ

(curlΓe)ϕ

− ıωµ0

∑
T∈FΓ

h

∫
T

∇(ψ + kρ) · ϕnΓ.

and the result follows from the identity curlΓe = curle · n, equation (7) and the trans-
mission condition (9).

4 Convergence analysis of the DG-FEM formulation

The aim of this Section is to prove that the DG-FEM formulation (18) is stable in the
DG-norm defined on Xs(T ΩC

h )× H1+s(T ΩI
h )× C by

‖(v, ϕ,m)‖2 :=‖(ωµ)1/2v‖2
0,ΩC

+ ‖σ−1/2curlhv‖2
0,ΩC

+ ωµ0‖∇hϕ+mρ‖2
0,ΩI

+‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖2

0,FΩC
h

+ ωµ0‖h−1/2
F JϕnKF‖2

0,FΩI
h

+‖s−1/2
E h−1

E JϕtKE‖2
0,Eh . (23)

We also need to introduce

‖(v, ϕ,m)‖2
∗ := ‖(v, ϕ,m)‖2 + ‖s1/2

F h
1/2
F {σ

−1curlhv}F‖2

0,FΩC
h

+ ‖s1/2
E hE{σ−1curlhv}E‖2

0,Eh + ‖h1/2
F {∇hϕ+mρ}F‖2

0,FΩI
h

.

The following discrete trace inequality is standard, (see, e.g. [9, Lemma 1.46]).

Lemma 4.1. For all integer k ≥ 0 there exists a constant C∗ > 0 independent of h such
that,

hQ‖v‖2
0,∂Q ≤ C∗‖v‖2

0,Q ∀ v ∈ Pk(Q), ∀Q ∈ {Th,FΓ
h }. (24)

It is used to prove the following auxiliary result.

Lemma 4.2. For all k ≥ 0, there exist constants CΩC
> 0 and CΩI

> 0 independent of
the mesh size and the coefficients such that

‖s1/2
E hE{σ−1w}E‖0,Eh + ‖s1/2

F h
1/2
F {σ

−1w}F‖0,FΩC
h

≤ CΩC
‖σ−1/2w‖0,ΩC

, (25)
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for all w ∈
∏

K∈T ΩC
h

Pk(K)3, and

‖h1/2
F {w}F‖0,FΩI

h

≤ CΩI
‖w‖0,ΩI

, (26)

for all w ∈
∏

K∈T ΩI
h

Pk(K)3.

Proof. By definition of sF , for any w ∈
∏

K∈T ΩC
h

Pk(K)3,

‖s1/2
F h

1/2
F {σ

−1w}F‖2

0,FΩC
h

=
∑

F∈FΩC
h

hF‖s1/2
F {σ

−1w}F‖2
0,F

≤
∑

K∈T ΩC
h

∑
F∈F(K)

hF‖s1/2
F σ−1

K wK‖2
0,F ≤

∑
K∈T ΩC

h

hK‖σ−1/2
K wK‖2

0,∂K . (27)

Similarly,

‖s1/2
E hE{σ−1w}E‖2

0,Eh =
∑
e∈Eh

h2
e‖s1/2

e {σ−1w}e‖2
0,e

≤
∑
T∈FΓ

h

∑
e∈E(T )

h2
e‖s1/2

e σ−1
KT

wKT
‖2

0,e ≤
∑
T∈FΓ

h

h2
T‖σ

−1/2
KT

wKT
‖2

0,∂T , (28)

where KT ∈ T ΩC
h is such that T = ∂KT ∩ Γ. It follows from (24) that

‖s1/2
E hE{σ−1w}E‖2

0,EΩI
h

≤ C∗
∑
T∈FΓ

h

hT‖σ−1/2
KT

wKT
‖2

0,T ≤ C∗
∑

K∈T ΩC
h

hK‖σ−1/2
K wK‖2

0,∂K

and (25) follows by applying again the discrete trace inequality (24) in the last estimate
and in (27). Finally, for any w ∈

∏
K∈T ΩI

h

Pk(K)3,

‖h1/2
F {w}F‖

2

0,FΩI
h

=
∑

F∈FΩI
h

hF‖{w}F‖2
0,F ≤

∑
K∈T ΩI

h

hK‖wK‖2
0,∂K (29)

and (26) follows again from (24).

Proposition 4.1. There exists a constant M > 0 independent of h such that

|Ah((u, φ, c), (v, ϕ,m))| ≤M‖(u, φ, c)‖∗‖(v, ϕ,m)‖

for all (u, φ, c), (v, ϕ,m) ∈ Xs(T ΩC
h )× H1+s(T ΩI

h )× C, with s > 1/2.

Proof. By the Cauchy-Schwarz inequality, we have that

|AΩC
h ((u, φ, c), (v, ϕ,m))|
≤ ω‖µ1/2u‖0,ΩC

‖µ1/2v‖0,ΩC
+ ‖σ−1/2curlhu‖0,ΩC

‖σ−1/2curlhv‖0,ΩC

+‖s1/2
F h

1/2
F {σ−1curlhu}F‖0,FΩC

h

‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖0,FΩC

h

+‖s1/2
F h

1/2
F {σ−1curlhv}F‖0,FΩC

h

‖s−1/2
F h

−1/2
F J(u, φ, c)KF‖0,FΩC

h

+aΩC‖s−1/2
F h

−1/2
F J(u, φ, c)KF‖0,FΩC

h

‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖0,FΩC

h

.
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Applying (25) with w = curlhv we obtain

|AΩC
h ((u, φ, c), (v, ϕ,m))| ≤ (1 + CΩ + aΩC ) ‖(u, φ, c)‖∗‖(v, ϕ,m)‖

for all (u, φ, c) and (v, ϕ,m) ∈ Xs(T Ω
h )× H1+s(T ΩI

h )× C. On the other hand,

|AΩI
h ((u, φ, c), (v, ϕ,m))| ≤ ωµ0‖∇hφ+ cρ‖0,ΩI

‖∇hϕ+mρ‖0,ΩI

+ωµ0‖h1/2
F {∇hϕ+mρ}F‖0,FΩI

h

‖h−1/2
F JφnKF‖0,FΩI

h

+ωµ0‖h1/2
F {∇hφ+ cρ}F‖0,FΩI

h

‖h−1/2
F JϕnKF‖0,FΩI

h

+α‖s−1/2
F h−1

E JφtKE‖0,Eh‖s
−1/2
F h−1

E JϕtKE‖0,Eh

+‖s1/2
F hE{σ−1curlhv}E‖0,Eh‖s

−1/2
F h−1

E JφtKE‖0,Eh

+‖s1/2
F hE{σ−1curlhu}E‖0,Eh‖s

−1/2
F h−1

E JϕtKE‖0,Eh

+aΩI‖h−1/2
F JφnKF‖0,FΩI

h

‖h−1/2
F JϕnKF‖0,Fh

and it follows from (26) (applied with w = ∇hϕ+mρ ) and (25) (applied with w = curlhv)
that

|AΩI
h ((u, φ, c), (v, ϕ,m))| ≤ (1 + CΩI

+ CΩ + aΩI + α) ‖(u, φ, c)‖∗‖(v, ϕ,m)‖,

which gives the result.

Proposition 4.2. There exists a constant α0 > 0 independent of the mesh size and the
coefficients such that if min(aΩC , aΩI , α) ≥ α0 then,

Re [(1− ı)Ah((v, ϕ,m), (v, ϕ,m))] ≥ 1

2
‖(v, ϕ,m)‖2 ∀(v, ϕ,m) ∈ Xh × Vh × C. (30)

Proof. By definition of Ah(·, ·),

Re [(1− ı)Ah((v, ϕ,m), (v, ϕ,m))] = ω‖µ1/2v‖2
0,ΩC

+ ‖σ−1/2curlhv‖2
0,ΩC

+2Re ({σ−1curlhv}F , J(v, ϕ,m)KF)FΩC
h

+ aΩC‖h−1/2
F J(v, ϕ,m)KF‖2

0,FΩC
h

+ωµ0‖∇hϕ+mρ‖2
0,ΩC
− 2ωµ0Re ({∇hϕ+mρ}F , JϕnKF)FΩI

h

+aΩI‖h−1/2
F JϕnKF‖2

0,FΩI
h

− 2Re ({σ−1curlhv}E , JϕtKE)Eh + α‖h−1
E JϕtKE‖2

0,Eh .

(31)

It follows from the Cauchy-Schwarz inequality and (25) that,

2|Re ({σ−1curlhv}F , J(v, ϕ,m)KF)FΩC
h

|
≤ 2‖s1/2

F h
1/2
F {σ−1curlhv}F‖0,FΩC

h

‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖0,FΩC

h

≤ 2CΩC
‖σ−1/2curlhv‖0,ΩC

‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖0,FΩC

h

≤ 1
4
‖σ−1/2curlhv‖2

0,ΩC
+ 4C2

ΩC
‖s−1/2
F h

−1/2
F J(v, ϕ,m)KF‖2

0,FΩC
h

.

(32)
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Similarly, by virtue of (26),

2|Re ({∇hϕ+mρ}F , JϕnKF)FΩI
h

| ≤ 2‖h1/2
F {∇hϕ+mρ}F‖0,FΩI

h

‖h−1/2
F JϕnKF‖0,FΩI

h

≤ 2CΩI
‖∇hϕ+mρ‖0,Ω‖h−1/2

F JϕnKF‖0,FΩI
h

≤ 1
2
‖∇hϕ+mρ‖2

0,Ω + 4C2
ΩI
‖h−1/2
F JϕnKF‖2

0,FΩI
h

.

(33)
Finally, using (25) we have that

2|Re ({σ−1curlhv}E , JϕtKE)Eh | ≤ 2‖s1/2
E hE{σ−1curlhv}E‖0,Eh‖s

−1/2
E h−1

E JϕtKE‖0,Eh

≤ 2CΓ‖σ−1/2curlhv‖2
0,ΩC
‖s−1/2
E h−1

E JϕtKE‖0,Eh

≤ 1
4
‖σ−1/2curlhv‖2

0,ΩC
+ 4C2

ΩC
‖s−1/2
E h−1

E JϕtKE‖2
0,Eh .

(34)

Combining (31) with (32)-(34) and choosing α0 = 1/2 + 4C2
Ω + 4C2

ΩI
we obtain (30).

We are now in a position to prove the ‖·‖-stability of the DG scheme (18).

Theorem 4.1. Assume that σ−1j ∈ H1/2+s(T ΩC
h ) and min(aΩ, aΩI , α) ≥ α0. Then,

there exits a unique (hh, ψh, kh) ∈ Xh × Vh × C solution of Problem (18). Moreover if
(h, ψ, k) ∈ [H(curl,Ω) × H1(ΩI) × C] ∩ [Xs(T ΩC

h ) × H1+s(T ΩI
h ) × C] is the solution to

(7)-(12) then

‖(h− hh, ψ − ψh, k − kh)‖ ≤ (1 + 2
√

2M) inf
(v,ϕ)∈Xh×Vh

‖(h− v, ψ − ϕ, 0)‖∗. (35)

Proof. The well posedness of Problem (18) follows immediately from Proposition 4.2.
Moreover we deduce from Proposition 4.2 and the consistency of the scheme that

1
2
‖(hh − v, ψh − ϕ, kh −m)‖2

≤ Re [(1− ı)Ah((hh − v, ψh − ϕ, kh −m), (hC,h − v, ψh − ϕ, kh −m))]

= Re [(1− ı)Ah((h− v, ψ − ϕ, k −m), (h− v, ψ − ϕ, k −m))]

for all (v, ϕ,m) ∈ Xh × Vh × C. Then from Proposition 4.1 we have

‖(hh − v, ψh − ϕ, kh −m)‖ ≤ 2
√

2M‖(h− v, ψ − ϕ, k −m)‖∗.

The result follows now from the triangle inequality.

5 Asymptotic error estimates

We denote by Πcurl
h,m the m-order H(curl,ΩC)-conforming Nédélec interpolation operator

of the second kind, see for example [16] or [15, Section 8.2]. It is well known that Πcurl
h,m is

bounded on H(curl,ΩC) ∩Hs(curl, T ΩC
h ) for s > 1/2, where

Hs(curl, T ΩC
h ) :=

{
v ∈ Hs(T ΩC

h ); curlhv ∈ Hs(T ΩC
h )

}
.
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Moreover, there exists a constant C1 > 0 independent of h such that (cf. [4])

‖u−Πcurl
h,mu‖0,ΩC

+‖curl(u−Πcurl
h,mu)‖0,ΩC

≤ C1h
min(s,m)

(
‖u‖

s,T ΩC
h

+‖curlhu‖s,T ΩC
h

)
. (36)

We introduce L2
t (Γ) = {ϕ ∈ L2(Γ); ϕ · n = 0} and consider the m-order Brezzi-

Douglas-Marini (BDM) finite element approximation of the space

H(divΓ,Γ) :=
{
ϕ ∈ L2

t (Γ); divΓϕ ∈ L2(Γ)
}

relatively to the mesh FΓ
h (see, e.g. [8]). It is given by

BDM(FΓ
h ) =

{
ϕ ∈ H(divΓ,Γ); ϕ|T ∈ Pm(T )2, ∀T ∈ FΓ

h

}
.

The corresponding interpolation operator ΠBDM
h,m is bounded on H(divΓ,Γ)∩

∏
T∈FΓ

h
Hδ(T )2

for all δ > 0 and we recall that it is uniquely characterized on each T ∈ FΓ
h by the

conditions ∫
e

ΠBDM
h,m ϕ · nT q =

∫
e

ϕ · nT q ∀q ∈ Pm(e), ∀e ∈ E(T ), (37)∫
T

ΠBDM
h,m ϕ · q =

∫
T

ϕ · q ∀q ∈ Pm−2(T )2 + Sm−1(T ), (38)

where Sm−1(T ) :=

{
q ∈ P̃m−1(T )2; q ·

(
x1

x2

)
= 0

}
with P̃m−1(T ) representing the set

of homogeneous polynomials of degree m − 1 and

(
x1

x2

)
being the local variable on the

plane containing T .
The commuting diagram property

(Πcurl
h,mu)× nΓ = ΠBDM

h,m (u× nΓ) (39)

holds true for all u ∈ H(curl,ΩC) ∩Hs(curl, T ΩC
h ), s > 1/2, see [11, section 9] for more

details.
For all K ∈ T ΩI

h we define the local interpolation operator π̃K,m : H1+s(K)→ P̃m(K),
s > 1/2 as follows: recalling the definition of P̃m(K) given in (17)

• if ∂K ∩ Γ 6∈ FΓ
h then P̃m(K) = Pm(K) and we take π̃K,m = πK,m, where πK,m is

defined as in [15, Section 5.6];

• if ∂K ∩ Γ = T ∈ FΓ
h then P̃m(K) = Pm(K) + PTm+1(K) and π̃K,m is defined by

changing the conditions defining πK,m on T and on the edges composing T into∫
T

π̃K,mpq =

∫
T

pq ∀q ∈ Pm−2(T ) (40)

and ∫
e

π̃K,mpq =

∫
e

pq ∀q ∈ Pm−1(e), ∀e ∈ E(F ) (41)

respectively. The remaining degrees of freedom are the same as those defining πK,m,
see [15, Section 5.6].
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We notice that dim(Pm(K) + PTm+1(K)) = dim(Pm(K)) + m + 1 and the number of
degrees of freedom defining π̃K,m is equal to the number of degrees of freedom of πK,m
plus dim(Pm−2(T )) − dim(Pm−3(T )) = m − 1 additional degrees of freedom on T and
one additional degree of freedom on each of the three edges of T , which gives a total of
dim(Pm(K))+m+1 degrees of freedom. Using this fact, it is straightforward to show that
π̃K,m is uniquely determined on elements K ∈ T ΩI

h with a face T lying on Γ. Moreover,
it is clear that the corresponding global H1(Ω)-conforming interpolation operator π̃h,m
satisfies the following interpolation error estimate.

Proposition 5.1. If p ∈ H1(ΩI)∩H1+s(T ΩI
h ) with s > 1/2, there exists a constant C > 0

independent of h such that

‖∇(p− π̃h,mp)‖0,ΩI
≤ Chmin(m,s)‖p‖

1+s,T ΩI
h

. (42)

Proof. See [15, Lemma 5.47] and [15, Theorem 5.48].

The commuting diagram property stated in the next proposition is the reason for
which we use π̃h instead of the usual Lagrange interpolation operator.

Proposition 5.2. For any p ∈ H1(Ω) ∩ H1+s(T ΩI
h ), with s > 1/2, it holds

∇π̃h,mp× nΓ = ΠBDM
h,m (∇p× nΓ).

Proof. We first notice that ∇π̃h,mp× nΓ ∈ H(divΓ,Γ) and ∇π̃h,mp× nΓ ∈ Pm(T ) for all
T ∈ FΓ

h . Hence, ∇π̃h,mp×nΓ ∈ BDM(FΓ
h ). To show that ∇π̃h,mp×nΓ = ΠBDM

h,m (curlΓp),
it is sufficient to compare the degrees of freedom of these two tangential fields on each
triangle T ∈ FΓ

h . On the one hand, for all q ∈ Pm(e), e ∈ E(T ),∫
e

(∇π̃h,mp× nΓ − ΠBDM
h,m (∇p× nΓ)) · nF q

=

∫
e

∇ ((π̃h,mp− p)× nΓ) · nF q =

∫
e

∂(π̃h,mp− p)
∂te

q

= −
∫
e

(π̃h,mp− p)
∂q

∂te
+ (π̃h,mp− p)(ae)q(ae)− (π̃h,mp− p)(be)q(be) = 0 ,

where the last identity follows from the fact that π̃h,mp and p must coincide at the end-
points ae and be of edge e (by definition of the π̃h,m) and from (41), taking into account
that ∂q

∂te
∈ Pm−1(e).

On the other hand, for any q ∈ Pm−2(T )2 + Sm−1(T ), we have that∫
T

(∇π̃h,mp× nΓ − ΠBDM
h,m (∇p× nΓ)) · q

=

∫
T

∇(π̃h,mp− p)× nΓ · q = −
∫
T

∇(π̃h,mp− p) · (q× nΓ)

=

∫
T

(π̃h,mp− p) divΓ(q× nΓ)−
∑
e∈E(T )

∫
e

(π̃h,mp− p) (q× nΓ) · νT

=

∫
T

(π̃h,mp− p) divΓ(q× nΓ)−
∑
e∈E(T )

∫
e

(π̃h,mp− p) q · te = 0

15



by virtue of (40) and (41), since divΓ(q× nΓ) ∈ Pm−2(F ) and q · te ∈ Pm−1(e).

Finally, we consider the L2(T ΩC
h )-orthogonal projection Pk

T ΩC
h

onto
∏

K∈T ΩC
h

Pk(K)3

and the L2(T ΩI
h )-orthogonal projection Pk

T ΩI
h

onto
∏

K∈T ΩI
h

Pk(K)3, k ≥ 0. We denote

indifferently by Πk
K the restriction of Πk

T ΩC
h

and Πk

T ΩI
h

to an element K.

Lemma 5.1. For all K ∈ Th and w ∈ Hr(K), r ≥ 1/2, we have

hF‖w−Pk
Kw‖0,∂F + h

1/2
K ‖w−Pk

Kw‖0,∂K + ‖w−Pk
Kw‖0,K ≤ Ch

min{r,k+1}
K ‖w‖r,K , (43)

with a constant C > 0 independent of h.

Proof. See [9], Lemma 1.58 and Lemma 1.52.

We are now in a position to prove the main result of this section.

Theorem 5.1. Let (h, ψ, k) ∈ H(curl,ΩC)×H1(ΩI)×C and (hh, ψh, kh) ∈ Xh×Vh×C
be the solutions to (7)-(12) and (18) respectively. If σ−1j ∈ H1/2+s(T ΩC

h ), (h, ψ) ∈
Xs(T ΩC

h )× H1+s(T ΩI
h ), with s > 1/2, and min(aΩC , aΩI , α) ≥ α0, then

‖(h− hh, ψ − ψh, k − kh)‖ ≤ Chmin(s,m)
(
‖h‖s,T Ω

h
+ ‖curlh‖1/2+s,T Ω

h
+ ‖ψ‖

1+s,T ΩI
h

)
,

where C > 0 is a constant independent of h.

Proof. Taking (v, ϕ) = (Πcurl
h,mh, π̃h,mψ) in (35) yields

‖(h− hh, ψ − ψh, k − kh)‖ ≤ (1 + 2
√

2M)‖(h−Πcurl
h,mh, ψ − π̃h,mψ, 0)‖∗.

All the jumps terms in the right-hand side of the last inequality are zero since the identities

(Πcurl
h,m h)×n = ΠBDM

h,m (h×nΓ) = ΠBDM
h,m ((∇ψ + kρ)×nΓ) = (∇π̃h,mψ + kρ)×nΓ (44)

holds true on Γ and we also have that

J(ψ − π̃h,mψ)nKF = J(ψ − π̃h,mψ)tKE = 0 ,

by construction. Note that in the last equality of (44) we have used the fact that ρ
belongs to H(curl; ΩI) and is a piecewise-linear polynomial. It follows that,

‖(h−Πcurl
h,mh, ψ − π̃h,mψ, 0)‖2

∗

= ‖(ωµ)1/2(h−Πcurl
h,mh)‖2

0,ΩC
+ ‖σ−1/2curl(h−Πcurl

h,mh)‖2
0,ΩC

+ωµ0‖∇h(ψ − π̃h,mψ)‖2
0,ΩI

+ ‖s1/2
F h

1/2
F {σ−1curl(h−Πcurl

h,mh)}F‖2

0,FΩC
h

+‖s1/2
E hE{σ−1curl(h−Πcurl

h,mh)}E‖2
0,Eh + ‖h1/2

F {∇(ψ − π̃h,mψ)}F‖2

0,FΩI
h

.
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We deduce from the triangle inequality that,

‖s1/2
F h

1/2
F {σ

−1curl(h−Πcurl
h,mh)}F‖0,FΩC

h

= ‖s1/2
F h

1/2
F {σ

−1(curlh−Pm−1

T ΩC
h

curlh)}F‖0,FΩC
h

+ ‖s1/2
F h

1/2
F {σ

−1(Pm−1

T ΩC
h

curlh− curl Πcurl
h,mh)}F‖0,FΩC

h

= AΩC
+BΩC

.

Using (25) yields

BΩC
≤ CΩC

‖σ−1/2(Pm−1

T ΩC
h

curlh− curl Πcurl
h,mh)‖0,ΩC

= CΩC
‖σ−1/2Pm−1

T ΩC
h

(curlh− curl Πcurl
h,mh)‖0,ΩC

≤ CΩC
‖σ−1/2curl(h−Πcurl

h,mh)‖0,ΩC

and by virtue of (27) we obtain

A2
ΩC
≤

∑
K∈T ΩC

h

hK‖σ−1/2
K (curlh−Pm−1

K curlh)‖2
0,∂K .

Similarly, we consider the splitting

‖s1/2
E hE{σ−1curl(h−Πcurl

h,mh)}E‖0,Eh ≤ ‖s
1/2
E hE{σ−1(curlh−Pm−1

T ΩC
h

curlh)}E‖0,Eh

+ ‖s1/2
E hE{σ−1(Pm−1

T ΩC
h

curlh− curl Πcurl
h,mh)}E‖0,Eh = AΓ +BΓ

and use (25) to obtain

BΓ ≤ CΓ‖σ−1/2(Pm−1

T ΩC
h

curlh− curl Πcurl
h,mh)‖0,ΩC

= CΓ‖σ−1/2Pm−1

T ΩC
h

(
curl(h−Πcurl

h,mh)
)
‖0,ΩC

≤ CΓ‖σ−1/2curl(h−Πcurl
h,mh)‖0,ΩC

.

Moreover, it follows from (28) that

A2
Γ ≤

∑
T∈FΓ

h

h2
T‖σ

−1/2
KT

(curlh−Pm−1
K curlh)‖2

0,∂T .

Finally,

‖h1/2
F {∇(ψ − π̃h,mψ)}F‖0,FΩI

h

≤ ‖h1/2
F {∇ψ −Pm

T ΩI
h

∇ψ}F‖0,FΩI
h

+ ‖h1/2
F {P

m

T ΩI
h

∇ψ −∇π̃h,mψ)}F‖0,FΩI
h

= AΩI
+BΩI

and we derive from (26) and (29) the following estimates

BΩI
≤ CΩI

‖Pm

T ΩI
h

∇ψ −∇π̃h,mψ‖0,ΩI
≤ CΩI

‖∇(ψ − π̃h,mψ)‖0,ΩI
,

A2
ΩI
≤

∑
K∈T ΩI

h

hK‖∇ψ −Pm
K∇ψ‖2

0,∂K .
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Combining the last inequalities we deduce that

‖(h−Πcurl
h,mh, ψ − π̃h,mψ)‖2

∗ ≤ C
(
‖h−Πcurl

h,mh‖2
0,ΩC

+ ‖curl(h−Πcurl
h,mh)‖2

0,ΩC

+ ‖∇h(ψ − π̃h,mψ)‖2
0,ΩI

+
∑

K∈T ΩC
h

hK‖curlh−Pm−1
K curlh‖2

0,∂K

+
∑
T∈FΓ

h

h2
T‖curlh−Pm−1

K curlh‖2
0,∂T +

∑
K∈T ΩI

h

hK‖∇ψ −Pm
K∇ψ‖2

0,∂K

)
with C > 0 independent of h. Applying the interpolation error estimates given by (36),
(42) and (43) we obtain

‖(h−Πcurl
h,mh, ψ−π̃h,mψ)‖∗ ≤ C

(
hmin(s,m)(‖h‖

s,T ΩC
h

+‖curlh‖
s,T ΩC

h

)+hmin(s,m)‖ψ‖
1+s,T ΩI

h

+ hmin(1/2+s,m)‖curlh‖
1/2+s,T ΩC

h

+ hmin(s,m+1)‖∇ψ‖
s,T ΩI

h

)
and the result follows.

6 Numerical results

We performed numerical experiments consisting in the implementation (in a MATLAB
code) of the DG method (18) to solve the eddy current problem (7)-(12). Actually, in
order to have at our disposal an analytical solution of the problem we considered the
associated transmission problem

ıh+ curl (curlh) = f in ΩC

h× nΓ = ∇ψ × nΓ + g1 on Γ

h · nΓ = ∇ψ · nΓ + g2 on Γ

∆ψ = 0 in ΩI

ψ = ψ? on Σ ,

in the domains ΩC := (0.25, 0.75)3 and ΩI := (0, 1)3 \ΩC and with data f , g1, g2 and ψ?
chosen in such a way that the exact solutions are

h(x) = (1 + ı)

sin(2πx1) sin(2πx2) sin(2πx3)
sin(2πx1) sin(2πx2) sin(2πx3)
sin(2πx1) sin(2πx2) sin(2πx3)

 in ΩC ,

and ψ(x) = 1
|x−x∗| + 1

|x−x∗| ı in ΩI (having set x∗ = (2, 0, 0)t and x∗ = (0, 0, 3)t).
We use the following notations:

eh(h, ψ) := ‖(h− hh, ψ − ψh)‖ , (45)
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namely, the error of the method in the DG norm (23), and

eh(h)2 := ‖(ωµ)1/2(h− hh)‖2
0,ΩC

+ ‖σ−1/2curlh(h− hh)‖2
0,ΩC

+‖s−1/2
F h

−1/2
F J(h− hh, ψ − ψh, 0)KF‖2

0,FΩC
h

,
(46)

eh(ψ)2 := ωµ0‖∇h(ψ − ψh)‖2
0,ΩI

+ ωµ0‖h−1/2
F J(ψ − ψh)nKF‖2

0,FΩI
h

+‖s−1/2
E h−1

E J(ψ − ψh)tKE‖2
0,Eh .

(47)

Note that eh(h, ψ)2 = eh(h)2 + eh(ψ)2.
We consider the experimental rate of convergence defined by

rh(h, ψ) :=
log(eh(h, ψ)/eĥ(h, ψ))

log(h/ĥ)
, (48)

where h and ĥ denote two different mesh sizes with corresponding errors eh(h, ψ) and
eĥ(h, ψ). We use a similar definition for rh(h) and rh(ψ).

We report in Table 1 the errors and the convergence orders obtained for different
meshes for m = 1 and by considering stabilization parameters aΩC = aΩI = α = 50. The
meshes are obtained by dividing the domain in small cubes of size 1/M and then dividing
each small cube in 6 tetrahedra. Thus the total number of elements is nelem = 6M3,
the number of elements in the conductor is nec = 1

8
nelem, the number of elements in the

insulator is nei = 7
8
nelem and the number of faces on the interface is nfg = 3M2. Let

us recall that the finite element space Vh is defined through (17), hence the number of
degrees of freedom reported in Table 1 is ndof = 12 nec + 4 nei + 6 nfg.

M ndof eh(h, ψ) rh(h, ψ) eh(h) rh(h) eh(ψ) rh(ψ)
4 2208 2.044e−00 − 2.007e−00 − 3.943e−01 −
8 16512 1.010e−00 1.018 1.009e−00 0.992 5.265e−02 2.905
12 54432 6.675e−01 1.021 6.671e−01 1.020 2.477e−02 1.859
16 127488 4.978e−01 1.020 4.975e−01 1.020 1.733e−02 1.242
20 247200 3.967e−01 1.017 3.965e−01 1.017 1.362e−02 1.080
24 425088 3.297e−01 1.015 3.295e−01 1.015 1.128e−02 1.034

Table 1: Convergence history of the DG method with m = 1.

It is easily verified that the correct linear convergence rate is achieved.
Let us underline that the DG discretization of the eddy current model written in

terms of the electric field e (see the formulation proposed in [17]) would have a larger
number of degrees of freedom when using polynomials of degree m = 1: precisely, ndof =
12 (nec + nei).

We have repeated the computations using polynomial of degree m+1 = 2 in the whole
insulator and not only in the faces of the interface. Therefore the number of degrees of
freedom reported in Table 2 is ndof = 12 nec + 10 nei.
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M ndof eh(h, ψ) rh(h, ψ) eh(h) rh(h) eh(ψ) rh(ψ)
4 3936 2.099e−00 − 2.031e−00 − 5.319e−01 −
8 31488 1.011e−00 1.054 1.009e−00 1.009 5.811e−02 3.194
12 106272 6.673e−01 1.025 6.671e−01 1.021 1.528e−02 3.295
16 251904 4.975e−01 1.020 4.975e−01 1.020 6.158e−03 3.158
20 492000 3.965e−01 1.017 3.965e−01 1.017 3.231e−03 2.891

Table 2: Convergence history of the DG method with m = 1 in the conductor and m = 2
in the insulator.

As expected, in the insulator one sees a higher order of convergence than in the previous
case. A reasonable guess is in fact a second order convergence in the insulator. However,
for the same M the number of degrees of freedom is around the double.
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