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Abstract—Fall detection for elder people is a very challenging 

task that has not been solved yet. In this population, fall 

detection devices must not introduce extra constraints, like 

carrying with a belt fixed device or a mobile phone. This paper 

describes one fall detection approach accomplishing with these 

constraints. Afterwards, a discussion on some model decisions 

concerning the computational restrictions according to where 

the data processing and classification are performed is also 

included. 

Wearable device; Fall Detection; Neural Network Modelling; 

Cloud Services  

I.  INTRODUCTION  

In the context of the elder population, the falls represent a 
main problem “causing a tremendous amount of morbidity, 
mortality and use of health care services including premature 
nursing home admissions” [1]. Fall Detection (FD) is a very 
active research area, with many applications to healthcare, 
work safety, etc. Commercial products only report up to a 
80% of success [2, 3]. There are basically two types of FD 
systems [4, 5, 6]: context-aware systems - i.e. video systems 
[7]- and wearable devices [8, 9, 10, 11]. However, the use of 
wearable devices is crucial because the high percentage of 
elder people desire to live autonomously in their own house 
[12].   

Wearables-based solutions include, mainly, tri-axial 
accelerometers (3DACC) either alone or combined with 
other sensors. Several solutions incorporate more than one 
sensory element; for instance, Sorvala et al [13] proposed 
two sets of a 3DACC and a gyroscope, one on the wrist and 
another on the ankle, detecting the fall events with two 
defined thresholds. The use of 3DACC and a barometer in a 
necklace was also reported in [14]; similar approaches have 
been developed in several commercial products. 

The aims of this study are two-fold: on the one hand, a 
description of a wearable-based solution focused on wrist 
devices; on the other hand, a discussion on the issues related 
with the computational design, with the pros and cons of 
each solution, is included.  

II. FALL DETECTION SOLUTIONS IN THE LITERATURE 

Abate et al [15, 16] proposed the following scheme to 
detect a candidate event as a fall event (refer to Figure 1. A 

time t corresponds to a peak time (point 1) if the magnitude 
of the acceleration a is higher than th1=3g, with g=9.8 m/s

2
. 

After a peak time there must be a period of 2500 ms with 
relatively calm (no other a value higher than th1). The 
impact end (point 2) denotes the end of the fall event; it is 
the last time for which the a value is higher than th2=1.5g. 
Finally, the impact start (point 3) denotes the starting time 
of the fall event, computed as the time of the first sequence 
of an a <= th3 (th3 = 0.8g) followed by a value of a >= th2. 
The impact start must belong to the interval [impact end - 
1200 ms, peak time]. If no impact end is found, then it is 
fixed to peak time plus 1000 ms. If no impact start is found, 
it is fixed to peak time. 

 
Whenever a peak time is found, the following 

transformations should be computed: 

 Average Absolute Acceleration Magnitude 
Variation, AAMV=∑t=is:ie(at+1-at)/N, with is being the 
impact start, ie the impact end, and N the number of 
samples in the interval.  

 Impact Duration Index, IDI = impact end - impact 
start. Alternatively, it could be computed as the 
number of samples. 

 Maximum Peak Index, MPI=max t=is:ie at. 

 Minimum Valley Index, MVI=min t=is-500:ie at. 

 Peak Duration Index, PDI = peak end - peak start, 
with peak start defined as the time of the last 
magnitude sample below thPDI=1.8g occurred before 
peak time, and peak end is defined as the time of the 
first magnitude sample below thPDI=1.8g occurred 
after peak time. 

 Activity Ratio Index, ARI, measuring the activity 
level in an interval of 700 ms centered at the middle 
time between impact start and impact end. The 
activity level is calculated as the ratio between the 
number of samples not in [thARIlow=0.85g, 
thARIIhigh=1.3g] and the total number of samples in 
the 700 ms interval.  

 Free Fall Index, FFI, computed as follows. Firstly, 
search for an acceleration sample below thFFI=0.8g 
occurring up to 200 ms before peak time; if found, 
the sample time represents the end of the interval, 
otherwise the end of the interval is set 200 ms before 
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peak time. Secondly, the start of the interval is 
simply set to 200 ms before its end. FFI is defined as 
the average acceleration magnitude evaluated within 
the interval. 

 Step Count Index, SCI, measured as the number of 
peaks in the interval [peak time - 2200, peak time]. 
SCI is the step count evaluated 2200 ms before peak 
time. The number of valleys are counted, defining a 
valley as a region with acceleration magnitude below 
thSCIlow=1g for at least 80 ms, followed by a 
magnitude higher than thSCIhigh=1.6g during the next 
200 ms. Some ideas on computing the time between 
peaks [17, 18] were used when implementing this 
feature. 

Evaluating this approach was proposed as follows. The 
time series of acceleration magnitude values are analyzed 
searching for peaks that marks where a fall event candidate 
appears. When it happens to occur, the impact end and the 
impact start are determined, and thus the remaining features. 
As long as this fall events are detected when walking or 
running, for instance, a Neural Network (NN) model is 
obtained to classify the set of features extracted. 

In order to train the NN, the authors made use of an 
Activities of Daily Living (ADL) and FD dataset, where 
each file contains a Time Series of 3DACC values 
corresponding to an activity or to a fall event.   

Therefore, each dataset including a fall event or a similar 
activity -for instance, running can perform similarly to 
falling- will generate a set of transformation values. Thus, 
for a dataset file we will detect something similar to a falling, 
producing a row of the transformations computed for each of 
the detected events within the file. If nothing is detected 
within the file, no row is produced. With this strategy, the 
Abbate et al obtained the training and testing dataset to learn 
the NN. 

The Abbate solution has been modified as follows. As 
stated in [19, 20], the solutions to this type of problems must 
be ergonomic: the users must feel comfortable using them. 
We considered that placing a device on the waist is not 
comfortable, for instance, it is not valid for women using 
dresses. When working with elder people, this issue is of 
main relevance. Therefore, in this study, we placed the 
wearable device on the wrist. This is not a simple change: the 
vast majority of the literature reports solutions for FD using 
waist based solutions. Moreover, according to [21, 22, 23, 
24] the calculations should be performed on the 
smartwatches to extend the battery life by reducing the 
communications. Therefore, these calculations should be 
kept as simple as possible. 

A second modification is focused on the training of the 
NN. The original strategy for the generation of the training 
and testing dataset produced a highly imbalanced dataset: up 
to 81% of the obtained samples belong to the class FD, while 
the remaining belong to the different ADL similar to a fall 
event.  

To solve this problem a normalization stage is applied to 
the generated imbalanced dataset, followed by a SMOTE 
balancing stage [25]. This balancing stage will produce a 
60%(FALL)-40%(no FALL) dataset, which would allow to 

avoid the over-fitting of the NN models. As usual, there is a 
compromise between the balancing of the dataset and the 
synthetic data samples introduced in the dataset. 

 
Figure 1.  Evolution of the magnitude of the acceleration -y-axis, extracted 

from [15, 16]. 

These above mentioned changes have already been 
studied in [26]. In this research we show the already obtained 
results to, finally, discuss on the consequences of these 
results in the different design options. 

III. EXPERIMENTS AND RESULTS 

A. Data and methods 

A ADL and FD dataset is needed to evaluate the 
adaptation, so it contains time series sample from ADL and 
for falls. This research made use of the UMA-FALL dataset 
[27] among the publicly available datasets. This dataset 
includes data for several participants carrying on with 
different activities and performing forward, backward and 
lateral falls. Actually, the falls are not real falls -
demonstrative videos have been also published-, but they can 
represent the initial step for evaluating the adapted solution 
problem. Interestingly, this dataset includes multiple sensors; 
therefore, the researcher can evaluate the approach using 
sensors placed on different parts of the body.  

The thresholds used in this study are exactly the same as 
those mentioned in the original paper. All the code was 
implemented in R [28] and caret [29]. The parameters for 
SMOTE were  perc.over set to 300 and perc.under set to 200 
–i.e. 3 minority class samples are generated per original 
sample while keeping 2 samples from the majority class-. 
These parameters produce a balanced dataset that moves 
from a distribution of 47 samples from the minority class and 
200 from the majority class to a 188 minority class versus 
282 majority class (40%~60% of balance).  

Two modelling types are compared for this task in [26]: a 
feed forward Neural Network and a C5.0 decision tree, both 
using the caret package in R. The parameters for the models 
were, for the NN, size set to 20, decay set to 10

-3
 and 

maximum number of iterations 500, the absolute and relative 
tolerances set to 4x10

-6
 and 10

-10
, respectively.  

The C5.0 parameters found optimum for this 
classification problem are cf set to 0.25, bands set to 2, the 
fuzzy threshold parameter set to TRUE, the number of trials 
set to 15, and winnow set to FALSE.  



B. Performance obtained for the different models 

Using 5x2 cross validation (cv) shows the performance 
of the system with an increase in the number of unseen 
samples.  

TABLE I.  5X2 CROSS VALIDATION RESULTS FOR THE TWO MODELS: 
FEED-FORWARD NN AND C5.0 DECISION TREE. 

 Feed-forward NN 

Fold  Acc  Kp  Se  Sp  Pr  G 

1 0,9277 0,8474 0,9645 0,8723 0,9189 0,9415 

2 0,9532 0,9033 0,9433 0,9681 0,9779 0,9604 

3 0,9149 0,8208 0,9504 0,8617 0,9116 0,9308 

4 0,8894 0,7711 0,8936 0,8830 0,9197 0,9066 

5 0,8936 0,7834 0,8652 0,9362 0,9531 0,9081 

6 0,9447 0,8846 0,9574 0,9255 0,9507 0,9541 

7 0,9277 0,8463 0,9787 0,8511 0,9079 0,9426 

8 0,9149 0,8214 0,9433 0,8723 0,9172 0,9302 

9 0,9149 0,8246 0,9078 0,9255 0,9482 0,9278 

10 0,9404 0,8754 0,9574 0,9149 0,9441 0,9507 

mean 0,9221 0,8378 0,9362 0,9011 0,9349 0,9353 

median 0,9213 0,8354 0,9468 0,8989 0,9319 0,9361 

std 0,0209 0,0424 0,0357 0,0382 0,0230 0,0182 

 C5.0 decision Tree 

Fold   Acc  Kp  Se  Sp  Pr  G 

1 0,9234 0,8376 0,9716 0,8511 0,9073 0,9389 

2 0,9234 0,8416 0,9220 0,9255 0,9489 0,9354 

3 0,9064 0,8029 0,9433 0,8511 0,9048 0,9238 

4 0,9319 0,8546 0,9929 0,8404 0,9032 0,9470 

5 0,9617 0,9201 0,9716 0,9468 0,9648 0,9682 

6 0,9404 0,8754 0,9575 0,9149 0,9441 0,9507 

7 0,9404 0,8741 0,9787 0,8830 0,9262 0,9521 

8 0,9234 0,8376 0,9716 0,8511 0,9073 0,9389 

9 0,9234 0,8410 0,9291 0,9149 0,9425 0,9357 

10 0,9489 0,8929 0,9716 0,9149 0,9448 0,9581 

mean 0,9323 0,8578 0,9610 0,8894 0,9294 0,9449 

median 0,9277 0,8481 0,9716 0,8989 0,9343 0,9430 

std 0,0159 0,0335 0,0227 0,0386 0,0225 0,0129 

 
The results are shown in TABLE I. The boxplots for the 

statistical measurements Accuracy, Kappa factor, Sensitivity, 
Specificity, Precision and G are shown in Figure 2.   

 
 

 

Figure 2.  5x2 cv Boxplot for the different measurements -Accuracy 

(Acc), Kappa (Kp), Sensitivity (Se) and Specificity (Sp), Precision (Pr) and 
the geometric mean of the Acc and Pr, G=(Pr*Acc)2-, both for the feed-

forward NN (six boxplots to the left, with the N_ prefix) and C5.0 (six 

boxplots to the right, with the C_ prefix). 

 
With 5x2 cv, the size of the train and test datasets are of 

similar number of samples, producing a worse training and, 
what is more interesting, introduces more variability in the 
test dataset. Therefore, the robustness can be analyzed. 
Comparing with published results suggests the FD task is not 
solved yet as the number of false alarms increased 
unexpectedly. For instance, real world problems must be 
trained with data from real falls, in the sense that they must 
be genuine falls. Up to our knowledge, all the published 
datasets includes real falls but in no real scenario: people 
falling on a mattress doesn’t represent the real scenario. 
However, the dataset published in [30] represents a 
promising source of valid data to obtain better models. 

IV. DISCUSSION ON THE DESIGN TOPICS 

Typical solutions for FD, including the one describe 
above, are thought to develop a model. However, as seen 
from the different datasets analyzed, specially, the one 
presented in [27], a fall can come from a vanish or a collapse 
or even a hit against some obstacle, either standing still, 
seated, running or walking. This means that the signal 
previous to the fall might be of different nature, having a 
significant effect in the signal sampled from a fall.  

Therefore, one interesting solution would be developing 
FD models for different activity levels -say, scenario-; this is 
a new idea that has not been studied so far. Consequently, 
there will be models that would fit for certain scenario 
independently of the subject. But there will be scenarios for 
which it will be needed some model tuning to adapt to the 
current subject.  

Can this model tuning be accomplished in a wearable 
device? It is very unlikely that this can be developed as long 
as the capabilities restrictions and the battery consumption 
that might be needed. 

So, what to do? We think the solution will end up with a 
good description of the different scenarios and the 
development of set of models for each of them. Those 
models requiring tuning will oblige to store data in the 
wearable device so this data can be delivered to a service so 
the tuning can be performed. This data delivering can be 
performed when charging the device, for instance. 

The problem is where to perform the model update. It 
could be done in the cloud by the central services of the 
system, such as eHealth cloud system –if it is the responsible 
of this service-. Nevertheless, we believe a better approach 
can be applied in this case: using Fog computing. 

Now imagine a nursery home with several subjects using 
this kind of device and reduced cost computational units 
delivered to the nursery home so they tackle with the data 
relaying and model update. Using reduced cost devices, like 
a Raspberry Pi, might ensure enough computation for any 
home, even up to 100 inhabitants. The advantages are clear: 
low cost, diminishing of the cloud resources that might be 



needed for sporadic model updating but that can positively 
be carried out simultaneously.  

Finally, the tuned models are sent back to the wearable 
device, which will continue testing as usual with the range of 
tests designed in order to detect a fall. 

In our opinion, this is the scenario that the next 
generation of FD detection methods are to developed in 
order to obtain scalable, robust and updatable models in FD. 
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