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Abstract

In their original and ordinary formulation, fuzzy sets associate each element in a reference set with one
number, the membership value, in the real unit interval [0, 1]. Among the various existing generalisations
of the concept, we find fuzzy multisets. In this case, membership values are multisets in [0, 1] rather than
single values. Mathematically, they can be also seen as a generalisation of the hesitant fuzzy sets, but in this
general environment, the information about repetition is not lost, so that, the opinions given by the experts
are better managed. Thus, we focus our study on fuzzy multisets and their basic operations: complement,
union and intersection. Moreover, we show how the hesitant operations can be worked out from an extension
of the fuzzy multiset operations and investigate the important role that the concepts of order and sorting
sequences play in the basic difference between these two related approaches.
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1. Introduction

The concept of a fuzzy set was originally introduced by Lotfi A. Zadeh as an extension of classical set
theory [15]. Fuzzy sets aim to account for real-life situations where there is either limited knowledge or some
sort of implicit ambiguity about whether an element should be considered a member of a set. This extension
from the classical (or crisp) sets to the fuzzy ones is accomplished by replacing the Boolean characteristic
function of a set, which maps each element of the universal set to either 0 (non-member) or 1 (member),
with a more sophisticated membership function that maps elements into the real interval [0, 1].

Fuzzy sets therefore model uncertainty about the membership of an element to a set, but it may appear
paradoxical that the membership value itself should be one precise real number. In fact, generalisations
of the idea where the membership value is replaced by more sophisticated mathematical entities, such as
intervals (interval-valued fuzzy sets [6]) or functions (type-2 fuzzy sets [6]), have been proposed and make
up a good deal of the ongoing research about fuzzy sets. Fuzzy multisets and hesitant fuzzy sets are the two
generalisations that we are going to discuss in this paper. They are peculiar among the fuzzy set extensions
in that, rather than modelling a tolerance around a certain central value, they model the uncertainty that
occurs when several alternative membership values can be chosen; for example, when the membership value
can be obtained through a number of related criteria that lead to different membership values.

The membership values in hesitant fuzzy sets can be arbitrary subsets of [0, 1] in their general formulation,
but we will restrict our analysis to the particular case when these subsets are finite. Such hesitant fuzzy
sets are called typical hesitant fuzzy sets [11] and they are the ones that have attracted the most attention
from researchers ([3, 7, 14]).

In fuzzy multisets, the membership value is a multiset in the [0, 1] real interval. If we restrict our study
to the finite case, then the typical hesitant fuzzy sets can equivalently be represented as fuzzy multisets, the
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difference being that the fuzzy multisets allow repetition of the individual membership values. The need to
account for repeated membership values has been recognised in the literature about hesitant fuzzy sets and,
in fact, multiset-based hesitant fuzzy sets were already mentioned in the original paper that introduced the
hesitant fuzzy sets [11]. But despite the similarities, we cannot regard the typical hesitant fuzzy sets as a
particular case of the fuzzy multisets and neither can we identify the fuzzy multisets with the multiset-based
hesitant fuzzy sets because, as we will see, the definitions for the intersection and union are different in
each theory. The goal of this paper is to establish the appropriate mathematical definitions for the main
operations for fuzzy multisets and show how the hesitant theory definitions can be worked out from an
extension of the fuzzy multiset definitions.

This paper is organised as follows: Section 2 introduces the fundamental results of the existing theories
of fuzzy sets, hesitant fuzzy sets and fuzzy multisets. Section 3 introduces new more general definitions for
the intersection and union of fuzzy multisets. Section 4 proves that these new definitions for the intersection
and union of fuzzy multisets can be identified with the definitions used for hesitant fuzzy sets and a bijection
between the hesitant fuzzy sets and a subfamily of the fuzzy multisets is established. Finally, in section 5
we sum up the main conclusions of our research.

2. Preliminary concepts

In this section, we assume that there is always an axiomatic reference set or universe (also called the
universe of discourse), which we will denote by X, and that fuzzy sets are defined through a membership
function whose precise definition depends on the particular style of fuzzy sets we are dealing with.

2.1. Fuzzy sets

Definition 2.1. [15] Let X be the universe. An fuzzy set A is characterised by a function A : X → [0, 1].

As we have mentioned above, we can see this function as a generalisation of the characteristic (or
“indicator”) function for a crisp set. Thus, in the particular case where A(x) is always 0 or 1, it can be
regarded as a characteristic function into {0, 1}. The values in the image set of A are usually called the
membership values of the fuzzy set and the family of all the fuzzy sets over X is called the fuzzy power set
over X and is denoted by F (X).

Before introducing the generalisations of the fuzzy sets, we will first define the common operations for the
fuzzy sets such as the complement, the intersection and the union. These definitions provide the backdrop
against which the more sophisticated definitions for the hesitant fuzzy sets and fuzzy multisets can be
compared.

Definition 2.2. [15] Let X be the universe and let A and B be two fuzzy set over X.

• The standard complement Ac is defined as the fuzzy set over X such that

Ac(x) = 1−A(x), ∀x ∈ X.

• The standard intersection A ∩B is defined as the fuzzy set over X such that

(A ∩B)(x) = min{A(x), B(x)}, ∀x ∈ X.

• The standard union A ∪B is defined as the fuzzy set over X such that

(A ∪B)(x) = max{A(x), B(x)}, ∀x ∈ X.

It is straightforward to check that the above definitions reduce to the well-known classical set operations
for crisp sets. In the available introductions to fuzzy set theory, more general definitions of these operations
can be found (see, for instance [6]). This leads to a family of possible fuzzy complements, possible fuzzy
intersections (defined in terms of [0, 1]2 → [0, 1] functions called t-norms) and possible fuzzy unions (defined
in terms of similar functions called t-conorms). The standard ones just happen to be the best-behaved cases
of the general operations.
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2.2. Hesitant fuzzy sets

A generalisation of the fuzzy sets was proposed by V. Torra in 2010 under the name hesitant fuzzy
set theory [11], which builds on an idea that had already been put forward by I. Grattan-Guinness more
than three decades earlier [5]. The hesitant theoretical framework broadens the range of the membership
functions to encompass any subset of the [0, 1] interval.

The hesitant fuzzy sets have been widely studied in many papers published over the last few years (see,
among many others, [1, 2, 4, 9, 12]). A comprehensive introduction can be found in a recent book by Xu
[13]. In this section, we are going to sum up their formal definition and their main properties; these results
are well-known and we will simply reproduce them here for completeness.

Definition 2.3. [11] Let X be the universe. A hesitant fuzzy set Ã over X is characterised by a function
Ã : X → P([0, 1]), where P([0, 1]) is the family of all the subsets of the real closed interval [0, 1].

The family of all the hesitant fuzzy sets over X is called the hesitant fuzzy power set over X and is
denoted by FH (X).

Given any hesitant fuzzy set Ã over a universe X, the subsets of [0, 1] that form the image of Ã are
commonly referred to as hesitant elements [13]. We will restrict our analysis to those hesitant fuzzy sets
such that their hesitant elements are finite, which are called typical hesitant fuzzy sets [11].

Now we are going to recall the definitions of complement, intersection and union operations for the
hesitant fuzzy sets.

Definition 2.4. [11] Let X be the universe and let Ã and B̃ ∈ FH (X) be two hesitant fuzzy sets. Then:

• The complement of Ã is the hesitant fuzzy set Ãc defined by a function Ãc : X → P([0, 1]) such that

Ãc(x) =
⋃

γ∈Ã(x)

{1− γ}, ∀x ∈ X.

• The intersection of Ã and B̃ is the hesitant fuzzy set Ã∩B̃ defined by a function (Ã∩B̃) : X → P([0, 1])
such that

(Ã ∩ B̃)(x) = {α ∈ Ã(x) ∪ B̃(x)|α ≤ min{max{Ã(x)},max{B̃(x)}}}, ∀x ∈ X.

• The union of Ã and B̃ is the hesitant fuzzy set Ã ∪ B̃ defined by a function (Ã ∪ B̃) : X → P([0, 1])
such that

(Ã ∪ B̃)(x) = {α ∈ Ã(x) ∪ B̃(x)|α ≥ max{min{Ã(x)},min{B̃(x)}}}, ∀x ∈ X.

Unlike the definition for the complement, these definitions for the intersection and the union are not
totally intuitive. But they are consistent with the requirement that they reduce to the ordinary definitions
with single-valued hesitant elements and, when hesitant fuzzy sets are regarded as a form of type-2 fuzzy
sets (in their general form, without any convexity assumptions), can also be shown to be consistent with
the type-2 fuzzy set definitions that were established by Mizumoto and Tanaka [8] in 1976. In this paper,
we will provide an alternative justification for these definitions.

It is easy to prove the intuitive result that the fuzzy sets are a particular case of the hesitant fuzzy sets.
This can be established formally by defining a bijection between the fuzzy power set over a universe X and
a convenient subset of the hesitant fuzzy power set over X. Thus, given any fuzzy set A ∈ F (X), we can
define the hesitant element φFH(A) as φFH(A)(x) = {A(x)}. It is obvious that φFH is a bijection. With this
natural identification between the fuzzy sets and the hesitant fuzzy sets with hesitant element cardinality
1, we can also prove that the operations of complement, intersection and union are compatible with the
bijection.
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Example 2.5. If we have a single-element universe X = {x}, we can define two trivial hesitant fuzzy sets
Ã(x) = {0.1} and B̃(x) = {0.2}. Their complements are Ãc(x) = {0.9} and B̃c(x) = {0.8} and their
intersection and union Ã ∩ B̃(x) = {0.1} and Ã ∪ B̃(x) = {0.2}. These results are exactly the same as
what would be expected with two fuzzy sets defined by A(x) = 0.1 and B(x) = 0.2. In the non-trivial case,
we can have two hesitant fuzzy sets like C̃(x) = {0.10, 0.11} and D̃(x) = {0.20, 0.21} and we would have
C̃c(x) = {0.89, 0.90}, D̃c(x) = {0.79, 0.80}, C̃ ∩ D̃(x) = {0.10, 0.11} and C̃ ∪ D̃(x) = {0.20, 0.21}. This
simple example reveals the intuition behind the hesitant operations.

2.3. Fuzzy multisets

As we mentioned in the introduction, the values that make up a hesitant element in a hesitant fuzzy set
are typically the result of applying several criteria on membership. In a common use case, it is assumed that
there are a number of “experts” or “decision-makers” for a hesitant fuzzy set who produce a membership
value for each element in the universe. A problem with the hesitant fuzzy sets in the experts’ model is that
the information about repetition is lost. For example, if there are five experts and four of them assign a
membership value of 0.1 to an element whereas the fifth expert assigns the value 0.2, the hesitant element
will be {0.1, 0.2}, regardless of the fact that 0.1 was four times more popular among the experts. This
information loss can be avoided by using fuzzy multisets [7] (also called fuzzy bags [14]), which we are going
to discuss now.

But in order to state a formal definition, we will first need to review the multisets in a crisp sense [7, 10].
To avoid confusion with the similar fuzzy concepts, we will denote in general the universe of discourse by U
rather than X in the definitions and results related to the crisp multisets. Along this paper, U will really
be the closed interval [0, 1].

Definition 2.6. Let U be a universe. A (crisp) multiset M over the universe U is characterised by a
function CountM : U → N mapping each element of the universe to a natural number (including 0).

The family of all the crisp multisets over U is called the power multiset of U and is denoted by NU .
As in the case of the fuzzy sets and their membership functions, although the concepts of “multiset”

and “count function” are formally equivalent, it is common to refer to a multiset M and its count function
CountM as distinct mathematical entities.

The concept of cardinality can be extended to the multisets in a natural way:

Definition 2.7. Let M be a multiset over a universe U . The cardinality of M is the natural number defined
as

|M | :=
∑
u∈U

CountM (u)

In this paper, we restrict our analysis to the multisets with a finite cardinality, which we will call finite
multisets.

As we would expect, those multisets having a count function with the image set restricted to {0, 1}
can be identified with the ordinary sets. In that particular case, the count function becomes equivalent
to the characteristic function of the set and the cardinality can be interpreted in the ordinary sense too.
So the multisets behave as an extension of the ordinary concept of a set, and in this regard share some
characteristics with the fuzzy sets.

In fact, the definitions of some common operations for multisets are quite similar to those of fuzzy sets.
Here we are going to define the union, which we will use later.

Definition 2.8. Let M,N ∈ NU be two finite multisets over a universe U . The union of M and N is the
multiset M ∪N defined by a function CountM∪N : U → N such that

CountM∪N (u) = max{CountM (u), CountN (u)}, ∀u ∈ U.
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The definition of intersection, which we will not use in this paper, is completely analogous, with min
replacing max.

Now that we have defined the crisp multisets, together with their most fundamental results, we can
introduce the fuzzy multisets as follows,

Definition 2.9. [7] Let X be the universe. A fuzzy multiset Â over X is characterised by a function
Â : X → N[0,1]. The family of all the fuzzy multisets over X is called the fuzzy power multiset over X and
is denoted by FM (X).

Example 2.10. Say we have a single-element universe X = {x}. We can define a fuzzy multiset Â as
Â(x) = 〈0.1, 0.2, 0.2〉 in angular-bracket notation. Or in other words, using Definition 2.9, the element x
is being mapped into a function CountÂ(x) : [0, 1] → N defined as CountÂ(x)(0.1) = 1, CountÂ(x)(0.2) = 2

and CountÂ(x)(t) = 0 for any t 6= 0.1 and t 6= 0.2. This function CountÂ(x) characterises a crisp multiset
for any x in X.

Now we are going to define the complement, intersection and union operations for the fuzzy multisets.
The complement for the fuzzy multisets is quite intuitive.

Definition 2.11. [7] Let X be a universe and let Â ∈ FM (X) be a fuzzy multiset. The complement of Â
is the fuzzy multiset Âc defined by the following count function:

CountÂc(x)(t) = CountÂ(x)(1− t), ∀x ∈ X, ∀t ∈ [0, 1].

Example 2.12. If we have a two-element universe X = {x, y}, then a fuzzy multiset Â with Â(x) = 〈0.3〉
and Â(y) = 〈0.5, 0.8, 0.8〉 has the complement

CountÂc(x)(t) =


1, if t = 0.7,

0, otherwise,

CountÂc(y)(t) =


1, if t = 0.5,

2, if t = 0.2,

0, otherwise,

that is, Âc(x) = 〈0.7〉 and Â(y) = 〈0.5, 0.2, 0.2〉.

The definitions of intersection and union have been more problematic in the literature. In his original
formulation of fuzzy bags [14], Yager proposed a definition that did not work as a general case of the fuzzy
set definition. A better definition was proposed by Miyamoto [7]. In Miyamoto’s approach, the definition of
these binary operations between fuzzy multisets is made simpler by working with membership values that
have the same cardinality. We will develop this approach formally by first defining subfamilies of the fuzzy
multisets where the cardinality is fixed to a constant finite value for each member of the universe X.

Definition 2.13. Let X be a universe. Given a function m : X → N, an m-regular fuzzy multiset Â over
the universe X is a fuzzy multiset such that, for each element of the universe x ∈ X, the membership
multiset of Â has a cardinality |Â(x)| = m(x). We will call the m function a cardinality map.

The family of all the m-regular fuzzy multisets over X is called the m-regular fuzzy power multiset and
is denoted by FMm(X).

Example 2.14. If we have a two-element universe X = {x, y}, then a fuzzy multiset Â with Â(x) =
〈0.2, 0.3〉 and Â(y) = 〈0.5, 0.8, 0.9〉 is an example of an m-regular fuzzy multiset with m(x) = 2 and m(y) = 3.

5



The importance of this concept lies in the fact that if we have a second fuzzy multiset B̂, we can
easily define binary operations between Â and B̂, like the intersection and the union, by operating on their
membership values one by one, but we can only do that if B̂ is also m-regular. So, restricting the operations
to the regular fuzzy multisets provides a convenient first step in definitions.

Following Miyamoto, in order to define the binary operations it is also convenient to be able to arrange
the elements in a membership multiset into a sequence. For this we will need some formal definitions for
the crisp multisets.

Definition 2.15. Let U be a universe. For any finite multiset M over U , an ordered sequence of M is an
ordered |M |-tuple (a1, . . . , a|M |) ∈ U |M | such that for each u ∈ U with CountM (u) > 0 there are CountM (u)
coordinates equalling u; i.e. |{i ∈ {1, . . . , |M |}|ai = u}| = CountM (u). Thus, an ordering strategy is any
function s : NUfinite → OS (U) that maps a finite multiset to an ordered sequence, where OS (U) denotes the
family of all the ordered sequences for any multiset over U .

Really, an ordering strategy maps any finite multiset to a tuple with the same cardinality as the multiset,
obtaining just as a permutation of the values of the multiset. The usual ordering strategy consists in sorting
in either ascending or descending order, which can be done when the universe U is totally ordered. Thus,
the ascending sort of a multiset M is the ordering strategy that maps M to an ordered sequence s↑(M)
such that if i, j ∈ {1, . . . , |M |} with i < j, then (s↑(M))i ≤ (s↑(M))j . Similarly, the descending sort is the
ordering strategy s↓ such that if i, j ∈ {1, . . . , |M |} with i < j, then (s↓(M))i ≥ (s↓(M))j .

Example 2.16. If the universe is the real unit interval [0, 1] and we have a multiset M = 〈0.3, 0.2, 0.2, 0.5〉,
an ordered sequence a is simply an arrangement of these four values in a specific order, for example a =
(0.2, 0.2, 0.3, 0.5), and the function s that maps M to a is the ordering strategy. In this case we are sorting
the elements in ascending order, so s = s↑. The descending sort s↓ would yield (0.5, 0.3, 0.2, 0.2) but any
arbitrary arrangement like (0.5, 0.2, 0.3, 0.2) is a valid example of an ordered sequence.

The definitions of intersection and union due to Miyamoto are based on operating in a coordinatewise
fashion on the ordered sequences that result from picking the descending sort s↓ as the ordering strategy.

Definition 2.17. Let X be a universe and let m : X → N be a cardinality map. Given two m-regular fuzzy
multisets Â and B̂, its m-regular intersection Â ∩ B̂ is the m-regular fuzzy multiset such that

Count(Â∩B̂)(x)(t) = |{i|1 ≤ i ≤ m(x), (µÂ∩B̂(x))i = t}|

where

(µÂ∩B̂(x))i := min
i∈{1,...,m(x)}

{(s↓(Â(x)))i, (s↓(B̂(x)))i}.

Similarly, we can define the union as

Definition 2.18. Let X be a universe and let m : X → N be a cardinality map. Given two m-regular fuzzy
multisets Â and B̂, its m-regular union Â ∪ B̂ is the m-regular fuzzy multiset such that

Count(Â∪B̂)(x)(t) = |{i|1 ≤ i ≤ m(x), (µÂ∪B̂(x))i = t}|

where

(µÂ∪B̂(x))i := max
i∈{1,...,m(x)}

{(s↓(Â(x)))i, (s↓(B̂(x)))i}.

Note that choosing s↓ or s↑ in the above definition is just a matter of convention as it can easily be
proved that both ordering strategies yield the same numeric values.

When the two fuzzy multisets Â and B̂ have different cardinalities for an element x ∈ X, we will be able
to apply the previous definitions if we perform an additional step, which we will call regularisation, that
equalises the cardinalities to the maximum of the two. This operation can be formally defined as follows,
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Definition 2.19. Let X be a universe and let Â ∈ FM (X) be a fuzzy multiset. Given a cardinality map
m : X → N such that |Â(x)| ≤ m(x) for all x ∈ X, a regularisation of Â to cardinality m is a fuzzy multiset
Âr such that:

|Âr(x)| = m(x), ∀x ∈ X,

CountÂr(x)(t) = 0, if CountÂ(x)(t) = 0,

CountÂr(x)(t) ≥ CountÂ(x)(t), if CountÂ(x)(t) > 0.

A similar definition was considered in [7], although it was not formally defined. It is straightforward to
check that in the trivial case when |Â(x)| = m(x) for all x ∈ X, Âr(x) = Â(x).

Example 2.20. If we have a fuzzy multiset Â over a single-element universe X = {x} and Â(x) =
〈0.1, 0.2, 0.2〉, a regularisation to cardinality 5 would consist in incrementing the count of some of the
members in order to reach that cardinality. Âr1 = 〈0.1, 0.1, 0.1, 0.2, 0.2〉 and Âr2 = 〈0.1, 0.2, 0.2, 0.2, 0.2〉
would be two such regularisations. Thus, we can see in this example that the regularisation is not unique.

The assignment of a particular regularisation to a fuzzy multiset for larger cardinalities will be referred
to as the regularisation strategy. The two most common regularisation strategies consist in increasing either
the count of the maximum membership value or that of the minimum. Following a common convention in
the hesitant literature [13], we will refer to these two approaches as optimistic and pessimistic, respectively.

With this additional concept of regularisation we can now define the intersection and union of any
arbitrary pair of fuzzy multisets regardless of their respective cardinalities. But we need an additional
definition first.

Definition 2.21. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets. Their maximum
common cardinality map is the cardinality map mÂB̂ defined as

mÂB̂(x) = max
x∈X
{|Â(x)|, |B̂(x)|}.

In general, by regularising to their maximum common cardinality map, we arrive at a definition of
intersection for any pair of fuzzy multisets.

Definition 2.22. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets. Given a regularisa-
tion strategy that assigns a pair of fuzzy multisets Âr, B̂r ∈ FM (X) regularised to their maximum common
cardinality map mÂB̂ . Then:

• The regularised intersection Â ∩r B̂ is the mÂB̂-regular intersection Âr ∩ B̂r.

• The regularised union Â ∪r B̂ is the mÂB̂-regular union Âr ∪ B̂r.

Example 2.23. If we have a two-element universe X = {x, y} and an fuzzy multiset Â such that Â(x) =
〈0.2, 0.3〉 and Â(y) = 〈0.5, 0.6, 0.6〉 and another fuzzy multiset B̂ such that B̂(x) = 〈0.6, 0.6〉 and B̂(y) =
〈0.1, 0.2, 0.3〉, as they are both {2, 3}-regular, they are trivially regularised and their intersection is Â∩ B̂(x)
= 〈0.2, 0.3〉 and Â ∩ B̂(y) = 〈0.1, 0.2, 0.3〉. But if we have an fuzzy multiset Ĉ such that Ĉ(x) = 〈0.2〉
and Ĉ(y) = 〈0.2, 0.8〉, we will need to regularise Ĉ to the larger cardinalities of Â. With an optimistic
regularisation, we get Ĉr defined as Ĉr(x) = 〈0.2, 0.2〉 and Ĉr(y) = 〈0.2, 0.8, 0.8〉 and then we can perform
the intersection Â ∩r+ Ĉ(x) = 〈0.2, 0.2〉 and Â ∩r+ Ĉ(y) = 〈0.1, 0.2, 0.3〉.

Just as we did in the previous subsection, 2.2, it can easily be proved that, given a universe X, there
is a bijection φFM between the family of the 1 -regular fuzzy sets FM 1(X) (where 1 stands for the unit
cardinality map 1 (x) = 1 for all x ∈ X) and the fuzzy power set F (X) and that the standard complement,
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standard intersection and standard union, defined on F (X), and the 1 -regular complement, intersection
and union, defined on FM 1(X), respectively commute with φFM . This means that the fuzzy multisets,
like the hesitant fuzzy sets, are an extension of the fuzzy sets.

But what, if any, is the connection between the fuzzy multisets and the hesitant fuzzy sets? Can we
establish a similar bijection with compatible operations between at least some subsets of either family? As
we show in the next example, the situation is tricky because of the different behaviours of the intersection
and union operations. In the next section we are going to define new intersection and union operations that
make this possible.

Example 2.24. In a similar example to Example 2.5, if we have a single-element universe X = {x}, we
can define two trivial fuzzy multisets Â(x) = 〈0.1〉 and B̂(x) = 〈0.2〉. Their complements are Âc(x) = 〈0.9〉
and B̂c(x) = 〈0.8〉 and their 1 -regular intersection and union are Â ∩ B̂(x) = 〈0.1〉 and Â ∪ B̂(x) = 〈0.2〉.
As in the hesitant fuzzy set example, the results contain the same numeric values as with the two fuzzy sets
defined by A(x) = 0.1 and B(x) = 0.2.

With non-trivial fuzzy multisets, we can also find many cases that yield the same numeric values as
the similar hesitant fuzzy sets. For example, if we have two fuzzy multisets like Ĉ(x) = 〈0.10, 0.11〉 and
D̂(x) = 〈0.20, 0.21〉, we get Ĉc(x) = 〈0.89, 0.90〉, D̂c(x) = 〈0.79, 0.80〉, Ĉ∩D̂(x) = 〈0.10, 0.11〉 and Ĉ∪D̂(x) =
〈0.20, 0.21〉. This shows that the intuition behind the two approaches is similar.

But we do find situations where each theory leads to different results for the intersection and union. This
happens when there are overlapping ranges of values in the two sets. For example, if we have the two fuzzy
multisets Ê(x) = 〈0.1, 0.4〉 and F̂ (x) = 〈0.2, 0.3〉, we get Ê ∩ F̂ (x) = 〈0.1, 0.3〉 and Ê ∪ F̂ (x) = 〈0.2, 0.4〉.
But if we have the two analogous hesitant fuzzy sets Ẽ(x) = {0.1, 0.4} and F̃ (x) = {0.2, 0.3}, we get
Ẽ ∩ F̃ (x) = {0.1, 0.2, 0.3} and Ẽ ∪ F̃ (x) = {0.2, 0.3, 0.4}. We see that the hesitant intersection and union
can change the cardinality of the hesitant elements when the two sets have overlapping ranges of values, a
phenomenon that does not occur with the fuzzy multisets.

3. New definitions of intersection and union for fuzzy multisets

In Miyamoto’s definitions of the intersection and union, sorting plays an essential part but it should be
noted that the approach based on the pairwise minima and maxima can be applied to any other ordering
strategy. In fact, in the experts’ model where a number of experts produce the membership values in the
multiset, there may be an underlying natural order (based on pairing those values coming from the same
expert) that is disrupted by sorting.

This leads to a first idea that we can craft a more general definition of what we have called the m-regular
intersection (Definition 2.17) and union (Definition 2.18) by turning the ordering strategies into parameters.

Definition 3.1. Let X be a universe and let m : X → N be a cardinality map. Given two m-regular
fuzzy multisets Â and B̂ and two ordering strategies sA and sB , for each element x ∈ X, a new sequence
µÂ∩(sA,sB)B̂

(x) can be built with the pairwise minima as follows

(µÂ∩(sA,sB)B̂
(x))i := min

i∈{1,...,m(x)}
{(sA(Â(x)))i, (sB(B̂(x)))i}.

The m-regular (sA, sB)-ordered intersection Â ∩(sA,sB) B̂ is the m-regular fuzzy multiset defined by

Count(Â∩(sA,sB)B̂)(x)(t) = |{i|1 ≤ i ≤ m(x), (µÂ∩(sA,sB)B̂
(x))i = t}|.

Similarly, we can obtain a definition the union.

Definition 3.2. Let X be a universe and let m : X → N be a cardinality map. Given two m-regular
fuzzy multisets Â and B̂ and two ordering strategies sA and sB , for each element x ∈ X, a new sequence
µÂ∪(sA,sB)B̂

(x) can be built with the pairwise maxima as follows

(µÂ∪(sA,sB)B̂
(x))i := max

i∈{1,...,m(x)}
{(sA(Â(x)))i, (sB(B̂(x)))i}.
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The m-regular (sA, sB)-ordered union Â ∪(sA,sB) B̂ is the m-regular fuzzy multiset defined by

Count(Â∪(sA,sB)B̂)(x)(t) = |{i|1 ≤ i ≤ m(x), (µÂ∪(sA,sB)B̂
(x))i = t}|.

And with these definitions that allow for mixed ordering, we can define new versions of the intersection
and union for non-regular pairs of fuzzy multisets, analogous to Definition 2.22.

Definition 3.3. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets. Given a regularisation
strategy that assigns a pair of fuzzy multisets Âr, B̂r ∈ FM (X) regularised to their maximum common
cardinality map mÂB̂ and two ordering strategies sA and sB . Then:

• The regularised (sA, sB)-ordered intersection Â ∩r(sA,sB) B̂ is the (sA, sB)-ordered mÂB̂-regular inter-

section Âr ∩(sA,sB) B̂
r.

• The regularised (sA, sB)-ordered union Â∪r(sA,sB)B̂ is the (sA, sB)-orderedmÂB̂-regular union Âr∪(sA,sB)

B̂r.

The previous definitions allow us to choose arbitrary and different ordering strategies for each fuzzy
multiset in a binary operation. By taking the multiset union of all the combinations, we can define what
we will call the aggregate intersection and union of two fuzzy multisets, which don’t privilege any particular
ordering.

Definition 3.4. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets. The aggregate
intersection of Â and B̂ is a fuzzy multiset Â ∩a B̂ such that for any element x ∈ X, Â ∩a B̂(x) is the
union, in the crisp multiset sense, of the regularised (sA, sB)-ordered intersections for all the possible pairs
of ordering strategies (sA, sB), that is,

Â ∩a B̂(x) =
⋃

sÂ∈OS(Âr)

sB̂∈OS(B̂r)

Â ∩r(sA,sB) B̂(x), ∀x ∈ X.

Definition 3.5. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets. The aggregate union
of Â and B̂ is a fuzzy multiset Â ∪a B̂ such that for any element x ∈ X, Â ∪a B̂(x) is the union, in the
crisp multiset sense, of the regularised (sA, sB)-ordered unions for all the possible pairs of ordering strategies
(sA, sB), that is,

Â ∪a B̂(x) =
⋃

sÂ∈OS(Âr)

sB̂∈OS(B̂r)

Â ∪r(sA,sB) B̂(x), ∀x ∈ X.

Example 3.6. In Example 2.24, we showed that for two fuzzy multisets Ê(x) = 〈0.1, 0.4〉 and F̂ (x) =
〈0.2, 0.3〉, the Miyamoto intersection and union are Ê ∩ F̂ (x) = 〈0.1, 0.3〉 and Ê ∪ F̂ (x) = 〈0.2, 0.4〉. In
order to calculate their aggregate intersection and union, we need to first calculate the interesections and
unions for all the possible ordering strategies. There are two possible ordering strategies for Ê, resulting in
the sequences (0.1, 0.4) and (0.4, 0.1), and two possible ordering strategies for F̂ , resulting in the sequences
(0.2, 0.3) and (0.3, 0.2). This leads to the four sequences of pairwise minima, (0.1, 0.3), (0.1, 0.2), (0.2, 0.1),
(0.3, 0.1), which result in two ordered intersections, using Definition 3.1, 〈0.1, 0.3〉, 〈0.1, 0.2〉; and to the
four sequences of pairwise maxima, (0.2, 0.4), (0.3, 0.4), (0.4, 0.3), (0.4, 0.2), which result in two ordered
unions, using Definition 3.2, 〈0.2, 0.4〉, 〈0.3, 0.4〉. By taking the union, in the crisp multiset sense, we get the
aggregate intersection and union: Ê ∩a F̂ (x) = 〈0.1, 0.2, 0.3〉 and Ê ∪a F̂ (x) = 〈0.2, 0.3, 0.4〉. We have found
the striking result that the numeric values match those of the hesitant fuzzy set intersection and union in
the previous examples, a hint that the hesitant theory is equivalent to the fuzzy multiset theory when the
aggregate operations are used, as we will prove in the next section.
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4. The fuzzy multisets as an extension of the hesitant fuzzy sets

We are now going to show that the fuzzy multisets are an extension of the hesitant fuzzy sets with the
aggregate-form definitions. This is obviously similar to the way a multiset like 〈0.1, 0.2〉 can be identified
with the set {0.1, 0.2}. We will first establish how the crisp multisets can be related to the underlying
crisp sets that result from disregarding the multiplicity information by means of an equivalence relation
that equalises the non-zero multiplicities. And then we will use that multiset-based equivalence relation to
establish a similar relation between the fuzzy multisets and the hesitant fuzzy sets.

We have mentioned how we can identify the crisp sets with those crisp multisets having a count value
of just 0 and 1. An alternative way of identifying the crisp subsets with a restricted version of the family of
multisets is through an equivalence relation that does away with the information on repeated elements.

First, by disregarding the actual count value and only considering whether it is non-zero, we can relate
a multiset to an underlying set.

Definition 4.1. Let U be a universe and let M ∈ NU be a multiset over U . The support of M is the crisp
set of U , Suppm(M),∈ P(U) defined as

Suppm(M) := {u ∈ U |CountM (u) > 0}.

And, armed with this definition, we can go on to define an equivalence relation as follows,

Definition 4.2. Let U be a universe and let M,N ∈ NU be two multisets over U . M and N are said to be
repetition-equivalent, M ∼mr N , if their supports are the same: Suppm(M) = Suppm(N).

It is trivial to prove that ∼mr is an equivalence relation.

Example 4.3. In the universe of the natural numbers N, we can define two multisets M = 〈1, 2〉 and
N = 〈1, 2, 2, 2〉. Since these multisets only differ in the count value for an element that appears in both,
they are repetition-equivalent, M ∼mr N , and their support is the crisp subset {1, 2} in both cases.

Having established the required concepts for the crisp multisets, we can now define an underlying hesitant
fuzzy set for any fuzzy multiset.

Definition 4.4. Let X be a universe and let Â ∈ FM (X) be a fuzzy multiset over X. The hesitant fuzzy
set support of Â is a hesitant fuzzy set Supp(Â) defined as Supp(Â)(x) := Suppm(Â(x)) for any x ∈ X.

So, the hesitant fuzzy set support is simply built by taking the supports, in the crisp multiset sense, of
the membership multiset Â(x). We can now define an equivalence relation that accounts for repetition in
much the same way as we did for the crisp multisets above.

Definition 4.5. Let X be a universe and let Â, B̂ ∈ FM (X) be two fuzzy multisets over X. Â and B̂
are said to be repetition-equivalent, Â ∼r B̂, if their hesitant fuzzy set supports are the same: Supp(Â) =
Supp(B̂).

The repetition equivalence relation makes it possible to define a bijection between its equivalence classes
and the hesitant fuzzy sets over the universe.

Proposition 4.6. Given a universe X, there is a bijection φMH : FM (X)/ ∼r−→ FH (X) defined by

φMH([Â]) = Supp(Â) [Â] ∈ FM (X)/ ∼r

with Â being any representative of the equivalence class [Â].
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Proof. The function φMH is defined for all equivalence classes c ∈ FM (X)/ ∼r. Given two fuzzy multisets
Â and B̂, with equivalence classes [Â] and [B̂] by ∼r, their image by φMH will be different if and only if
Supp(Â) 6= Supp(B̂), and then [Â] 6= [B̂], so it is injective.

On the other hand, given any hesitant fuzzy set Ã ∈ FH (X), we can build a fuzzy multiset Â defined
for each x ∈ X through a count function CountÂ(x)(t) = 1 if t ∈ Ã(x) and CountÂ(x)(t) = 0 if t /∈ Ã(x) for

t ∈ [0, 1]. The hesitant fuzzy set support of Â is obviously Ã, so φMH([Â]) = Ã for any hesitant fuzzy set Ã.
Therefore, φMH is surjective and then a bijection.

The existence of this bijection φMH gives rigorous formal support to the intuitive identification between
the hesitant fuzzy sets and the restricted fuzzy multisets where repetition is ignored (by considering the
equivalence classes) or excluded (by considering the canonical representatives). But for this identification
to be complete, we also need to prove that the common operations of complement, intersection and union
commute with the bijection. And in order to show this, we first need to prove that the three operations are
compatible with the repetition equivalence relation.

Proposition 4.7. Let X be a universe. For any two fuzzy multisets over X, Â, B̂ ∈ FM (X), if Â ∼r B̂
then Âc ∼r B̂c.

Proof. If Â ∼r B̂, this means that their hesitant fuzzy set supports are the same, so CountÂ(x)(t) = 0 if and

only if CountB̂(x)(t) = 0. By a simple change of variable t′ = 1− t, this means that CountÂ(x)(1− t′) = 0

if and only if CountB̂(x)(1− t′) = 0 and so Supp(Âc) = Supp(B̂c) and Âc ∼m B̂c.

This means that the equivalence classes are preserved by the complement operation and so the definition
of complement can be brought forward to the quotient space FM (X)/ ∼m by simply defining it in terms
of any representative, as follows:

Definition 4.8. Let X be a universe and let [Â] ∈ FM (X)/ ∼r be a repetition equivalence class. The com-

plement of [Â] is the repetition equivalence class [Â]c defined by [Â]
c

:= [Âc], with Âc being the complement,
in the fuzzy multiset sense, of any representative Â of the equivalence class [Â].

In a similar way, we would expect the intersection and the union to be compatible with the repetition
equivalence relation ∼r so that we can talk about intersections and unions of the equivalence classes in a
meaningful way. It turns out, however, that among the definitions that we have provided for these operations,
only the aggregate versions (definitions 3.4 and 3.5) that we propose in this article are compatible with ∼r,
a result which highlights the merits of the aggregate form.

Remark 4.9. Let’s start by the intersection. As a very simple counterexample, consider a single-element
universe X = {x} and the three 3-regular fuzzy multisets Â1(x) = 〈0.1, 0.1, 0.3〉, Â2(x) = 〈0.1, 0.3, 0.3〉 and
B̂(x) = 〈0.1, 0.2, 0.3〉. And consider the ascending sort as the common sorting strategy: sA = sB = s↑. We
have that Â1 ∼r Â2. But the 3-regular s↑-ordered intersection of Â1 with B̂ is Â1 ∩s↑ B̂(x) = 〈0.1, 0.1, 0.3〉
whereas the intersection of Â2 with B̂ is Â2 ∩s↑ B̂(x) = 〈0.1, 0.2, 0.3〉, so we have that Â1 ∼r Â2 but
Â1 ∩s↑ B̂ �r Â2 ∩s↑ B̂. Thus, the m-regular (sA, sB)-ordered intersection, as defined in Definition 3.1, is
not compatible with the repetition equivalence relation.

Similarly, under the conditions stated in their definitions, the m-regular s-ordered intersection (Defi-
nition 2.17), the regularised s-ordered intersection (Definition 2.22) and the regularised (sA, sB)-ordered
intersection (Definition 3.3), being particular cases of the m-regular (sA, sB)-ordered intersection, are not
compatible with the repetition equivalence relation either.

With regard to the union, if the consider the same counterexample, we have that he 3-regular s↑-ordered
union of Â1 with B̂ is Â1 ∪s↑ B̂(x) = 〈0.1, 0.2, 0.3〉 whereas the union of Â2 with B̂ is Â2 ∪s↑ B̂(x) =
〈0.1, 0.3, 0.3〉, so we have that Â1 ∼r Â2 but Â1 ∪s↑ B̂ �r Â2 ∩s↑ B̂. Thus, the m-regular (sA, sB)-ordered
union, as defined in Definition 3.2, is not compatible with the repetition equivalence relation and therefore,
neither are the m-regular s-ordered union (Definition 2.18), the regularised s-ordered union (Definition 2.22)
nor the regularised (sA, sB)-ordered union (Definition 3.3).
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Once we have presented counterexamples in the previous remark for any other considered definitions, we
will now prove that definitions 3.5 and 3.6 are the only ones with a good behaviour.

Proposition 4.10. Let X be a universe. The aggregate intersection ∩a, as defined in Definition 3.4, is com-
patible with the repetition equivalence relation; i.e. given two pairs of fuzzy multisets over X Â1, B̂1, Â2, B̂2 ∈
FM (X), if Â1 ∼r Â2 and B̂1 ∼r B̂2, then Â1 ∩a B̂1 ∼r Â2 ∩a B̂2.

Proof. By Definition 4.5, Â1 ∼r Â2 and B̂1 ∼r B̂2 means that their support hesitant fuzzy sets are equal,
so we must prove that if Supp(Â1) = Supp(Â2) and Supp(B̂1) = Supp(B̂2) then Supp(Â1 ∩a B̂1) =
Supp(Â2 ∩a B̂2). For each element of the universe x ∈ X, these are equalities between crisp sets. Let
us take a value t ∈ Supp(Â1∩a B̂1)(x). Because t has ended up with a non-zero count value in the aggregate
intersection, then it must have a non-zero count value in either of the original multisets Â1(x) or B̂1(x).
Without loss of generality, let us suppose that it is t ∈ Suppm(Â1(x)). Then, by repetition equivalence,
t ∈ Suppm(Â2(x)) too. Now, the definition of the aggregate intersection as a multiset union of all the possible
sequences made up of pairwise minima means that in order to have a non-zero count value in the intersection,
t ≤ min{max{Suppm(Â1(x))},max{Suppm(B̂1(x))}} and then, by the equality of the supports of Â1(x)
and Â2(x) and B̂1(x) and B̂2(x), it follows that t ≤ min{max{Suppm(Â2(x))},max{Suppm(B̂2(x))}} and
since t is in the support of Â2(x), then it will appear with a non-zero count value in the intersection
Â2 ∩a B̂2(x), and so t ∈ Suppm(Â2 ∩a B̂2(x)). As the reasoning holds for any arbitrary value t starting
from either Suppm(Â2 ∩a B̂2(x)) or Suppm(Â2 ∩a B̂2(x)), the sets must be equal: Suppm(Â2 ∩a B̂2(x)) =
Suppm(Â2 ∩a B̂2(x)), and this is for any x ∈ X, so Supp(Â2 ∩a B̂2) = Supp(Â2 ∩a B̂2).

And the similar result for the aggregate union,

Proposition 4.11. Let X be a universe. The aggregate union ∪a, as defined in Definition 3.5, is compatible
with the repetition equivalence relation; i.e. given two pairs of fuzzy multisets over X Â1, B̂1, Â2, B̂2 ∈
FM (X), if Â1 ∼r Â2 and B̂1 ∼r B̂2, then Â1 ∪a B̂1 ∼r Â2 ∪a B̂2.

Proof. The proof is virtually the same as the one for Proposition 4.10, substituting union for intersection
and swapping the roles of the maxima and minima.

The fact that the equivalence classes are preserved by the aggregate intersection and union means that
these operations can be adapted to the quotient space FH (X)/ ∼m by simply defining them in terms of
any representative, as follows:

Definition 4.12. Let X be a universe and let [Â], [B̂] ∈ FM (X)/ ∼r be two repetition equivalence classes.
The intersection of [Â] and [B̂] is the repetition equivalence class [Â]∩ [B̂] defined by [Â]∩ [B̂] := [Â ∩a B̂],
with Â ∩a B̂ being the aggregate intersection of any two representatives Â and B̂ of the equivalence classes
[Â] and [B̂].

Definition 4.13. Let X be a universe and let [Â], [B̂] ∈ FM (X)/ ∼r be two repetition equivalence classes.
The union of [Â] and [B̂] is the repetition equivalence class [Â] ∪ [B̂] defined by [Â] ∪ [B̂] := [Â ∪a B̂], with
Â∪a B̂ being the aggregate union of any two representatives Â and B̂ of the equivalence classes [Â] and [B̂].

Finally, we are now in a position to prove that these operations of complement, intersection and union
commute with the bijection φMH.

Proposition 4.14. Let X be a universe. The complement on FH (X) and the complement on FM (X)/ ∼r
are related through the bijection φMH as follows

φMH([Â]c) = (φMH([Â]))c [Â] ∈ FM (X)/ ∼r

Proof. This is an equality between hesitant fuzzy sets. First, by Definition 4.8, [Â]c = [Âc] and so the
left-hand side can be rearranged as φMH([Âc]), and, by the definition of φMH, (Proposition 4.6), this is the
hesitant fuzzy set Supp(Âc), where Âc is any representative of the equivalence class [Âc] and the complement
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of Â, a representative of the equivalence class [Â]. By definition of support, for any x ∈ X, Supp(Âc)(x) =
{t ∈ [0, 1]|CountÂc(x)(t) > 0}, which, by the definition of the hesitant fuzzy set complement (Definition 2.4),

is the same as {t ∈ [0, 1]|CountÂ(x)(1− t) > 0}.
On the other hand, in the right-hand side we have to take the complement of the hesitant fuzzy set

(φMH([Â])), which is Supp(Â) by the definition of φMH, where Â is any representative of the equivalence
class [Â]. And by definition of support, for any x ∈ X, Supp(Â)(x) = {t ∈ [0, 1]|CountÂ(x)(t) > 0} and
by taking the hesitant fuzzy set complement, we get that the right-hand side of the equality evaluated at
x ∈ X is {1 − t ∈ [0, 1]|CountÂ(x)(t) > 0}. And with a simple variable change t′ = 1 − t, this becomes

{t′ ∈ [0, 1]|CountÂ(x)(1 − t′) > 0}, which is the same explicit expression that we reached for the left-hand
side of the equality, thus proving the result.

Having established the result that the bijection φMH commutes with the complement, as defined for the
hesitant fuzzy sets and for the repetition equivalence classes of the fuzzy multisets, we will now show that
it also commutes with the intersection and union.

Proposition 4.15. Let X be a universe. The intersection on FH (X) and the intersection on FM (X)/ ∼r
are related through the bijection φMH as follows

φMH([Â] ∩ [B̂]) = (φMH([Â])) ∩ (φMH([B̂])) [Â], [B̂] ∈ FM (X)/ ∼r .

Proof. First, by Definition 4.12, [Â] ∩ [B̂] = [Â ∩a B̂], with Â and B̂ being two representatives of the
equivalence classes [Â] and [B̂], respectively. By the definition of φMH, (Proposition 4.6), the left-hand side
of the equality is the hesitant fuzzy set Supp(Â∩a B̂). And the support of the aggregate intersection, when
evaluated at an x ∈ X, as we mentioned in the proof of Proposition 4.10, is the set {t ∈ Supp(Â)(x) ∪
Supp(B̂)(x)|t ≤ min{max{Supp(Â)(x)},max{Supp(B̂)(x)}}.

On the other hand, in the right-hand side we have to consider the two hesitant fuzzy sets (φMH([Â])) and
(φMH([B̂])), which are Supp(Â) and Supp(B̂), respectively, by the definition of φMH, where Â and B̂ are
any two representatives of the equivalence classes [Â] and [B̂], respectively. And if we take the intersection
of these two sets, in the standard hesitant fuzzy set sense of Definition 2.4, and evaluate it at x ∈ X, we get
a set {t ∈ Supp(Â)(x) ∪ Supp(B̂)(x)|t ≤ min{max{Supp(Â)(x)},max{Supp(B̂)(x)}}}, which is the same
explicit expression that we reached for the left-hand side of the equality, thus proving the result.

Proposition 4.16. Let X be a universe. The union on FH (X) and the union on FM (X)/ ∼r are related
through the bijection φMH as follows

φMH([Â] ∪ [B̂]) = (φMH([Â])) ∪ (φMH([B̂])) [Â], [B̂] ∈ FM (X)/ ∼r .

Proof. This can be proved in the same way as the intersection version of Proposition 4.15, substituting union
for intersection and swapping the roles of the maxima and minima.

5. Conclusion

In this paper, we have studied in detail the main operations between fuzzy multisets, in order to obtain
some coherent definitions from different points of view. We consider that fuzzy multisets are very appropriate
to deal with real applications and this formal study can be useful in many context. Thus, although they are
mathematically an extension of the typical hesitant fuzzy sets, their properties are much more interesting in
some cases. However we have also investigated the close relationship that exists between the fuzzy multisets
and the typical hesitant fuzzy sets, since this can be useful from the theoretical point of view. We have
compared the definitions of the common operations of complement, intersection and union, and found some
new definitions for the intersection and union of the fuzzy multisets, the aggregate intersection and union,
that make it possible to identify the hesitant fuzzy sets with the subfamily of the fuzzy multisets where
each membership value in [0, 1] has its multiplicity restricted to {0, 1}. This confirms that the fundamental
difference between the two theories is the way these binary operations are handled.
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We have seen the essential role played by ordered sequences, with the traditional fuzzy multiset definitions
due to Miyamoto relying on arranging the values into sorted sequences, while the aggregate operations that
match the hesitant theory take into account all the possible ordered sequences. This insight opens up
new research possibilities, such as considering the ordered sequences as membership values themselves and
studying the information loss in the experts’ model due to the underlying order being ignored in fuzzy
multisets and hesitant fuzzy sets.

Furthermore, we believe that the aggregate intersection and union can be used as the standard inter-
section and union for the multiset-based hesitant fuzzy sets, already mentioned in the original presentation
of the hesitant fuzzy sets, but which have not received much attention as far as their basic operations and
relations are concerned.

Finally, the relations among these the hesitant fuzzy sets and the fuzzy multisets together with the fuzzy
sets can be summed up in the following diagram

Fuzzy sets F (X)
φFH−→ FH 1(X)⋂

Hesitant fuzzy sets FH (X)
φ−1
MH−→ FM (X)/ ∼r⋂

Fuzzy multisets FM (X)
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