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To estimate the central tendency or location of a sample of interval-valued data, a stan-
dard statistic is the interval-valued sample mean. Its strong sensitivity to outliers or data
changes motivates the search for more robust alternatives. In this respect, a more robust
location statistic is studied in this paper. This measure is inspired by the concept of spatial
median and makes use of the versatile generalized Bertoluzza’s metric between intervals, the
so called dθ distance. The problem of minimizing the mean dθ distance to the values the
random interval takes, which defines the spatial-type dθ-median, is analyzed. Existence and
uniqueness of the sample version are shown. Furthermore, the robustness of this proposal is
investigated by deriving its finite sample breakdown point. Finally, a real-life example from
the Economics field illustrates the robustness of the sample dθ-median, and simulation stud-
ies show some comparisons with respect to the mean and several recently introduced robust
location measures for interval-valued data.
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1. Introduction and motivation

Nowadays, data is an essential source of information and knowledge. Statistical data
analysis methodology is permanently evolving due to the emergence of new types of
data in real-life studies and the development of tools to analyze more complex types of
data. The first statistical techniques were simply designed to manage either quantitative
or qualitative data. At present, we can find numerous statistical procedures to handle
complex types of data such as functional data [1], fuzzy-valued data [2], incomplete/
missing data [3], and several other types of data.
Among the types of real-life data that cannot be strictly classified as quantitative or

qualitative, one often finds cases involving interval-valued data. Such data may have
different origins, such as

• The representation of quality by perceptions, opinions or judgements (e.g., tastes,
smells, beauty, etc.);

• Data which are exact observations of existing intrinsically interval-valued random at-
tributes, like, for instance, attributes quantifying ranges, fluctuations, etc. along a
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period of time, a given parcel, etc. (e.g., the daily fluctuation of the systolic blood
pressure, the monthly salary range of a worker over a year, and so on);

• Intrinsically real-valued data from which, to guarantee e.g. a certain level of confi-
dentiality, only interval-valued information is recorded (for instance, in many surveys
respondents are asked to indicate the interval containing their age, salary, etc.);

• Data which are obtained by aggregating a typically large dataset into one of a reduced
size (this happens, for example, with interval-valued symbolic data [4, 5] which include
interval variation and structure).

Our estimation method can be applied to any type of interval-valued data, irrespective
of the source.
Any interval-valued observation can be identified with a two-dimensional vector for

which the first component is its real-valued mid-point/centre and the second component
is its nonnegative spread/radius. Hence, there is a one-to-one mapping between the space
of nonempty compact intervals and the cone R × [0,∞). However, for statistical devel-
opments it is often inconvenient to identify the random mechanism generating interval
values with a two-dimensional random vector with nonnegative second component. Com-
mon assumptions for multivariate techniques such as normality may not make sense or
become too restrictive (e.g. elliptical symmetry) in the case of random intervals. A flex-
ible approach to model interval-valued data is obtained by assuming that the data are
outcomes of a random interval (that is, of an interval-valued random set), then possible
interactions or dependencies between the two components can be better formalized and
treated.
Data analysis involving random interval-valued data has already received some atten-

tion in the literature. Some of the problems that have been considered are regression anal-
ysis for interval-valued data [6–14], testing hypotheses with interval-valued data [15, 16]
(or [11] in a more general situation), clustering interval-valued data [17–22], principal
component analysis with interval-valued data [5, 23], modelling distributions for interval-
valued data [24, 25], among others.
As for standard data, a useful summary of the information contained in a set of interval-

valued observations (or in the distribution of a random interval) is its central tendency
of location. One of the most commonly used location measures is the Aumann mean [26,
27]. The Aumann mean is supported by many valuable properties, including laws of
Large Numbers, and is coherent with interval arithmetic. However, despite the very
good probabilistic and statistical properties of this location measure, it is not always a
reliable and representative measure of the center of interval-valued observations or the
distribution of a random interval. This is due to its lack of robustness. Similarly as the
mean in the real/vectorial-valued case, the Aumann mean is strongly influenced by data
changes or the occurrence of outliers. This drawback motivates the search for a more
robust measure of the center of random intervals.
In the real-valued setting, the most popular robust alternative for the mean is the

median. However, since there is no universally accepted total order criterion over the
space of non-empty compact intervals, similarly as in the case of vector-valued data,
the median of interval-valued observations cannot be (universally) defined as a ‘middle
position’ value within a ranked set. On the other hand, distances between intervals can
be stated with sound support and intuitive interpretation. Therefore, one can attempt
to extend the median to random intervals by defining it as the interval minimizing the
mean distance to all the values the random interval can take.
For multivariate data, the spatial median (also called the L1-median, as introduced by

Weber [28]) is a popular robust alternative for estimating the center of the multivariate
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data when the data possibly contains outlying observations. The spatial median is defined
as the point in the multivariate space with minimal average Euclidean distance to the
observations. For more details and applications, see for instance [29–35].
To adapt the spatial median to interval-valued data we need to consider a suitable L2

metric on this space. The approach in this paper is based on the versatile generalized
metric introduced by Bertoluzza et al. [36], which can be expressed in a convenient and
easy-to-handle parameterized way [6] (see also [37], for a recent review in a more general
setting). The generalized metric includes as a special case the well-known Vitale L2 metric
[38] for interval values. The resulting estimator was first mentioned in [39] (a preliminary
empirical study of its behavior) and its strong consistency was proven in [40]. One of the
aims of this paper is to provide theoretical results for the existence and uniqueness of the
spatial-type median. Furthermore, it will be shown that the resulting estimator is robust
with a high breakdown point and has good finite-sample properties, also in comparison
to alternative M-estimators of location, whose robustness in the interval-valued settings
has already been shown in [41] (see [42] for the more general case of fuzzy-valued data).
Note that the spatial-type interval-valued median is also an M-estimator of location with
the absolute value function as loss function. However, the results in [41, 42] do not extend
to the spatial-type interval-valued median because its loss function does not satisfy the
conditions required by the representer theorem (see Theorem 3.3 in [41] or Theorem III-
A.1 in [42]). Therefore, theoretical results such as existence and uniqueness are not yet
available for the spatial-type median. Moreover, a comparison of the spatial-type median
and M-estimators defined through the representer theorem is especially of interest.
Some other approaches to extend the spatial median to more general spaces have

already been proposed in the literature. For example, Debruyne et al. [43] introduced an
extension to feature spaces for kernel methods. This extension still uses the Euclidean
norm and seeks for the element corresponding to a solution of the first order equations,
while we define our extension of the spatial median as the interval minimizing the average
distance to the values of the random interval. Moreover, in [43] neither existence nor
uniqueness of the solution is investigated.
The rest of this paper is organized as follows: in Section 2, the basic concepts related

to the interval-valued space, interval arithmetic and metrics for intervals are recalled.
Random intervals and the Aumann mean are also reviewed. In Section 3, the dθ-median,
an L2-type median for random intervals inspired by the spatial median, is proposed and
the existence and uniqueness of its sample version are shown. The robustness properties of
the sample dθ-median are investigated in Section 4 and two algorithms for its computation
are explained in detail in Section 5. In Section 6, we illustrate its application on a real
data example and we empirically compare its behaviour to the Aumann mean, two L1-
type medians introduced in [44] and an M-estimator of location based on Hampel loss
function proposed in [41]. Finally, Section 7 ends with some concluding remarks.

2. Preliminary concepts

Let Kc(R) denote the class of nonempty compact intervals from R. Any interval K in
the space Kc(R) can be characterized in terms of either its infimum and supremum, K =
[infK, supK], or its mid-point and spread or radius, K = [midK−sprK,midK+sprK],
where

midK =
infK + supK

2
, sprK =

supK − infK

2
≥ 0.
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The usual interval arithmetic provides both the addition and the product by a scalar,
which are the two most relevant operations from a statistical point of view. These oper-
ations are defined as follows.

• The Minkowski sum of K,K ′ ∈ Kc(R) is defined as the interval

K +K ′ = [infK + infK ′, supK + supK ′].

It admits an alternative expression in terms of the second characterization:

mid (K +K ′) = midK +midK ′, spr (K + K ′) = sprK + sprK ′.

• The product of an interval K ∈ Kc(R) by a scalar γ ∈ R is defined as the element of
Kc(R) such that

γ ·K =

{
[γ · infK, γ · supK] if γ ≥ 0

[γ · supK, γ · infK] otherwise

= [γ ·midK − |γ| · sprK, γ ·midK + |γ| · sprK].

In contrast to the real-valued case, an important complexity is that the space Kc(R)
is not linear with these two operations, but only semilinear with a conical structure,
because of the lack of an opposite element for the Minkowski addition. Hence, there
does not exist a generally well-defined notion of difference of intervals preserving key
properties of the real-valued case. For this reason it is not possible to treat intervals
directly as two-dimensional vectors. Therefore, distances play a crucial role in statistical
developments.
To measure the distance between two interval-valued observations, the following met-

rics have been considered among others:

• The Hausdorff metric [45] between two intervals K,K ′ ∈ Kc(R) given by

dH(K,K ′) = |midK −midK ′|+ |sprK − sprK ′|.

• The 1-norm metric, introduced by Vitale [38]. The 1-norm distance between any two
intervals K,K ′ ∈ Kc(R) is given by

ρ1(K,K ′) =
1

2
| infK − infK ′|+

1

2
| supK − supK ′|.

This metric is topologically equivalent to the well-known Hausdorff metric above.
• The dθ metric by Gil et al. [6] is given by

dθ(K,K ′) =
√

(midK −midK ′)2 + θ · (sprK − sprK ′)2,

where K,K ′ ∈ Kc(R) and θ ∈ (0,∞). It is often imposed that θ ∈ (0, 1], in order
to weigh the deviation in location no less than the deviation in imprecision, as well
as to make dθ coincide with Bertoluzza et al.’s metric [36]. This last coincidence is
especially helpful in choosing values for the weight θ. In this way, the common choice

θ = 1/3 corresponds to d1/3(K,K ′) =
√∫

[0,1]

(
K [λ] −K ′[λ]

)2
dλ, whereK [λ] = λ·supK

+ (1−λ) · infK. On the other hand, θ = 1 allocates a uniform relevance to the extreme
points in each interval; actually, the d1 metric coincides with the Euclidean distance
in the two-dimensional space {(midK, sprK) : K ∈ Kc(R)}, and also with the 2-norm
metric between intervals by Vitale [38]. Nevertheless, the theoretical results will be
presented for the whole class of dθ metrics.

4



January 17, 2018 Statistics: A Journal of Theoretical and Applied Statistics SinovaVanAelstStatisticsR2

Following the general random set approach, a random interval is usually defined as
a Borel measurable mapping X : Ω → Kc(R), where (Ω,A, P ) is a probability space,
with respect to A. The Borel σ-field generated on Kc(R) by the topology induced by any
of the previous metrics (which are all of them strongly equivalent) is considered. As a
consequence from the Borel measurability, crucial concepts in probabilistic and inferential
developments, such as the (induced) distribution of a random interval or the stochastic
independence of random intervals, are well-defined. Alternatively, a random interval can
be defined in terms of real-valued random variables: X is a random interval if, and only
if, both functions infX : Ω → R and supX : Ω → R (or equivalently, midX : Ω → R

and sprX : Ω → [0,∞)) are real-valued random variables.
The Aumann mean value [26, 27], in case it exists, is given by the interval E[X] =

[E(inf X), E(supX)] or, equivalently, in terms of the mid/spr representation, E[X] =
[E(midX)−E(sprX), E(midX)+E(sprX)]. It can also be obtained as the Fréchet ex-
pectation [46] with respect to the dθ metric, i.e., the Aumann expected value is the unique
interval which minimizes, over K ∈ Kc(R), the expected squared distance E[(dθ(X,K))2].
In the next section we use the dθ metric as L2-type distance between intervals and

propose a robust measure of the location of the distribution of a random interval by
minimizing the mean dθ distance to the values the random interval takes.

3. The dθ-median of a random interval: existence and conditions for

uniqueness

Inspired by the spatial median as extension of the median to higher dimensional Euclidean
spaces and even Banach spaces [47], we now study a generalization of the spatial median
to random intervals based on the L2 metric dθ as in Sinova et al. [39, 40]. We call this
location measure the dθ-median to stress its dependence on the parameter involved in
the metric.

Definition 3.1 The dθ-median(s) of a random interval X : Ω → Kc(R) is (are) the
interval(s) Mθ[X] ∈ Kc(R) such that

E(dθ(X,Mθ[X])) = min
K∈Kc(R)

E(dθ(X,K)),

whenever the involved expectations exist.

By using the empirical distribution of the data we obtain the sample dθ-median esti-
mator, which is thus defined as follows:

Definition 3.2 Let (X1, . . . ,Xn) be a random sample of size n from a random interval

X and with realizations xn = (x1, . . . , xn). The sample dθ-median (or medians) M̂θ[X]n
is (are) the random interval that takes, for xn, the interval value(s) M̂θ[xn] that is (are)
the solution(s) of the following optimization problem:

min
K∈Kc(R)

1

n

n∑

i=1

dθ(xi,K) = min
(y,z)∈R×[0,∞)

1

n

n∑

i=1

√
(midxi − y)2 + θ · (sprxi − z)2. (1)

It is shown in [40] that for simple random samples, the sample dθ-median is a strongly
consistent estimator of the dθ-median of a random interval under general conditions. How-
ever, theoretical results about the existence and uniqueness of the spatial-type interval-
valued median are still lacking. In this section, it is shown that the use of the dθ metric
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to define the median of a random interval allows us to guarantee its existence and to
state conditions for its uniqueness.
As a supporting result to prove such existence and uniqueness of the sample dθ-median,

we first show the convexity of the objective function to be minimized in (1).

Proposition 3.3 For any xn = (x1, . . . , xn) ⊂ Kc(R), the function given by f(y, z)

=
1

n

n∑

i=1

√
(midxi − y)2 + θ · (sprxi − z)2 for (y, z) ∈ R×[0,∞) is strictly convex unless

all the sample points {(mid xi, sprxi)}
n
i=1 are collinear (in this case f is still a convex

function).

Proof. D = R×[0,∞) is convex and given any two different elements (y1, z1), (y2, z2) ∈ D
and t ∈ (0, 1) we have that

f(t(y1, z1) + (1− t)(y2, z2)) = f(ty1 + (1− t)y2, tz1 + (1− t)z2)

=
1

n

n∑

i=1

[
t2((midxi − y1)

2 + θ(sprxi − z1)
2) + (1− t)2((mid xi − y2)

2 + θ(sprxi − z2)
2)

+ 2t(1− t)((midxi − y1)(midxi − y2) + θ(sprxi − z1)(sprxi − z2))]
1/2 ,

and

t · f(y1, z1) + (1− t) · f(y2, z2) =
1

n

n∑

i=1

√
t2((midxi − y1)2 + θ(sprxi − z1)2)

+
1

n

n∑

i=1

√
(1− t)2((midxi − y2)2 + θ(sprxi − z2)2).

Since not all the sample points are collinear, it holds for all i that

[
(midxi − y1)(sprxi − z2)− (sprxi − z1)(midxi − y2)

]2
≥ 0,

this inequality being strict for at least one subindex i0 ∈ {1, . . . , n}. Then,

2θ(midxi − y1)(midxi − y2)(sprxi − z1)(sprxi − z2)

≤ θ(midxi − y1)
2(sprxi − z2)

2 + θ(sprxi − z1)
2(midxi − y2)

2

with a strict inequality for the subindex i0. By adding the expression (midxi −
y1)

2(midxi − y2)
2 + θ2(sprxi − z1)

2(sprxi − z2)
2 to both sides of the inequality and

taking square roots, we obtain that

(midxi − y1)(mid xi − y2) + θ(sprxi − z1)(sprxi − z2)

≤
[
(midxi − y1)

2(midxi − y2)
2 + θ2(sprxi − z1)

2(sprxi − z2)
2

+ θ(midxi − y1)
2(sprxi − z2)

2 + θ(sprxi − z1)
2(midxi − y2)

2
]1/2

,

whence for t ∈ (0, 1)

t(1− t)((mid xi − y1)(midxi − y2) + θ(sprxi − z1)(sprxi − z2))

6



January 17, 2018 Statistics: A Journal of Theoretical and Applied Statistics SinovaVanAelstStatisticsR2

≤ [t2((mid xi − y1)
2 + θ(sprxi − z1)

2) · (1− t)2((midxi − y2)
2 + θ(sprxi − z2)

2)]1/2.

After adding now t2[(mid xi−y1)
2+θ(sprxi−z1)

2]+(1−t)2[(midxi−y2)
2 + θ (sprxi−z2)

2]
to both sides of the last inequality and by taking square roots, one can conclude that

f(t(y1, z1) + (1− t)(y2, z2)) < t · f(y1, z1) + (1− t) · f(y2, z2)

since the strict inequality holds for at least one subindex i0. Of course, if all the sample
points are collinear, all the previous strict inequalities reduce simply to equalities. �

By using Proposition 3.3 we now show the existence and conditions for the uniqueness
of the sample dθ-median.

Theorem 3.4 Given a random sample (X1, . . . ,Xn) from a random interval X :
Ω → Kc(R), the corresponding sample dθ-median always exists. Moreover, the sample
dθ-median is unique for any sample realization xn = (x1, . . . , xn) for which the two-
dimensional sample points {(midxi, sprxi)}

n
i=1 are not all collinear.

Proof. Two cases will be distinguished, namely, when all the sample interval-valued data
are just real numbers and when they are not.

• Consider the particular case in which all the sample interval-valued data xi are just
real numbers (sprxi = 0 for all i = 1, . . . , n). Should this be the case, the aim would
be to find the solution of the minimization problem

min
(y,z)∈R×[0,∞)

1

n

n∑

i=1

√
(midxi − y)2 + θz2.

By taking into account that

min
(y,z)∈R×[0,∞)

1

n

n∑

i=1

√
(midxi − y)2 + θz2

≥ min
y∈R

1

n

n∑

i=1

√
(midxi − y)2 = min

y∈R

1

n

n∑

i=1

|midxi − y|,

the sample dθ-median is the interval with mid-point y = Me({midxi}
n
i=1) and spread

z = 0. As a consequence, the dθ-median coincides with the median for the real-valued
case.

• Now the case in which at least one sample interval-valued datum has not degenerated
to a real number (i.e., there exists i0 such that sprxi0 6= 0) will be studied.
Note that the possibility of considering a degenerated dθ-median with null spread

(i.e., a pair of the form (y, 0) minimizing the objective function f) is excluded, be-
cause whatever the value of y may be, the objective function f is smaller for the pair
(y, 2 min

j:sprxj 6=0
{sprxj}):

f(y, 2 · min
j:spr xj 6=0

{sprxj}) =
1

n

n∑

i=1

[
(mid xi − y)2 + θ

(
spr xi − 2 min

j:spr xj 6=0
{sprxj}

)2
]1/2

=
1

n

n∑

i=1

[
(midxi − y)2 + 4 θ min

j:spr xj 6=0
{sprxj}

(
min

j:spr xj 6=0
{sprxj} − spr xi

)
+ θ(spr xi)

2

]1/2

<
1

n

n∑

i=1

√
(midxi − y)2 + θ(spr xi)2 = f(y, 0).
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Therefore, D reduces to R × (0,∞). We now show that the minimum, if it exists,
belongs to a closed rectangle. Convexity will then be used to prove the existence.
We use the following result from standard calculus. If a real-valued function of several

variables f has a local maximum or minimum in an interior point (y0, z0) of its domain
D = R × (0,∞) and the partial derivatives fy and fz exist at (y0, z0), then it holds
that fy(y0, z0) = fz(y0, z0) = 0. Therefore, if a local minimum is achieved at (y0, z0),
then one of the following situations must hold:

− The point associated with the local minimum belongs to the interior of D, and fy
and fz exist at this point. In this case, fy(y0, z0) = fz(y0, z0) = 0, i.e.,

n∑

i=1

midxi − y0√
(midxi − y0)2 + θ(sprxi − z0)2

=

n∑

i=1

sprxi − z0√
(midxi − y0)2 + θ(sprxi − z0)2

=0.

Moreover, we now check that in case such an extremum is achieved in the interior
of D, f(y0, z0) is a local minimum and not a local maximum. Using the second
derivative criterion for local minimum, we prove that
◦ the partial derivatives

fy(y, z) =
1

n

n∑

i=1

y −midxi√
(midxi − y)2 + θ(sprxi − z)2

fz(y, z) =
1

n

n∑

i=1

θ(z − sprxi)√
(midxi − y)2 + θ(sprxi − z)2

(2)

are continuous and have continuous partial derivatives on the domain D \
{(mid xi, sprxi)}

n
i=1 ⊂ R2;

◦ fyy(y0, z0) =
1

n

n∑

i=1

θ(sprxi − z0)
2

√
((mid xi − y0)2 + θ(sprxi − z0)2)3

> 0;

◦ finally, by using the Cauchy-Swartz inequality (strict inequality whenever not all
the sample points are collinear),

fyy(y0, z0) · fzz(y0, z0) =
θ2

n2

(
n∑

i=1

(sprxi − z0)
2

√
((midxi − y0)2 + θ(sprxi − z0)2)3

)

·

(
n∑

i=1

(y0 −midxi)
2

√
((midxi − y0)2 + θ(sprxi − z0)2)3

)

>
θ2

n2

(
n∑

i=1

sprxi − z0
4

√
((midxi − y0)2 + θ(sprxi − z0)2)3

·
y0 −midxi

4
√

((midxi − y0)2 + θ(sprxi − z0)2)3

)2

=

(
1

n

n∑

i=1

θ(y0 −midxi)(sprxi − z0)√
((midxi − y0)2 + θ(sprxi − z0)2)3

)2

=
(
fyz(y0, z0)

)2
.
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So, all the sufficient conditions of the criterion are fulfilled and there would be a
local minimum at (y0, z0).

− The local minimum is achieved at a point belonging to the interior of D but fy or fz
do not exist at it. This can only happen if any of the square roots is equal to zero,
i.e., if the point (y0, z0) belongs to the sample {(mid xi, sprxi)}

n
i=1.

By analyzing the possible situations, the following cases cannot hold:

X if y0 < min
1≤i≤n

{midxi}, then fy(y0, z0) < 0 and (y0, z0) does not belong to the sample;

X if y0 > max
1≤i≤n

{midxi}, then fy(y0, z0) > 0 and (y0, z0) does not belong to the sample;

X if z0 < min
1≤i≤n

{sprxi}, then fz(y0, z0) < 0 and (y0, z0) does not belong to the sample;

X if z0 > max
1≤i≤n

{sprxi}, then fy(y0, z0) > 0 and (y0, z0) does not belong to the sample.

Consequently, if (y0, z0) exists, it should belong to the rectangle

[
min
1≤i≤n

{midxi}, max
1≤i≤n

{midxi}

]
×

[
min
1≤i≤n

{sprxi}, max
1≤i≤n

{sprxi}

]
.

As the restriction of the objective function f to this closed and bounded subset of R2

is continuous, the Weierstrass Theorem guarantees that f has at least one minimum
within this subset. Indeed, the function f is convex, so any local minimum is also a
global minimum. Since the function is strictly convex whenever not all the sample data
are collinear, the global minimum is unique in such a case. �

4. Robustness of the sample dθ-median

We investigate the robustness of the sample dθ-median by means of its finite sample
breakdown point. The finite sample breakdown point (fsbp) is defined as the minimum
proportion of sample data that needs to be perturbed to make the bias on the estimator
arbitrarily large [48]. The fsbp of the spatial median for multivariate data has been
investigated by Lopuhaä and Rousseeuw [49]. To investigate the fsbp of the dθ-median,
we first extend the definition of fsbp to the case of interval-valued data. Formally, the
fsbp of the sample dθ-median of a sample xn of size n from a random interval X can be
defined as

fsbp(M̂θ[X]n,xn, dθ) =
1

n
min

{
k ∈ {1, . . . , n} : sup

yn,k

dθ(M̂θ[xn], M̂θ[yn,k]) = ∞

}
,

where M̂θ[yn,k] is the sample median of a sample yn,k obtained from xn by perturbing
at most k observations. Note that the dθ-metric satisfies the condition sup{dθ(K,K ′) :
K,K ′ ∈ Kc(R)} = ∞ which is required in the definition of the fsbp. Using this definition,
the following result can be obtained.

Theorem 4.1 The finite sample breakdown point of the sample dθ-median from a ran-
dom interval X equals

fsbp
(
M̂θ[X]n,xn, dθ

)
=

1

n
·

⌊
n+ 1

2

⌋
,

where ⌊·⌋ denotes the floor function.

Proof. The proof follows the lines of the derivation for the multivariate spatial median in

9
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[49]. However, the situation is different because the dθ-median is not translation equiv-
ariant in the same sense considered in that paper (due to the semilinearity of Kc(R)).
We first prove that

fsbp(M̂θ[X]n,xn, dθ) >
1

n
·

(⌊
n+ 1

2

⌋
− 1

)
=

1

n
·

⌊
n− 1

2

⌋
,

i.e., sup
yn,k

dθ

(
M̂θ[xn], M̂θ[yn,k]

)
< ∞ for all k ∈ N, k ≤ ⌊n−1

2 ⌋. Now, let k be any natural

number such that k ≤ ⌊n−1
2 ⌋. By the triangular inequality,

sup
yn,k

dθ

(
M̂θ[xn], M̂θ[yn,k]

)
≤ sup

yn,k

dθ

(
M̂θ[xn], {0}

)
+ sup

yn,k

dθ

(
{0}, M̂θ [yn,k]

)
.

The first term, which does not depend on the perturbed sample, is finite, so it suffices
to show that the second term is also finite.
Put η = max

1≤i≤n
dθ({0}, xi) and let B(0, 2η) denote the closed ball with center 0 = (0, 0)

and radius 2η. Denote the distance between M̂θ[yn,k] and B(0, 2η) by

d = inf
(midV, sprV ) ∈ B(0, 2η)

V ∈ Kc(R)

dθ

(
M̂θ[yn,k], V

)
,

so that dθ

(
{0}, M̂θ [yn,k]

)
≤ d+ 2η. Then, for each of the replaced yj’s, it holds by the

triangular inequality that

dθ

(
yj , M̂θ[yn,k]

)
≥ dθ(yj , {0}) − dθ

(
{0}, M̂θ [yn,k]

)
≥ dθ(yj, {0}) − (d+ 2η). (3)

Suppose that the distance between M̂θ[yn,k] and B(0, 2η) is large, i.e., d > 2ηk; this
assumption will now be shown to be wrong.
Since xi ∈ B(0, η), for each of the n− k original xl’s in yn,k,

dθ(xl, M̂θ[yn,k]) ≥ η + d ≥ dθ({0}, xl) + d. (4)

From (3) and (4),
n∑

i=1

dθ(yi, M̂θ[yn,k]) =

n∑

i = 1
i : yi replaced

dθ(yi, M̂θ[yn,k]) +

n∑

i = 1
i : yi original

dθ(yi, M̂θ[yn,k])

≥
n∑

i = 1
i : yi replaced

(dθ(yi, {0}) − (d+ 2η)) +

n∑

i = 1
i : yi original

(dθ({0}, xi) + d)

=

n∑

i=1

dθ(yi, {0}) − k(d+ 2η) +

n∑

i = 1
i : xi original

d =

n∑

i=1

dθ(yi, {0}) + (n− k) d− k(d+ 2η)

≥
n∑

i=1

dθ(yi, {0}) + d− 2ηk >

n∑

i=1

dθ(yi, {0})

10
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by using the assumption d > 2ηk. However, this inequality cannot hold because M̂θ[yn,k]
minimizes the mean dθ distance to all the interval-valued data from the sample yn,k.
Therefore, d ≤ 2ηk ≤ 2η⌊n−1

2 ⌋ and the inequality that proves the first part holds:

sup
y

n,⌊
n−1
2

⌋

dθ

(
{0}, ̂Mθ [yn,⌊n−1

2
⌋]
)
≤ d+ 2η ≤ 2η

⌊
n− 1

2

⌋
+ 2η = 2η

⌊
n+ 1

2

⌋
< ∞.

We now derive the other inequality, fsbp(M̂θ[X]n,xn, dθ) ≤
1

n
·

⌊
n+ 1

2

⌋
. That is, we

have to prove that sup
y

n,⌊
n+1
2

⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n+1

2
⌋]
)
= ∞.

It suffices to find a corrupted collection y∗
n,⌊n+1

2
⌋
(by replacing at most ⌊n+1

2 ⌋ points of

xn) such that dθ

(
M̂θ[xn], ̂Mθ[y

∗
n,⌊n+1

2
⌋
]
)
= ∞. We will then replace ⌊n+1

2 ⌋ observations

of xn by copies of the point y(m) ∈ Kc(R) with

inf
(midV, sprV ) ∈ B(0, η)

V ∈ Kc(R)

dθ(y
(m), V ) = m,

where m is an arbitrary number in N. Thus the new sample y∗
n,⌊n+1

2
⌋
contains q =

n− ⌊n+1
2 ⌋ of the original points. We show that ̂Mθ[y

∗
n,⌊n+1

2
⌋
] = y(m).

Since y∗
n,⌊n+1

2
⌋
= (x1, . . . , xq,

(n−q times)︷ ︸︸ ︷
y(m), . . . , y(m)), for any z ∈ Kc(R) \ {y

(m)},

n∑

i=1

dθ(y
∗
i , z) =

q∑

i=1

dθ(xi, z) +

n∑

i=q+1

dθ(y
(m), z) =

q∑

i=1

dθ(xi, z) + (n− q) · dθ(y
(m), z)

≥

q∑

i=1

dθ(xi, z) + q · dθ(y
(m), z) =

q∑

i=1

(
dθ(xi, z) + dθ(y

(m), z)
)
≥

q∑

i=1

dθ(xi, y
(m))

=

q∑

i=1

dθ(xi, y
(m)) +

n∑

i=q+1

dθ(y
(m), y(m)) =

n∑

i=1

dθ(y
∗
i , y

(m)).

Therefore, and due to the fact that M̂θ[xn] ∈ B(0, η),

sup
y

n,⌊n+1
2

⌋

dθ

(
M̂θ[xn], ̂Mθ[yn,⌊n+1

2
⌋]
)
≥ dθ

(
M̂θ[xn], ̂Mθ[y

∗
n⌊n+1

2
⌋
]
)
= dθ(M̂θ[xn], y

(m)) ≥ m.

Since m ∈ N could be chosen to be arbitrarily large, it follows that

sup
y

n,⌊n+1
2

⌋

dθ

(
M̂θ[xn],

̂
Mθ

[
yn,⌊n+1

2
⌋

])
= ∞. �

Theorem 4.1 shows that the dθ-median is highly robust, while the Aumann mean is
not robust with fsbp equal to 1/n (since it is defined in terms of the mean of real-valued
random variables).

11
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5. Algorithms to compute the sample dθ-median

Although existence and uniqueness have been proven in Section 3, an explicit expression
for the dθ-median cannot be provided in general. In this section, two algorithms to
compute the sample dθ-median will be presented. The first alternative is an improved
version of a natural and well-known algorithm for computing the spatial median, the
iteratively re-weighted least squares algorithm. The second proposal is an algorithm
based on non-linear minimization. In the real-valued framework, several algorithms for
computing the spatial median have been compared in [34] and it has been concluded that
the non-linear minimization procedure clearly outperforms other approaches. Although
the conclusions of the comparison study in [34] may not hold directly for interval-valued
data, we have chosen the algorithm based on non-linear minimization as the second
alternative to compute the dθ-median, since in many situations the classical settings are
indeed a good inspiration for developing techniques for random intervals.

5.1. Vardi and Zhang’s modification of Weiszfeld’s algorithm

We now propose an efficient algorithm to compute the sample dθ-median, which is based
on the iterative procedure that Weiszfeld [50] – its English translation and some annota-
tions can be found in [51]– first suggested for Euclidean spaces and distances. Although
Kuhn [52] showed the monotone convergence of Weiszfeld’s algorithm whenever the start-
ing point does not belong to the domain of attraction of the data points, it was later
proved [53] that such domain may contain a continuum set and that it is not even guar-
anteed that the set of bad starting points may not be dense. To avoid any problem, the
simple modification proposed in Vardi and Zhang [54] will be used instead.
Given a sample of interval-valued observations, and a fixed value of the parame-

ter θ (chosen by the user), the algorithm allows us to compute the corresponding dθ-
median. Note that the dθ-median is unique unless all the two-dimensional sample points
{(mid xi, sprxi)}

n
i=1 are collinear, as shown in Theorem 3.4.

The algorithm is based on the fact that the objective function in the minimization
problem (1) is differentiable at any point of the domain R× [0,∞) except for the sample
points {(mid xi, sprxi)}

n
i=1. Therefore, the minimum in (1) will be reached at either a

sample point or the point for which both partial derivatives equal zero. From (1) it easily
follows that this point (y0, z0) satisfies

y0 =

n∑

i=1

wi(y0, z0)midxi and z0 =

n∑

i=1

wi(y0, z0) sprxi,

with

wi(y0, z0) =

(
(midxi − y0)

2 + θ · (sprxi − z0)
2
)−1/2

n∑

j=1

(
(midxj − y0)

2 + θ · (sprxj − z0)
2
)−1/2

(5)

for i = 1, . . . , n. It can thus immediately be seen that the mid-point and the spread of the
sample dθ-median are weighted means of the mid-points and the spreads of the intervals
in the sample, respectively. The steps of the algorithm are now described in detail.

Step 0. If the data are specified in terms of their inf/sup characterization, then first

12
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compute the mid-point and spread of the interval-valued data:

midxi =
inf xi + supxi

2
, sprxi =

supxi − inf xi
2

, for i = 1, . . . , n.

Choose the value of the parameter θ > 0 to fix the metric between intervals.

Step 1. Fix the tolerance threshold ε > 0 for convergence. Set m = 1 and select a
starting solution (ym, zm) ∈ R× [0,∞). Calculate the corresponding error

Errorm =
1

n

n∑

i=1

√
(midxi − ym)2 + θ · (sprxi − zm)2. (6)

Step 2. Compute the weights wi(ym, zm) given in (5) for all i = 1, . . . , n such that
(midxi, sprxi) 6= (ym, zm). Let T̃ be the following function with components T̃1 and T̃2:

T̃ (y, z) = (T̃1(y, z), T̃2(y, z)) =

n∑

i=1
(mid xi, sprxi)6=(y,z)

wi(y, z)(mid xi, sprxi)

for all (y, z) ∈ R×[0,∞). The update following the original Weiszfeld algorithm would be
either the value T̃ (ym, zm) if (ym, zm) /∈ {(midxi, sprxi)}

n
i=1 or the value (midxj , sprxj)

if (ym, zm) = (midxj, sprxj) for some j ∈ {1, . . . , n}. However, by using the modification
in [54], the estimate will be updated by (ym+1, zm+1) = T (ym, zm) with

T (y, z) = max

{
1−

ξ(y, z)

r(y, z)
, 0

}
T̃ (y, z) + min

{
1,

ξ(y, z)

r(y, z)

}
(y, z)

using the convention 0/0 = 0 for the division ξ(y, z)/r(y, z), ξ representing the indicator
function of the set of sample observations {(mid xi, sprxi)}

n
i=1 and r being defined by

r(y, z) =


 ∑

i:xi 6=[y−z,y+z]

1/diθ



√

(T̃1(y, z) − y)2 + θ(T̃2(y, z) − z)2

with the abbreviation diθ = dθ(xi, [y − z, y + z]).

Step 3. Calculate the corresponding error Errorm+1 as given by (6). If the difference
Errorm − Errorm+1 exceeds the tolerance ε, then increase m by 1 and go to Step 2.
Otherwise, return the solution (ym+1, zm+1).

The convergence of this algorithm when computing the spatial median in a Euclidean
space by using Euclidean distances was shown by Vardi and Zhang [54]. The same rea-
soning can be applied when using the dθ metric and Kc(R), so the proof is not repeated
here.

Theorem 5.1 Given a realization xn = (x1, . . . , xn) of a simple random sample from
a random interval X, and any P0 ∈ R× [0,∞), define Pr := T r(P0) = T (T (. . . T (P0)))

for r ∈ N. Then lim
r→∞

Pr = M̂θ[xn].

5.2. Algorithm based on non-linear minimization

As explained in [34], the minimization of (1) can be done using general numerical algo-
rithms designed for non-linear optimization purposes, such as a Newton-type algorithm
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(see [55]) with the gradient information from equations (2). The Hessian matrix is al-
ways approximated using the Line Search method, since it is a faster approach than its
analytical calculation. The steps of the algorithm are the following:

Step 0. If the data are specified in terms of their inf/sup characterization, then first
compute the mid-point and spread of the interval-valued data:

midxi =
inf xi + supxi

2
, sprxi =

supxi − inf xi
2

, for i = 1, . . . , n.

Choose the value of the parameter θ > 0 to fix the metric between intervals.

Step 1. Fix the tolerance threshold ε > 0 for convergence. Set m = 1 and select a
starting solution (ym, zm) ∈ R × [0,∞). Denote by f the objective function of (1) and
approximate its Hessian matrix Hf(ym, zm) by H∗

m, an approximate initial value of
H∗

m = I(ym, zm)T is often sufficient to achieve rapid convergence. Compute the search
direction p = −(H∗

m)−1(▽f(ym, zm))T .

Step 2. Use the Line Search strategy to find a step size λm which yields an adequately
corresponding decrease in the objective function (1) and move from the current position
(ym, zm) to (ym+1, zm+1) = (ym, zm) + λmp. The details of the Line Search procedure
can be found in Algorithm 6.3.1 of [55].

Step 3. Calculate the corresponding error

Errorm+1 =
1
n

∑n
i=1

√
(midxi − ym+1)2 + θ · (sprxi − zm+1)2

− 1
n

∑n
i=1

√
(midxi − ym)2 + θ · (sprxi − zm)2

(7)

and update the approximation of the Hessian matrix by Broyden-Fletcher-Goldfarb-
Shanno algorithm:

H∗
m+1 = H∗

m +
qm

Tqm

qmsmT
−

H∗
m

T sm
T smH∗

m

smH∗
msmT

,

where sm = (ym+1−ym, zm+1−zm) and qm = ▽f(ym+1, zm+1)−▽f(ym, zm). If Errorm+1

exceeds the tolerance ε, then increase m by 1 and go to Step 2. Otherwise, return the
solution (ym+1, zm+1).

6. Empirical behavior of the dθ-median

6.1. Real data application: the influence of Brexit on IBEX 35

The robustness of the sample dθ-median is now illustrated on a real data example and
compared to the Aumann mean and alternative robust location measures from the liter-
ature.

Example 6.1 The IBEX 35 is the benchmark stock market index of the Bolsa de Madrid,
Spain’s principal stock exchange. It is administered and calculated by Sociedad de Bolsas
(a subsidiary of the company which runs Spain’s securities markets including the Bolsa
de Madrid) and is composed of the 35 securities listed on the Stock Exchange Intercon-
nection System of the four Spanish Stock Exchanges which were most liquid during the
control period pursuant to the terms of the regulation. For more details, visit the web page
of the Bolsa de Madrid (http://www.bolsamadrid.es/ing/aspx/Portada/Portada.aspx).
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In this example, we consider the daily fluctuation of the IBEX 35 during the past
months of the second semester of 2016 (from 1 June to 24 October 2016). To measure
such fluctuation, the daily minimum and maximum values of the index along this period
of time have been recorded. Figure 1 represents the daily fluctuation for the considered
period of time.

Figure 1. The daily fluctuation of the IBEX 35 Index from 01/06/2016 to 24/10/2016

In this example, we have set the parameter θ equal to the common choice θ = 1/3. With
this value of θ, it can be shown that the dθ metric takes into account all the points of the
intervals and weighs them all equally (for details, see [37]). The corresponding sample
dθ-median has been computed using the iterative algorithm proposed in Section 5.1 with
the 1-norm median for interval-valued data (see [44]) as starting solution. The (sample)
1-norm median is defined as

M̂e[X]n = [ ̂Me(infX)n, ̂Me(supX)n].

In Figure 2 the dθ-median is compared to the Aumann mean, the 1-norm median, the
Hausdorff-type median (see [44]) and the M-estimator of location based on the Hampel
loss function (see [41]). The (sample) Hausdorff-type median is defined as

M̂[X]n = [ ̂Me(midX)n − ̂Me(sprX)n, ̂Me(midX)n + ̂Me(sprX)n].

In case any of the medians of real-valued random variables involved in the definition of
the 1-norm and Hausdorff-type medians is non-unique, the common convention of taking
the mid-point of the interval of medians is adopted.
Finally, the Hampel M-estimator of location is defined as

ĤM [X]n = arg min
K∈Kc(R)

1

n

n∑

i=1

ρa,b,c(dθ(Xi,K))
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with ρa,b,c the loss function given by

ρa,b,c(x) =





x2/2 if 0 ≤ |x| < a
a(|x| − a/2) if a ≤ |x| < b
a(|x| − c)2

2(b− c)
+

1

2
a(b+ c− a) if b ≤ |x| < c

a(b+ c− a)/2 if c ≤ |x|.

For this example the tuning parameters have been set equal to a = 2, b = 4 and c = 8.
Except for the Aumann mean, all these measures have been proven to reach the highest
possible value for the finite sample breakdown point, but an application to a real-life
example like this one can indicate differences in finite-sample behavior.

Mean Spatial 1/3 1−norm Hausdorff Hampel M

8
5

5
0

8
6

0
0

8
6

5
0

8
7

0
0

Measure

Figure 2. Interval-valued location estimates for the daily fluctuation of the IBEX 35 Index from 01/06/2016 to
24/10/2016

From Figure 2, we first notice that the mean interval is clearly lower than any other
interval. This difference can be explained by looking at Figure 1. We can see that at the
end of June and the beginning of July the daily interval-values of the IBEX 35 Index
were much lower and, in some cases also wider, compared to the other periods. This
period of instability was a consequence of the Brexit: the UK public voted to leave the
European Union in a referendum on Thursday 23 June 2016. As Figure 1 clearly shows,
the most outlying interval represents the fluctuation of the IBEX 35 on 24 June, the first
day the IBEX 35 opened after the referendum results were known. We can notice that
these interval measurements have a larger influence on the mean interval than on the
other measures, as expected.

Table 1. Location estimates (rounded) for the IBEX 35 Index data

Measures Mid-point Spread

Mean 8607 67
d1/3−median 8651 60

1-norm 8653 64
Hausdorff 8651 57.5
Hampel M 8651 69

In relation to the comparison of the robust measures (the three interval-valued medians
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and the M-estimator), Table 1 offers some additional information. From this table we
can see that for this example the robust estimates all have (almost) the same midpoint,
but show some differences in their spread. The Hampel M-estimate of location and the
1-norm median have a larger spread than the dθ-median and the Hausdorff-type median.
To investigate which estimate of the latter two medians has been affected more by the
period of instability, we removed the interval observations of the IBEX 35 recorded on the
first three opening days after the referendum, i.e., of 24, 27 and 28 June, and recalculated
the robust location estimates for this reduced dataset:

• the dθ-median is equal to [8602, 8720];
• the Hausdorff-type median is equal to [8607, 8721];

To further evaluate the effect of the outliers on the location estimators, we measured
the distance between their value in the complete dataset and their value in the reduced
dataset by using the dθ-metric (θ = 1/3). For the dθ-median we obtain 10, while for the
Hausdorff-type median we get 12.5. The Hausdorff-type median intervals with and with-
out the most extreme observations are thus farther apart than the dθ-median intervals.

6.2. Simulation study

The main purpose of this section now is to compare the newly introduced dθ-median to
the alternative location measures introduced above, i.e. the Aumann mean, the 1-norm
and Hausdorff-type medians and the Hampel M-estimator of location, from an empirical
point of view. For the dθ-median we have used the common value of θ = 1/3. For the
M-estimator, the tuning parameters a, b and c in the Hampel loss function have been
chosen according to the proposal in [56] to use the median, 75th and 85th percentiles of
the distribution of sample distances (see [56] for details). Moreover, we also compare the
performance of the solutions of the two algorithms for the dθ-median developed in the
previous section.
We compare the location measures in terms of their bias, variance and mean squared er-

ror (MSE). Based on N samples, these quantities can be estimated in the interval-valued

setting by the formulas Bias = d
(

1
N

∑N
i=1 T̂i, T

)
, Var = 1

N

∑N
i=1

(
d2
(
T̂i,

1
N

∑N
i=1 T̂i

))

and MSE = 1
N

∑N
i=1

(
d2(T̂i, T )

)
, respectively. Here, d denotes a metric between inter-

vals, T represents the population value of a location measure and T̂i denotes any of the
estimates of T for the ith generated sample. We have computed the bias, variance and
MSE in terms of the three different distances already used in this paper, namely, the
ρ1-metric, dH -metric and d1/3-metric. Therefore, each result in Tables 2 and 3 is given
by a sequence ρ1-metric ⋆ dH-metric ⋆ d1/3-metric which represents the measurement of
the quantity based on the three respective metrics.

The simulation setup can be described as follows.

Step 1. A random sample of 100 interval-valued observations is generated from a random
interval X as follows:

Step 1.1 A random interval X is characterized as X = [X1 −X2,X1 +X2] where
X1 = midX and X2 = sprX are two real-valued random variables. Hence,
a random sample of X is obtained by randomly generating observations
from X1 and X2. The distributions considered for the real-valued random
variables X1 and X2 are specified below.
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Step 1.2 A proportion ǫ = 0, .1, .2 or .4 of the observations in the sample generated
in Step 1.1 is then contaminated. The relative distance between the dis-
tributions of the regular and contaminated observations is controlled by
a parameter CD which can take the values CD = 0, 1, 5, 10 or 100 in our
simulations.

Step 2. Some of the population parameters T cannot be easily derived in an analytical
way for random intervals. In that case, the population target is approximated by
Monte Carlo simulation using N = 10000 replications of Step 1 for the situation
(ǫ, CD) = (0, 0).

Step 3. For each combination (ǫ, CD), Step 1 is repeated N = 10000 times and for each of

these samples, the location estimates T̂i (i.e., the Aumann mean, the d1/3-median,
the 1-norm median, the Hausdorff-type median and the M-estimator of location
based on the Hampel loss function) are calculated.

Two different sets of distributions have been considered for the distributions of the
regular and contaminated observations. In STUDY 1 the real-valued random variables
have been generated according to

• X1  N (0, 1) and X2  χ2
1 for the non-contaminated observations,

• X1  N (0, 3) + CD and X2  χ2
4/(C

2
D + 1) for the contaminated observations,

whereas in STUDY 2 these variables are generated according to

• X1  β(6, 1) and

X2  





exp (100 + 4X1) if X1 < .25,

exp (200) if .25 ≤ X1 ≤ .75,

exp (500 − 4X1) if X1 > .75,

for the non-contaminated observations,
• X1  β(1, 6) and

X2  





exp (100 + 4X1) /(C
2
D + 1) if X1 < .25,

exp (200) /(C2
D + 1) if .25 ≤ X1 ≤ .75,

exp (500− 4X1) /(C
2
D + 1) if X1 > .75.

for the contaminated observations.

Note that in both studies contaminated observations are generated to be outlying in
both location and spread. These simulation results complement the empirical results pre-
sented in [41] where the focus was on M-estimators of location. The main conclusion in
[41] was that there is no uniformly most appropriate location estimate, but the Hampel
M-estimator of location often shows the best behavior with respect to either the bias,
the variance or the mean squared error for the considered designs. The aim of our cur-
rent empirical investigation is to show that the dθ-median overall shows a stable behavior
with performance that is consistently among the best estimators, and in realistic settings
can outperform other interval-valued medians (STUDY 1) and even robust location es-
timators more generally (STUDY 2). Note that STUDY 1 was inspired by Study 1 -
CASE1 in [41] while STUDY 2 is an adaptation of the simulation strategy proposed in
[57] for the generation of trapezoidal fuzzy numbers whose aim was to mimic the human
behavior when answering a fuzzy rating scale-based questionnaire.
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6.2.1. STUDY 1

In STUDY 1 we compare the behavior of the dθ-median with that of alternative interval-
valued median estimators, namely the 1-norm and Hausdorff-type medians. We also
included the Aumann mean, which is expected to yield the best behavior in absence of
contamination, as a reference, and therefore allows to evaluate how much precision is
lost when data are completely regular.
Table 2 shows the results of STUDY 1. The smallest value for each choice of ǫ and CD

(each row) and each metric has been highlighted in bold.

Table 2. Monte Carlo approximation (MC), and bias, variance (Var) and MSE of the mean, and the 1-norm,
Hausdorff-type and d1/3-medians in STUDY 1. The values of the bias, variance and MSE have been mutiplied by
a factor 100.

ǫ cD Mean 1-norm median Hausdorff-type median dθ=1/3-Median

.0 0 MC [−.99887, 1.00106] [−.73865, .74095] [−.46115, .46531] [−.67129, .64727]
Bias .02 ⋆ .03 ⋆ .02 .19 ⋆ .30 ⋆ .15 .81 ⋆ .87 ⋆ .47 .29 ⋆ .35 ⋆ .18
Var 2.54 ⋆ 4.83 ⋆ 1.67 2.31 ⋆ 4.60 ⋆ 1.91 2.24 ⋆ 4.38 ⋆ 1.92 2.03 ⋆ 4.01 ⋆ 1.69
MSE 2.54 ⋆ 4.83 ⋆ 1.67 2.31 ⋆ 4.60 ⋆ 1.91 2.25 ⋆ 4.38 ⋆ 1.92 2.03 ⋆ 4.01 ⋆ 1.69

.1 0 MC [−1.30527, 1.31453] [−.84729, .85105] [−.58653, .59071] [−.79066, .76522]
Bias 31.0 ⋆ 31.3 ⋆ 17.9 10.9 ⋆ 11.0 ⋆ 6.31 12.5 ⋆ 12.5 ⋆ 7.23 11.9 ⋆ 11.9 ⋆ 6.85
Var 3.66 ⋆ 7.21 ⋆ 2.62 2.78 ⋆ 5.64 ⋆ 2.24 2.88 ⋆ 5.77 ⋆ 2.30 2.51 ⋆ 4.99 ⋆ 1.97
MSE 12.6 ⋆ 20.7 ⋆ 5.82 3.82 ⋆ 7.49 ⋆ 2.63 4.28 ⋆ 8.09 ⋆ 2.83 3.76 ⋆ 7.08 ⋆ 2.44

.1 1 MC [−.98969, 1.20299] [−.74342, .8315] [−.52057, .60258] [−.69183, .74767]
Bias 10.6 ⋆ 20.2 ⋆ 11.9 4.76 ⋆ 9.05 ⋆ 5.09 9.83 ⋆ 13.7 ⋆ 6.88 6.04 ⋆ 10.0 ⋆ 5.30
Var 3.05 ⋆ 5.97 ⋆ 2.39 2.62 ⋆ 5.41 ⋆ 2.24 2.72 ⋆ 5.29 ⋆ 2.30 2.31 ⋆ 4.58 ⋆ 1.95
MSE 4.72 ⋆ 9.38 ⋆ 3.81 2.99 ⋆ 6.07 ⋆ 2.50 3.65 ⋆ 7.09 ⋆ 2.78 2.77 ⋆ 5.41 ⋆ 2.23

.1 5 MC [−.40688, 1.40955] [−.55668, .89602] [−.23694, .48870] [−.50468, .75937]
Bias 50.0 ⋆ 59.2 ⋆ 50.3 16.9 ⋆ 18.2 ⋆ 16.9 12.4 ⋆ 22.4 ⋆ 13.7 13.9 ⋆ 16.7 ⋆ 14.0
Var 2.78 ⋆ 5.63 ⋆ 2.34 2.50 ⋆ 4.99 ⋆ 2.08 2.12 ⋆ 3.93 ⋆ 1.98 2.15 ⋆ 4.24 ⋆ 1.85
MSE 26.9 ⋆ 42.2 ⋆ 27.6 4.98 ⋆ 9.41 ⋆ 4.93 4.02 ⋆ 8.52 ⋆ 3.85 3.89 ⋆ 7.38 ⋆ 3.82

.1 10 MC [−.08976, 1.90527] [−.55124, .93225] [−.21933, .49225] [−.51214, .79510]
Bias 99.6 ⋆ 109 ⋆ 99.8 18.9 ⋆ 19.1 ⋆ 18.9 13.4 ⋆ 24.2 ⋆ 14.8 15.3 ⋆ 15.9 ⋆ 15.4
Var 3.00 ⋆ 6.19 ⋆ 2.47 2.74 ⋆ 5.41 ⋆ 2.31 2.22 ⋆ 4.16 ⋆ 2.03 2.34 ⋆ 4.56 ⋆ 1.98
MSE 101 ⋆ 131 ⋆ 102 5.86 ⋆ 10.9 ⋆ 5.89 4.42 ⋆ 9.47 ⋆ 4.22 4.39 ⋆ 8.18 ⋆ 4.34

.1 100 MC [9.09925, 10.90346] [−.56220, .92851] [−.22206, .49260] [−.52301, .79934]

Bias 103 ⋆ 1009 ⋆ 103 18.2 ⋆ 18.8 ⋆ 18.2 13.3 ⋆ 23.9 ⋆ 14.7 15.0 ⋆ 15.2 ⋆ 15.0
Var 2.89 ⋆ 5.71 ⋆ 2.34 2.48 ⋆ 5.02 ⋆ 2.10 2.04 ⋆ 3.97 ⋆ 1.91 2.09 ⋆ 4.23 ⋆ 1.78

MSE 104 ⋆ 10270 ⋆ 104 5.34 ⋆ 10.2 ⋆ 5.41 4.27 ⋆ 9.01 ⋆ 4.06 4.05 ⋆ 7.70 ⋆ 4.04

.2 0 MC [−1.60316, 1.59337] [−.98052, .97776] [−.76109, .74992] [−.94213, .90299]
Bias 59.8 ⋆ 60.4 ⋆ 34.5 23.9 ⋆ 24.2 ⋆ 13.8 29.2 ⋆ 29.3 ⋆ 16.9 26.3 ⋆ 27.1 ⋆ 15.2
Var 4.49 ⋆ 9.08 ⋆ 3.50 3.37 ⋆ 6.71 ⋆ 2.74 3.95 ⋆ 7.92 ⋆ 3.08 3.07 ⋆ 6.19 ⋆ 2.46
MSE 38.9 ⋆ 56.5 ⋆ 15.4 8.38 ⋆ 15.4 ⋆ 4.65 11.6 ⋆ 20.5 ⋆ 5.93 9.28 ⋆ 16.4 ⋆ 4.78

.2 1 MC [−1.00005, 1.39407] [−.75638, .9412] [−.60366, .75294] [−.73352, .86056]
Bias 19.7 ⋆ 39.3 ⋆ 22.7 10.9 ⋆ 20.0 ⋆ 11.1 21.5 ⋆ 28.8 ⋆ 14.4 13.8 ⋆ 21.3 ⋆ 11.0
Var 3.74 ⋆ 7.66 ⋆ 3.35 3.08 ⋆ 6.17 ⋆ 2.71 3.22 ⋆ 6.39 ⋆ 2.82 2.74 ⋆ 5.43 ⋆ 2.40
MSE 9.61 ⋆ 21.1 ⋆ 8.48 4.70 ⋆ 9.50 ⋆ 3.94 7.44 ⋆ 14.8 ⋆ 4.89 4.71 ⋆ 9.59 ⋆ 3.61

.2 5 MC [−.16977, 1.81859] [−.36245, 1.10632] [−.00716, .56785] [−.31925, .91271]
Bias 99.3 ⋆ 117 ⋆ 99.8 37.1 ⋆ 37.6 ⋆ 37.1 27.8 ⋆ 45.4 ⋆ 29.6 30.9 ⋆ 35.2 ⋆ 31.0
Var 3.55 ⋆ 6.93 ⋆ 3.24 2.87 ⋆ 5.81 ⋆ 2.44 2.13 ⋆ 3.51 ⋆ 2.12 2.33 ⋆ 4.66 ⋆ 2.07
MSE 101 ⋆ 143 ⋆ 103 15.8 ⋆ 24.7 ⋆ 16.2 10.4 ⋆ 23.1 ⋆ 10.9 11.4 ⋆ 18.3 ⋆ 11.7

.2 10 MC [1.19173, 2.80876] [−.33527, 1.19776] [.06299, .56154] [−.31330, .98972]
Bias 1999 ⋆ 2190 ⋆ 2002 43.0 ⋆ 45.7 ⋆ 43.0 31.0 ⋆ 52.4 ⋆ 33.4 35.0 ⋆ 35.8 ⋆ 35.0
Var 3.45 ⋆ 6.67 ⋆ 3.15 3.29 ⋆ 6.58 ⋆ 2.71 2.37 ⋆ 4.10 ⋆ 2.29 2.58 ⋆ 5.15 ⋆ 2.24
MSE 402 ⋆ 487 ⋆ 404 20.6 ⋆ 32.4 ⋆ 21.2 12.7 ⋆ 30.3 ⋆ 13.4 14.1 ⋆ 22.1 ⋆ 14.5

.2 100 MC [19.20247, 20.79971] [−.33514, 1.19341] [.06534, .56219] [−.33052, 1.01026]
Bias 1999 ⋆ 2020 ⋆ 2000 42.8 ⋆ 45.2 ⋆ 42.8 31.2 ⋆ 52.7 ⋆ 33.5 35.2 ⋆ 36.3 ⋆ 35.2
Var 3.46 ⋆ 6.74 ⋆ 3.15 3.15 ⋆ 6.43 ⋆ 2.73 2.24 ⋆ 3.80 ⋆ 2.21 2.60 ⋆ 5.17 ⋆ 2.24

MSE 4·104⋆ 40840 ⋆ 4·104 20.6 ⋆ 31.5 ⋆ 21.1 12.8 ⋆ 30.1 ⋆ 13.5 14.3 ⋆ 22.1 ⋆ 14.6

.4 0 MC [−2.19779, 2.20479] [−1.32187, 1.33136] [−1.28725, 1.29099] [−1.34905, 1.31808]
Bias 120 ⋆ 120 ⋆ 69.4 58.7 ⋆ 59.0 ⋆ 33.9 82.6 ⋆ 82.6 ⋆ 47.7 67.4 ⋆ 67.8 ⋆ 38.9
Var 7.23 ⋆ 14.8 ⋆ 5.82 5.48 ⋆ 11.0 ⋆ 4.51 6.37 ⋆ 12.7 ⋆ 4.65 4.75 ⋆ 9.52 ⋆ 3.65
MSE 149 ⋆ 194 ⋆ 53.9 37.8 ⋆ 58.9 ⋆ 16.0 72.9 ⋆ 99.1 ⋆ 27.4 48.7 ⋆ 68.7 ⋆ 18.8

.4 1 MC [−1.00221, 1.80061] [−.78725, 1.22979] [−.78765, 1.14069] [−.82041, 1.16631]
Bias 40.1 ⋆ 80.0 ⋆ 46.1 26.9 ⋆ 48.9 ⋆ 26.9 50.1 ⋆ 67.5 ⋆ 33.8 33.4 ⋆ 51.9 ⋆ 26.7
Var 5.47 ⋆ 10.5 ⋆ 5.20 4.67 ⋆ 9.71 ⋆ 4.26 4.41 ⋆ 8.57 ⋆ 3.79 3.86 ⋆ 7.84 ⋆ 3.46
MSE 27.6 ⋆ 70.7 ⋆ 26.4 13.5 ⋆ 31.3 ⋆ 11.5 28.0 ⋆ 53.7 ⋆ 15.20, 15.0 ⋆ 33.2 ⋆ 10.6

.4 5 MC [1.35388, 2.66681] [.27726, 1.76037] [.57475, .97644] [.29873, 1.39288]
Bias 201 ⋆ 235 ⋆ 202 102 ⋆ 102 ⋆ 102 77.4 ⋆ 104 ⋆ 78.8 85.8 ⋆ 97.0 ⋆ 86.0
Var 4.70 ⋆ 8.16 ⋆ 4.65 5.06 ⋆ 10.5 ⋆ 4.70 3.45 ⋆ 4.24 ⋆ 3.47 3.52 ⋆ 6.31 ⋆ 3.42
MSE 408 ⋆ 559 ⋆ 412 107 ⋆ 136 ⋆ 108 63.3 ⋆ 111 ⋆ 65.6 76.7 ⋆ 101 ⋆ 77.4

.4 10 MC [3.37595, 4.59969] [.43903, 2.29608] [.87188, 1.04121] [.41975, 1.72101]
Bias 399 ⋆ 437 ⋆ 399 137 ⋆ 156 ⋆ 137 95.4 ⋆ 133 ⋆ 97.9 108 ⋆ 109 ⋆ 108
Var 4.57 ⋆ 7.89 ⋆ 4.48 7.71 ⋆ 17.2 ⋆ 6.60 3.51 ⋆ 3.99 ⋆ 3.52 3.85 ⋆ 7.53 ⋆ 3.61
MSE 1593 ⋆ 1919 ⋆ 1598 192 ⋆ 267 ⋆ 194 94.6 ⋆ 181 ⋆ 99.4 120 ⋆ 144 ⋆ 121

.4 100 MC [39.39936, 40.60287] [.45825, 2.34548] [.92426, 1.02835] [.37239, 1.83676]
Bias 4000 ⋆ 4039 ⋆ 4000 140 ⋆ 160 ⋆ 141 97.4 ⋆ 139 ⋆ 100 112 ⋆ 119 ⋆ 112
Var 4.66 ⋆ 8.24 ⋆ 4.56 8.05 ⋆ 18.5 ⋆ 6.93 3.61 ⋆ 4.35 ⋆ 3.62 4.50 ⋆ 8.95 ⋆ 3.90

MSE 1.6·105⋆ 163200 ⋆ 1.6·105 201 ⋆ 284 ⋆ 205 98.5 ⋆ 196 ⋆ 104 128 ⋆ 160 ⋆ 129
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The results for the dθ-median in this table have been obtained with Vardi and Zhang’s
modification of Weiszfeld’s algorithm. For this setting, the results for the algorithm based
on non-linear minimization were almost the same and hence lead to the same conclusions.
From the results in Table 2 we can draw the following conclusions:

• Not surprisingly, the Aumann mean shows excellent behavior in absence of contamina-
tion, but the spatial median shows similar or even better behavior in terms of variance
and MSE.

• As expected, the estimators of all three medians are much less influenced by contami-
nation than the sample (Aumann) mean.

• Which median estimator is the best depends on different aspects, such as the perfor-
mance criterion (and metric) and the contamination level. Clearly, there is no uniformly
best estimator for the location of random intervals as is the case for real-valued data.

• For several cases, the bias, variance or MSE is smallest for the d1/3-median, which
shows that the spatial-type median yields good estimates (in this setting, it achieves the
lowest MSE values for moderate amounts of contamination, ǫ ≤ .1). More importantly,
whenever the d1/3-median is not the best choice w.r.t. bias, variance or MSE, it is
usually the second best choice with a performance that is close to the optimal estimator.
This does not hold for either of the L1-type medians and makes the d1/3-median an
overall safe choice with either the best performance or a performance close to the best
possible choice.

6.2.2. STUDY 2

In STUDY 2 we also include the M-estimator of location for interval-valued data in the
analysis to compare the behavior of the dθ- median to other robust location estimators
more generally. We use the M-estimator of location with Hampel’s loss function because
this loss function has shown good performance in [41], due to its three tuning parame-
ters, which allow much flexibility to handle contamination. Table 3 shows the results of
STUDY 2. Again, the smallest value for each choice of ǫ and CD (each row) and each
metric has been highlighted in bold. Note that the contamination level ǫ = .3 has also
been included in this setting to be able to better compare the behavior of the estimators
in presence of higher amounts of contamination. The results for the dθ-median in this
table have been obtained with the algorithm based on non-linear minimization which
clearly yielded better results in this setting.
From Table 3 we can see that there is again no uniformly best estimator for the location

of random intervals. While the Aumann mean has a small variance, it is highly biased in
presence of contamination, as expected. When comparing both bias and MSE, it is very
interesting to see that while the Hampel M-estimator of location is the best option for
moderate amounts of contamination (ǫ ≤ .2), the d1/3-median provides the best results
for larger amounts of contamination (ǫ ≥ .3). This STUDY thus reveals that while the
flexibility of the Hampel M-estimator allows it to yield the best performance for moderate
contamination levels, it does pay a price at higher levels of contamination. Indeed the
three medians, and especially the d1/3-median yield much better performance in that
case.

7. Concluding remarks

In this paper, the dθ-median, a concept of median for random intervals defined by means
of an L2 metric, has been studied. This notion was inspired by the well-known spatial
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Table 3. Monte Carlo approximation (MC), and bias, variance (Var) and MSE of the mean, the 1-norm, Hausdorff-
type and d1/3-medians and the M-estimator of location based on Hampel loss function in STUDY 2. The values
of the bias, variance and MSE have been mutiplied by a factor 1000.

ǫ cD Mean 1-norm median Hausdorff-type median dθ=1/3-Median Hampel M-estimator

.0 0 MC [.85441, .85951] [.88813, .89216] [.88854, .89178] [.88815, .89203] [.85650, .86157]
Bias .2 ⋆ .2 ⋆ .2 .7 ⋆ .7 ⋆ .7 .6 ⋆ .7 ⋆ .6 .8 ⋆ .8 ⋆ .8 .2 ⋆ .2 ⋆ .2
Var .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .1 ⋆ .2 ⋆ .1
MSE .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .2 ⋆ .2 ⋆ .2 .1 ⋆ .2 ⋆ .1

.1 0 MC [.78246, .78887] [.87074, .87478] [.87098, .87457] [.87074, .87471] [.85391, .85902]
Bias 71.5 ⋆ 72.1 ⋆ 71.5 18.0 ⋆ 18.1 ⋆ 18.0 18.0 ⋆ 18.2 ⋆ 18.0 18.1 ⋆ 18.2 ⋆ 18.1 2.8 ⋆ 2.8 ⋆ 2.8
Var .2 ⋆ .2 ⋆ .2 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .2 ⋆ .2 ⋆ .2
MSE 5.3 ⋆ 5.4 ⋆ 5.3 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .2 ⋆ .2 ⋆ .2

.1 1 MC [.78312, .78861] [.87100, .87502] [.87131, .87473] [.87102, .87494] [.85404, .85911]
Bias 71.3 ⋆ 71.5 ⋆ 71.3 17.8 ⋆ 17.8 ⋆ 17.8 17.8 ⋆ 17.9 ⋆ 17.8 17.9 ⋆ 17.9 ⋆ 17.9 2.7 ⋆ 2.7 ⋆ 2.7
Var .2 ⋆ .2 ⋆ .2 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .2 ⋆ .2 ⋆ .2
MSE 5.3 ⋆ 5.3 ⋆ 5.3 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .2 ⋆ .2 ⋆ .2

.1 5 MC [.78358, .78824] [.87100, .87504] [.87166, .87441] [.87104, .87493] [.85419, .85924]
Bias 71.2 ⋆ 71.5 ⋆ 71.2 17.8 ⋆ 17.8 ⋆ 17.8 17.8 ⋆ 18.0 ⋆ 17.8 17.9 ⋆ 17.9 ⋆ 17.9 2.5 ⋆ 2.6 ⋆ 2.5
Var .2 ⋆ .2 ⋆ .2 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .2 ⋆ .2 ⋆ .2
MSE 5.2 ⋆ 5.3 ⋆ 5.2 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .2 ⋆ .2 ⋆ .2

.1 10 MC [.78344, .78803] [.87076, .87479] [.87142, .87415] [.87079, .87466] [.85395, .85898]
Bias 71.4 ⋆ 71.7 ⋆ 71.4 18.0 ⋆ 18.0 ⋆ 18.0 18.0 ⋆ 18.2 ⋆ 18.0 18.1 ⋆ 18.1 ⋆ 18.1 2.8 ⋆ 2.8 ⋆ 2.8
Var .2 ⋆ .2 ⋆ .2 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .2 ⋆ .2 ⋆ .2
MSE 5.3 ⋆ 5.3 ⋆ 5.3 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .2 ⋆ .2 ⋆ .2

.1 100 MC [.78340, .78800] [.87106, .87509] [.87171, .87445] [.87110, .87497] [.85393, .85898]
Bias 71.5 ⋆ 71.7 ⋆ 71.5 17.7 ⋆ 17.7 ⋆ 17.7 17.7 ⋆ 18.0 ⋆ 17.7 17.8 ⋆ 17.8 ⋆ 17.8 2.8 ⋆ 2.8 ⋆ 2.8
Var .2 ⋆ .2 ⋆ .2 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .3 ⋆ .3 ⋆ .3 .2 ⋆ .2 ⋆ .2
MSE 5.3 ⋆ 5.3 ⋆ 5.3 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 .2 ⋆ .2 ⋆ .2

.2 0 MC [.71025, .71796] [.84612, .85014] [.84614, .85015] [.84610, .85022] [.83567, .84100]
Bias 143 ⋆ 144 ⋆ 143 42.7 ⋆ 42.7 ⋆ 42.7 42.7 ⋆ 43.1 ⋆ 42.7 42.7 ⋆ 42.8 ⋆ 42.7 20.9 ⋆ 21.0 ⋆ 20.9
Var .2 ⋆ .2 ⋆ .2 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .2 ⋆ .2 ⋆ .2
MSE 20.6 ⋆ 21.0 ⋆ 20.6 2.2 ⋆ 2.3 ⋆ 2.2 2.2 ⋆ 2.3 ⋆ 2.2 2.2 ⋆ 2.3 ⋆ 2.2 .7 ⋆ .7 ⋆ .7

.2 1 MC [.71113, .71703] [.84639, .85041] [.84658, .85023] [.84639, .85041] [.83525, .84038]
Bias 143 ⋆ 144 ⋆ 143 42.4 ⋆ 42.4 ⋆ 42.4 42.4 ⋆ 42.6 ⋆ 42.4 42.5 ⋆ 42.5 ⋆ 42.5 21.4 ⋆ 21.4 ⋆ 21.4
Var .2 ⋆ .2 ⋆ .2 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .2 ⋆ .2 ⋆ .2
MSE 20.6 ⋆ 20.8 ⋆ 20.6 2.2 ⋆ 2.3 ⋆ 2.2 2.2 ⋆ 2.2 ⋆ 2.2 2.2 ⋆ 2.2 ⋆ 2.2 .7 ⋆ .7 ⋆ .7

.2 5 MC [.71202, .71624] [.84642, .85045] [.84731, .84958] [.84645, .85036] [.83485, .83977]
Bias 143 ⋆ 144 ⋆ 143 42.4 ⋆ 42.4 ⋆ 42.4 42.4 ⋆ 42.8 ⋆ 42.4 42.4 ⋆ 42.5 ⋆ 42.4 21.9 ⋆ 22.0 ⋆ 21.9
Var .2 ⋆ .2 ⋆ .2 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .2 ⋆ .2 ⋆ .2
MSE 20.6 ⋆ 20.7 ⋆ 20.6 2.2 ⋆ 2.3 ⋆ 2.2 2.2 ⋆ 2.2 ⋆ 2.2 2.2 ⋆ 2.2 ⋆ 2.2 .7 ⋆ .7 ⋆ .7

.2 10 MC [.71259, .71669] [.84716, .85117] [.84809, .85028] [.84720, .85110] [.83544, .84032]
Bias 143 ⋆ 143 ⋆ 143 41.6 ⋆ 41.6 ⋆ 41.6 41.6 ⋆ 42.1 ⋆ 41.6 41.7 ⋆ 41.7 ⋆ 41.7 21.4 ⋆ 21.5 ⋆ 21.4
Var .2 ⋆ .2 ⋆ .2 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .2 ⋆ .2 ⋆ .2
MSE 20.5 ⋆ 20.6 ⋆ 20.5 2.1 ⋆ 2.2 ⋆ 2.1 2.1 ⋆ 2.2 ⋆ 2.1 2.1 ⋆ 2.2 ⋆ 2.1 .7 ⋆ .7 ⋆ .7

.2 100 MC [.71227, .71635] [.84650, .85056] [.84747, .84965] [.84656, .85048] [.83492, .83982]
Bias 143 ⋆ 143 ⋆ 143 42.3 ⋆ 42.3 ⋆ 42.3 42.2 ⋆ 42.8 ⋆ 42.2 42.3 ⋆ 42.3 ⋆ 42.3 21.9 ⋆ 22.0 ⋆ 21.9
Var .2 ⋆ .2 ⋆ .2 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .4 ⋆ .4 ⋆ .4 .2 ⋆ .2 ⋆ .2
MSE 20.6 ⋆ 20.7 ⋆ 20.6 2.2 ⋆ 2.3 ⋆ 2.2 2.2 ⋆ 2.2 ⋆ 2.2 2.3 ⋆ 2.4 ⋆ 2.3 .7 ⋆ .7 ⋆ .7

.3 0 MC [.63827, .64727] [.80854, .81266] [.80834, .81287] [.80858, .81309] [.72857, .73579]
Bias 214 ⋆ 216 ⋆ 214 80.2 ⋆ 80.3 ⋆ 80.2 80.2 ⋆ 80.9 ⋆ 80.2 80.0 ⋆ 80.3 ⋆ 80.0 127 ⋆ 128 ⋆ 127
Var .1 ⋆ .2 ⋆ .1 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 1.5 ⋆ 1.5 ⋆ 1.5
MSE 46.1 ⋆ 47.0 ⋆ 46.1 7.1 ⋆ 7.2 ⋆ 7.1 7.1 ⋆ 7.2 ⋆ 7.1 7.0 ⋆ 7.1 ⋆ 7.0 17.6 ⋆ 17.9 ⋆ 17.6

.3 1 MC [.63957, .64586] [.80885, .81296] [.80897, .81284] [.80895, .81322] [.72293, .72868]
Bias 214 ⋆ 215 ⋆ 214 79.9 ⋆ 80.0 ⋆ 79.9 79.9 ⋆ 80.2 ⋆ 79.9 79.8 ⋆ 80.0 ⋆ 79.8 133 ⋆ 134 ⋆ 133
Var .2 ⋆ .2 ⋆ .2 .6 ⋆ .7 ⋆ .6 .7 ⋆ .7 ⋆ .7 .6 ⋆ .7 ⋆ .6 1.4 ⋆ 1.4 ⋆ 1.4
MSE 46.1 ⋆ 46.4 ⋆ 46.1 7.0 ⋆ 7.2 ⋆ 7.0 7.0 ⋆ 7.1 ⋆ 7.0 7.0 ⋆ 7.1 ⋆ 7.0 19.2 ⋆ 19.3 ⋆ 19.2

.3 5 MC [.64086, .64463] [.80887, .81302] [.81005, .81185] [.80913, .81319] [.71858, .72277]
Bias 214 ⋆ 215 ⋆ 214 79.9 ⋆ 79.9 ⋆ 79.9 79.8 ⋆ 80.6 ⋆ 79.9 79.7 ⋆ 79.8 ⋆ 79.7 139 ⋆ 139 ⋆ 139
Var .2 ⋆ .2 ⋆ .2 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 1.3 ⋆ 1.3 ⋆ 1.3
MSE 46.1 ⋆ 46.4 ⋆ 46.1 7.0 ⋆ 7.2 ⋆ 7.0 7.0 ⋆ 7.1 ⋆ 7.0 7.0 ⋆ 7.0 ⋆ 7.0 20.5 ⋆ 20.7 ⋆ 20.5

.3 10 MC [.64088, .64450] [.80865, .81277] [.80992, .81149] [.80889, .81294] [.71827, .72236]
Bias 215 ⋆ 215 ⋆ 215 80.1 ⋆ 80.2 ⋆ 80.1 80.1 ⋆ 80.9 ⋆ 80.1 79.9 ⋆ 80.0 ⋆ 79.9 139 ⋆ 139 ⋆ 139
Var .2 ⋆ .2 ⋆ .2 .6 ⋆ .7 ⋆ .6 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 1.3 ⋆ 1.3 ⋆ 1.3
MSE 46.1 ⋆ 46.5 ⋆ 46.1 7.1 ⋆ 7.2 ⋆ 7.1 7.0 ⋆ 7.2 ⋆ 7.0 7.0 ⋆ 7.1 ⋆ 7.0 20.6 ⋆ 20.8 ⋆ 20.6

.3 100 MC [.64112, .64469] [.80900, .81314] [.81030, .81186] [.80923, .81328] [.71867, .72272]
Bias 214 ⋆ 215 ⋆ 214 79.7 ⋆ 79.8 ⋆ 79.7 79.7 ⋆ 80.5 ⋆ 79.7 79.6 ⋆ 79.7 ⋆ 79.6 139 ⋆ 139 ⋆ 139
Var .2 ⋆ .2 ⋆ .2 .6 ⋆ .7 ⋆ .6 .6 ⋆ .6 ⋆ .6 .6 ⋆ .6 ⋆ .6 1.3 ⋆ 1.3 ⋆ 1.3
MSE 46.1 ⋆ 46.4 ⋆ 46.1 7.0 ⋆ 7.2 ⋆ 7.0 7.0 ⋆ 7.1 ⋆ 7.0 7.0 ⋆ 7.0 ⋆ 7.0 20.5 ⋆ 20.6 ⋆ 20.5

.4 0 MC [.56605, .57635] [.73780, .74523] [.73887, .74402] [.73904, .74557] [.61304, .62239]
Bias 286 ⋆ 289 ⋆ 286 149 ⋆ 151 ⋆ 149 149 ⋆ 150 ⋆ 149 149 ⋆ 150 ⋆ 149 242 ⋆ 244 ⋆ 242
Var .1 ⋆ .2 ⋆ .1 1.2 ⋆ 1.3 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.2 ⋆ 1.3 ⋆ 1.2 2.1 ⋆ 2.1 ⋆ 2.1
MSE 81.9 ⋆ 83.4 ⋆ 81.9 23.5 ⋆ 24.2 ⋆ 23.5 23.5 ⋆ 23.8 ⋆ 23.5 23.3 ⋆ 23.7 ⋆ 23.3 60.4 ⋆ 61.5 ⋆ 60.4

.4 1 MC [.56820, .57488] [.73808, .74547] [.73965, .74376] [.73945, .74540] [.61037, .61677]
Bias 286 ⋆ 286 ⋆ 286 149 ⋆ 151 ⋆ 149 149 ⋆ 150 ⋆ 149 148 ⋆ 149 ⋆ 148 246 ⋆ 246 ⋆ 246
Var .2 ⋆ .2 ⋆ .2 1.2 ⋆ 1.4 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.2 ⋆ 1.3 ⋆ 1.2 1.7 ⋆ 1.7 ⋆ 1.7
MSE 81.7 ⋆ 82.2 ⋆ 81.7 23.4 ⋆ 24.2 ⋆ 23.4 23.5 ⋆ 23.6 ⋆ 23.5 23.3 ⋆ 23.6 ⋆ 23.3 62.0 ⋆ 62.4 ⋆ 62.0

.4 5 MC [.56960, .57294] [.73804, .74544] [.74098, .74237] [.73983, .74520] [.60795, .61148]
Bias 286 ⋆ 287 ⋆ 286 149 ⋆ 151 ⋆ 149 149 ⋆ 150 ⋆ 149 148 ⋆ 149 ⋆ 148 250 ⋆ 250 ⋆ 250
Var .2 ⋆ .2 ⋆ .2 1.2 ⋆ 1.3 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.2 ⋆ 1.3 ⋆ 1.2 1.3 ⋆ 1.3 ⋆ 1.3
MSE 81.9 ⋆ 82.4 ⋆ 81.9 23.4 ⋆ 24.1 ⋆ 23.4 23.4 ⋆ 23.7 ⋆ 23.4 23.2 ⋆ 23.5 ⋆ 23.2 63.6 ⋆ 64.0 ⋆ 63.6

.4 10 MC [.57001, .57314] [.73853, .74586] [.74169, .74260] [.74026, .74557] [.60766, .61101]
Bias 286 ⋆ 287 ⋆ 286 147 ⋆ 150 ⋆ 149 149 ⋆ 150 ⋆ 149 148 ⋆ 149 ⋆ 148 250 ⋆ 251 ⋆ 250
Var .2 ⋆ .2 ⋆ .2 1.2 ⋆ 1.3 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.3 ⋆ 1.3 ⋆ 1.3
MSE 81.7 ⋆ 82.3 ⋆ 81.7 23.3 ⋆ 24.0 ⋆ 23.3 23.3 ⋆ 23.6 ⋆ 23.3 23.1 ⋆ 23.4 ⋆ 23.1 63.7 ⋆ 64.2 ⋆ 63.7

.4 100 MC [.57008, .57313] [.73822, .74558] [.74140, .74226] [.74004, .74536] [.60753, .61082]
Bias 286 ⋆ 287 ⋆ 286 149 ⋆ 151 ⋆ 149 149 ⋆ 150 ⋆ 149 148 ⋆ 149 ⋆ 148 250 ⋆ 251 ⋆ 250
Var .2 ⋆ .2 ⋆ .2 1.2 ⋆ 1.3 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.2 ⋆ 1.2 ⋆ 1.2 1.3 ⋆ 1.3 ⋆ 1.3
MSE 81.7 ⋆ 82.3 ⋆ 81.7 23.4 ⋆ 24.1 ⋆ 23.4 23.4 ⋆ 23.8 ⋆ 23.4 23.2 ⋆ 23.5 ⋆ 23.2 63.8 ⋆ 64.3 ⋆ 63.8
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median for multivariate data. The existence (and uniqueness in most cases) of the dθ-
median has been shown, as well as its robustness by means of its high breakdown point.
With respect to its practical computation, there is no explicit solution for the dθ-median,
but two algorithms for its computation have been presented.
The usefulness of the dθ-median for practical purposes is the same as the benefit of the

median with respect to the mean value in the case of univariate data or of multivariate
medians, e.g. based on depth, in the case of multivariate data. When there is no con-
tamination, the best option is to work with the mean in order to take advantage of its
numerous good statistical and probabilistic properties, especially when we want to use
inferential techniques. However, when there are outliers or other deviations in the data,
the mean is extremely sensitive to these anomalies and does not reflect well the center of
the data distribution anymore. On the other hand, due to its robustness, the dθ-median
remains a reliable measure of the location of the random intervals and thus is much more
convenient in this case. A comparison of the (dθ-)mean and dθ-median estimates is thus
a good start to explore interval-valued data and assess whether there are any potential
outliers among the interval data.
A first advantage of the dθ-median is that the Aumann mean and the dθ-median yield

two estimates of the center of the interval-valued observations based on the same metric,
which makes them directly comparable, in the same way as the mean and the median of
univariate observations can be compared to each other. Moreover, our empirical results
have shown that the dθ-median can outperform other robust location measures proposed
in the literature, such as the L1-type medians and the Hampel M-estimator of location in
case of a high contamination fraction. More generally, our simulation experiments have
revealed that the dθ-median is a very reliable robust estimator of the location of interval-
valued data. No estimator uniformly dominated its competitors, but even in cases where
the dθ-median is not the best estimator its performance is close to that of the optimal
estimator.
Directions for further research include extending the dθ-median to fuzzy number-valued

observations, and performing a sensitivity analysis on the choice of the parameter θ. More
simulation studies on the comparison of location measures for random intervals could be
developed, in order to analyze in more detail the the performance of the different location
estimators when varying aspects such as the sample size and the considered distributions.
Finally, more advanced methods like median regression could be developed using the dθ-
median.

Acknowledgements

The authors are grateful to the reviewers and Associate Editor handling this paper, as
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[9] Blanco-Fernández A, Corral N, González-Rodŕıguez G. Estimation of a flexible simple linear model for interval

data based on set arithmetic. Comput. Stat. Data Anal. 2011;55(9):2568–2578.
[10] Lima Neto EA, Cordeiro GM, de Carvalho FAT. Bivariate symbolic regression models for interval-valued

variables. J. Stat. Comput. Simul. 2011;81(11):1727–1744.
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