1	Exploring the effects of geotextiles in the performance of highway filter
2	drains
3	L.A. Sañudo-Fontaneda ^{1*} , S.J. Coupe ² , S.M. Charlesworth ³ , E.G.Rowlands ⁴
4	¹ Department of Construction and Manufacturing Engineering. University of Oviedo. Polytechnic School
5	of Mieres. Calle Gonzalo Gutierrez Quiros s/n. 33600, Mieres (Asturias), Spain. Email:
6	sanudoluis@uniovi.es
7	² Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Ryton Gardens, Wolston
8	Lane, Ryton-on-Dunsmore, CV8 3LG, Coventry, UK. Email: steve.coupe@coventry.ac.uk
9	³ Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Ryton Gardens, Wolston
10	Lane, Ryton-on-Dunsmore, CV8 3LG, Coventry, UK. Email: sue.charlesworth@coventry.ac.uk
11	⁴ Carnell Group Ltd. Gothic House, Market Place, ST19 5DJ, Penkridge, United Kingdom. Email:
12	gordon.rowlands@carnellcontractors.com
13	
14	*Corresponding author details: Email: <u>sanudoluis@uniovi.es</u>
15	
16	Abstract
17	Highway Filter Drains (HFD) are one of the most utilised drainage systems for roads, being considered as
18	an environmental solution for sustainable drainage in transport infrastructures. However, little research has
19	been done to understand their performance, representing a significant knowledge gap. This article therefore
20	determines the hydraulic and clogging response of 3 different HFD designs in the laboratory; one standard

any of the models although the majority of the sediments were concentrated in the first 50 mm of the HFD

design with British Standard Type B aggregate, and 2 new designs including a geotextile located at 50 mm

and 500 mm depth from the surface of the HFD structure in order to assess the effect of the geotextile. The

laboratory models were initially subjected to 9 rainfall scenarios with 3 rainfall intensities (2.5, 5 and 10

mm/h) and 3 storm durations (5, 10 and 15 minutes). Subsequently, the equivalent of 2-years' worth of

pollutants were added to test possible clogging issues under the highest intensity rainfall event,

corresponding to a 1 in 1 year return period for the West Midlands, UK. No clogging issues were found in

21

22

23

24

25

26

-1-

28	profile, with higher percentages (>90% of the sediment added) in those models with an upper geotextile.
29	Location of the geotextile significantly influenced (p-value = 0.05) the hydraulic performance of the HFD.
30	
31	Keywords: Geosynthetics; Clogging; Geotextile; Highway Filter Drains; Road Safety; Sustainable
32	Drainage Systems (SuDS).
33	
34	
35	1. Introduction
36	Vehicle traffic in the UK has increased dramatically since the 1950s to more than 300 billion vehicle miles
37	in 2014 (UK Department of Transport, 2015). To cope with this high volume of traffic, the UK has a road
38	network of nearly 1.8 km road/km ² of land area with a total length of 419,596 km, of which 3,674 km are
39	motorways and 49,040 km are main roads (Nicodeme et al. 2013).
40	The Strategic Road Network (SRN) (including motorways and A roads) (UK Department for Transport,
41	2012) and local road networks are England's most valuable infrastructure asset, valued at approximately
42	£344 billion and as well as the roads, includes other infrastructure such as bridges, embankments and
43	drainage systems (House of Commons, 2014). In 2012-2013 public spending on maintaining England's
44	roads was £4 billion, divided between the UK Department of Transport, the Highways Agency (Highways
45	England since 2015) and Local Authorities. The operation, maintenance and improvement of the SRN,
46	which represents 2% of the total road network (7,080 km), is the responsibility of The Department of
47	Transport through Highways England (House of Commons, 2014).
48	Road drainage systems are therefore a vital asset in transport infrastructure, contributing to the safety of
49	road users by removing surface runoff, improving visibility and mitigating environmental problems to
50	receiving waters. Hence, they are an important part of the maintenance programme developed by Highways
51	England (Ellis and Rowlands, 2007; Coupe et al. 2015).
52	Filter Drains (FD), kerbs and gullies connected to pipes below ground and surface water channels along the
53	pavement edge, are the main methods of dealing with surface runoff (DMRB-UK, 1997a). FD, also known
54	as 'French Drains', are not only one of the most used drainage systems in the UK, but are also an historically
55	important engineering technique across the world. FDs when used on highways are defined as Highway FD

56 or HFD, terminology which will be used hereinafter. Approximately 50% of the SRN in England (in total

about 7,000 km accounting for traffic flow in both directions) uses HFD as their main drainage technique(Coupe et al. 2015).

HFD are designed to cope with a wide range of storm events, to avoid flooding problems. Thus, the Design Manual for Roads and Bridges (DMRB-UK, 2004), Volume 4 Section 2 (Drainage), stipulates that highway drainage systems should be designed for high intensity events over a few minutes (short durations) with return periods of 1 year (with no surcharge of piped systems or road-edge channels) or 5 years with no flooding on the carriageway.

According to DMRB-UK, 1997b, UK HFDs should be a minimum of 0.6 m below the pavement sub-base
in order to prevent groundwater entering the pavement structure. Including the full depth of the road
structure, the typical depth for an HFD is up to 1 m with a width of approximately 1 m (Figure 1).

A perforated pipe is located at a depth of 850 mm in a full-sized HFD, details and recommendations such
as its diameter, the type of aggregate used for the bedding layer and the main body of the HFD are all given
in the Design Manual for Roads and Bridges (DMRB-UK, 2001) and the UK Highways Agency Manual
of Contract Documents for Highway Works (MCDH) (2009).

After a long operational life, often 30 to 40 years of service, some HFD may need maintenance and in order to judge this, their performance is monitored using high-speed non-intrusive Ground Penetrating Radar (GPR) surveys, specifically SMARTscan both on verges and central reservations (Carnell, 2015). However, there is a lack of comprehensive understanding of the hydraulic processes that take place in HFDs and how resistant and resilient they are to flooding and clogging.

76 The impact of this research is wider than just the UK as HFD are used in other countries across the world 77 such as the Republic of Ireland where a visual inspection carried by Bruen et al. (2006) on the Irish dual 78 carriageways and motorways found that more than 40% of them had HFD as their main drainage system. 79 Also in Ireland, issues around clogging have been commonly addressed by the use of a geotextile as a 80 barrier to fine material ingress (Bruen et al. 2006; Desta et al. 2007) whilst still allowing water to flow 81 through and into the drainage material and pipe. Other international drainage techniques similar to HFD 82 also use geotextiles such as the so-called "edge drains" in the U.S.A (Kearns, 1992; Koerner et al., 1996) 83 and Canada (Raymond et al. 2000); and also in Spain (Castro-Fresno et al. 2013; Andres-Valeri et al. 2014; 84 Sañudo Fontaneda et al. 2016) where there are specifications including the use of geosynthetic products in 85 drainage structures (AENOR, 2001; Bustos et al. 2007).

-3-

Despite the fact that geosynthetics have been included successfully in the structure of other SuDS such as Permeable Pavement Systems (PPS) in the UK (e.g. Pratt et al. 1999), their utilisation in association with HFDs is still viewed with scepticism by some engineers due to concerns over possible blockage of the aggregate layer and/or the pipe, leading to a reduction in infiltration capacity. In order to address these issues, there were 2 aims of this research:

- To determine the effects on HFD hydraulic performance of the inclusion of geotextiles due to its
 water retention characteristic (WRC). This concept is described by Chinkulkijniwat et al. (2017),
 who also highlight the lack of knowledge of geotextile WRC.
- 94 2. To determine the influence of the geotextile on the potential for clogging for short return periods.
- 95
- 96

2. Materials and Methods

97 2.1. Experimental preparation and materials

98 Ten plate-glass rigs were set up: 4 replicates of the Standard HFD, and three replicates for each HFD model 99 containing geotextiles at 2 different depths in the profile (50 mm and 500 mm respectively). The rigs had 100 5 mm thick walls and measured 215 mm x 215 mm x 650 mm, thus their volume was 0.030 m³ and surface 101 area was 0.046 m² (see Figure 2). No lower pipe was used, since the aim was to analyse the hydraulic and 102 clogging performance of the aggregate and to isolate the influence of the geotextile layer on the general 103 performance of the HFD, following the preparation method presented in Sañudo-Fontaneda et al. (2017). 104 The outflow, used to build the hydrographs of performance for every HFD model, was measured using 105 funnels placed at the bottom of each plate-glass rig to direct the outflow to a sample collector (see Figure 106 2).

107 The details of the materials used to replicate the three different HFD designs, as shown in Figure 2, are108 presented below:

- 109 1. <u>Standard HFD</u>. Made of Type B aggregate (see Figure 2).
- 110
 2. <u>HFD + Lower Geotextile</u>. As in the Standard HFD plus a geotextile layer at 500 mm depth from
 111 the HFD surface and 50 mm from the base (see Figure 3).
- 112 3. <u>HFD + Upper Geotextile</u>. As in the Standard HFD above plus a geotextile layer at 50 mm depth
 113 from the surface (see Figure 3).

114 The aggregate utilised in this study was that normally used in UK HFD installations and was 20-40 mm,

115 G_c 85/20, clean Granodiorite Type B. A type B aggregate Particle Size Distribution (PSD) is presented in

116 Figure 2, complying with MCDH, 2009 and BS EN 13242 requirements (BSI, 2006).

117 The geotextile was a nonwoven fabric of virgin polypropylene fibres, with an approximate mass per unit

118 area of 0.13 Kg/m². Nonwoven geotextiles have been widely used in roadworks and drainage due to their

119 supporting ability and improvement to the internal drainage of the aggregate layers (Sañudo Fontaneda et

120 al. 2016; Broda et al. 2017; Portelinha and Zornberg, 2017). This geotextile has been used previously in

121 research for example the TRAMMEL drainage system (Clapham, 1981; Ingold, 1994). It is also one of the

122 most widely used geosynthetics in Sustainable Drainage Systems (SuDS), especially PPS because of its

123 well-known pollutant removal efficiency in providing a suitable surface for trapping oil and allowing

124 microorganisms to grow (Newman et al. 2002; Coupe et al. 2003; Gomez-Ullate et al. 2010; Sañudo-

125 Fontaneda et al. 2014b). The hydraulic properties of the geotextile are given in Table 1.

126 This geotextile was also selected for its mechanical properties in terms of structural performance as it was

127 to be used at different depths in the HFD test rigs, and would therefore be subjected to different forces

128 (Table 2). The pressure generated by the weight of the aggregates perpendicular to the surface of the

129 geotextile would be 8.5 Pa in the case of a geotextile placed at 50 mm depth of the full scale HFD, and 85

130 Pa at 500 mm depth, with a bulk density of 1.7 t/m^3 .

A rainfall/runoff simulator was specifically designed and built for the project (see Figure 3) and had thefollowing characteristics:

- 133 Intensity range for direct rainfall: 50-400 mm/h.
- <u>Surface</u>: 0.0441 m² (0.21 m x 0.21 m).
- <u>Number of drippers</u>: 9 (3 per row, total of 3 rows)
- <u>Drop diameter</u>: 3.5 mm.

Flow was controlled in real time with a flowmeter on the water delivery pipe (see Figure 3), whichcontrolled rainfall intensity to between 50-400 mm/h as required.

- 139
- 140 2.2. Experimental methodology
- 141 There were 2 main stages:

142 Stage 1. Hydraulic characterization of HFD performance was carried out by simulating flow produced by 143 three rainfall intensities (2.5, 5 and 10 mm/h) raining over a draining area consisting of 2 carriageways and 144 a hard-shoulder (Table 3) and three storm durations (5, 10 and 15 minutes), resulting in 9 different storm 145 scenarios. The 1 in 1 year storm required for design of HFD by the DRMB (2004) was the highest rainfall 146 event simulated at this stage 1 (10 mm/h) and the longest storm duration (15 minutes). A total of 90 tests 147 were carried out, 10 runs of each storm scenario, producing a total of 2,026 infiltration rate data points 148 (outflow measured per minute on each rig and each test). The Rational Method is suggested for SuDS 149 (Woods Ballard et al. 2015), therefore calculations were undertaken to determine the relationship between 150 rainfall intensities and the flow entering the models as a result of the surface runoff produced by these storm 151 events. Two and 3 carriageways are the most common number of lanes used on UK roads; this was the 152 justification for their use in calculating runoff flows (DMRB-UK, 1999).

Basing the calculations on the Rational Method, laboratory rainfall events of 100, 200 and 400 mm/h (intensity values which will be used hereinafter for the analysis of the laboratory results) controlled by the flowmeter connected to the rainfall/runoff simulator (see Figure 3) were generated over the surface of the laboratory models (0.046 m² surface area) in order to accomplish the rainfall scenarios and runoff flows represented on Table 3.

<u>Stage 2</u>. Pollutants were periodically added to the rigs once Stage 1 was completed in order to simulate 2
 years in-use of the HFD models, each rig was therefore subjected to the following conditions in terms of
 pollutant addition:

161 Amount of sediment: 30 g/rig/test (i.e. 360 g added to each rig in total over the course of the 0 162 experiments) just before the addition of oil, representing sediment deposited on West Midland, UK 163 highways of approximately 1,000 kg/m/year (Carnell Group Ltd., pers comm). The sediment was 164 obtained from arisings collected from gully pots connected to HFD pipes from a highway in the West 165 Midlands, UK. For each rig, 12 rainfall events of 10 mm/h raining over a drainage area consisting of 166 2 carriageways and a hard-shoulder of 15 minutes' duration (replicating the worst case scenario); a 167 total of 120 tests were carried out, producing a total of 2,739 infiltration measurements (outflow 168 measured per minute for each test). The intensity and storm duration used represented a 1 in 1-year 169 storm event in the West Midlands (UK) (Sañudo-Fontaneda et al. 2016), as required to avoid surcharge 170 in the pipe by the DMRB-UK 2004. The West Midlands was used as the reference for calculations,

both from the amount of sediments and the rainfall volumes, due to the fact that there will be field studies undertaken in the future which will use the laboratory studies as comparators. The reason for using 2 years' worth of sediments was based on previous studies carried out by Mitchell (2015) in Scotland which indicated 2 years until the start of clogging issues, both in the surface layer and the pipe at the bottom of the HFD.

Amount of oil: 6.121 g/rig/test (74.58 g of oil was added to each rig in total over the course of the
 experiments) was based on Gomez-Ullate et al. (2010), Sañudo-Fontaneda et al. (2014b) and Bayon et
 al. (2015) who multiplied the suggested 9.27 g/year/m² by Pratt et al. (1999) by 100 to represent a
 worst-case scenario such as a catastrophic oil spill from a car sump. The oil was a used part synthetic
 lubricating oil, mainly composed of high molecular weight fractions, with C21-C40 making up 99.03%
 of total petroleum hydrocarbons (TPH).

182 2.3. Experimental analyses

183 The effect of the inclusion of a geotextile layer on HFD performance was investigated using 2 main 184 approaches:

• Hydraulic performance of the HFD designs

186 • <u>Hydrographs of performance</u>. The hydrographs were plotted at minute intervals using the volume of
 187 outflow measured in the sample collectors (Figure 3) from each rig under the different rainfall scenarios
 188 and then comparing the influence of the addition or not of geotextiles and pollutants. The outflow
 189 represented the infiltration rate for the whole HFD system simulated in the laboratory.

<u>Attenuation performance</u>. Attenuation is considered to be the retention of rainfall in the HFD structure
 before production of the first outflow discharge during a storm event since the beginning of the rainfall
 event simulated. This could be affected by the presence or absence of a geotextile and hence was used
 to provide an indication of HFD performance. This time represented the capacity of each HFD design
 to delay commencement of discharge flow, and also the time to reach peak-flow.

195 • <u>Geotextile effect on the hydraulic and clogging performance of HFD</u>. Once the hydraulic performance

196 of HFD was analysed, the effect of the inclusion of a geotextile in the HFD structure was analysed in

isolation, including the study of potential clogging scenarios derived from the presence of thegeotextile, as it is shown below:

-7-

<u>Geotextile effect on the hydraulic performance of HFD</u>. Statistical analyses were carried out in order
 to assess the influence of the geotextile on the attenuation levels used to measure the hydraulic
 performance in the HFD designs.

- <u>Geotextile effect on the potential for clogging on HFD</u>. The accumulation of pollutants at different
 levels within the HFD structure measured from the surface was analysed in order to determine where
 the sediments preferentially deposited within the HFD structure. Once all the hydraulic experiments
 were finished, the sediments were carefully recovered from the laboratory models and weighed. The
 trapping efficiency of each HFD design was measured by weighing the sediments accumulated in the
 whole model profile at the end of all experiments and comparing them with the amount of sediments
 added to the rigs.
- 209
- 210

3. Results and Discussions

- 211 3.1. Hydraulic performance of the HFD designs (hydrographs and attenuation levels)
- 212 3.1.1. Stage 1: Hydraulic performance of the HFD test rigs

Hydrographs of performance were produced for all storm durations (5, 10 and 15 minutes), including all
HFD designs (no geotextile, lower geotextile and upper geotextile) and laboratory rainfall intensities (100,
200 and 400 mm/h). Figures 4, 5 and 6 show hydrographs for the 5-minute storm duration only as the trends
for 10 and 15 minutes were similar.

Figures 5 and 6 show that, at the higher rainfall intensities (200 and 400 mm/h) the test rigs behaved in a similar manner. However, at 100 mm/h (Figure 4) there was more of a discrepancy between the rigs; those with an upper geotextile in particular exhibiting lower rates than the others, as well as longer delays in both the rising and falling limbs. Effluent took approximately 60 secs to be recorded after rainfall for the higher rainfall intensities, but did not appear until 102 seconds in the rigs rained on at 100 mm/h. As intensity increased, the time to base flow reduced, and again at 100 mm/h those rigs with the upper geotextile took longer than any of the other rigs regardless of structure or rainfall intensity.

Regardless of rig structure, Figure 7 shows that at the lower rainfall intensities peak flow was achieved at the same time, approximately 300 seconds. However, for the higher rainfall intensities, the structures behaved slightly differently, with all 3 taking less time to peak than at lower intensities. Those with no geotextile reached the peak more quickly than those with a lower geotextile which were quicker than rigswith an upper geotextile.

229 In order to assess the statistical significance of geotextile location, duration of the simulated rainfall and its 230 intensity, statistical testing was undertaken. A Kolmogorov-Smirnov test was carried out in order to check 231 whether the data were normally distributed. The potential influence of the presence of a geotextile on 232 hydraulic performance was analysed using ANOVA for parametric variables (normally distributed) with k-233 samples (3 for geotextile location: no geotextile, lower geotextile and upper geotextile). ANOVA was also 234 used to check the statistical significance of storm duration on attenuation, and the influence of rainfall 235 intensity on attenuation performance was tested using Kruskal Wallis. Table 4 summarises the results of 236 these statistical tests, showing that geotextile location had a significant influence on attenuation, as did 237 rainfall intensity, both at the 95% confidence level. However, storm duration was found not to significantly 238 affect attenuation performance.

Table 5 shows the impact of rig structure and rainfall intensity on attenuation performance through the use of equations of performance (trends). The values of R^2 for the rigs without a geotextile and those including a lower geotextile were >0.70, whilst that for the rigs with an upper geotextile was >0.5.

242

243 3.1.2. Stage 2: the effect of pollutant addition on HFD performance

That the addition of pollutants did influence hydraulic performance is illustrated in Figure 8 which shows that the capacity of the system was reduced in terms of its ability to attenuate the storm peak. Sediments also introduced higher variability as it can be seen in the number of outlayers within the experiments. This particular behaviour from the sediments was highlighted by Sañudo-Fontaneda et al. (2013) when studying the reduction of the infiltration capacity of PPS under different clogging scenarios.

It was also found that geotextile position influenced hydraulic performance (Figure 9) since the time to peak for all models was increased from no geotextile structures to an upper geotextile. This finding suggests that designers and practitioners looking for an increase in the time to peak should include the geotextile closer to the surface of the HFD.

253

254 3.2 Geotextile effect on the hydraulic and clogging performance of HFD

255 3.2.1 Geotextile effect on the hydraulic performance of HFD

Initial bivariate correlation analyses shown in Table 6 highlighted significant linear relationships between
attenuation performance and the addition of sediments at a 95% confidence level as well as high correlation
between attenuation, rainfall intensity, storm duration and geotextile location.

In order to confirm these preliminary findings, a Kruskal Wallis test was carried out to compare the influence of the inclusion of a geotextile on hydraulic performance using attenuation levels, whilst a Mann-Whitney test was performed to validate the influence of sediment addition on hydraulic performance. The results are shown in Table 7 which confirmed that the addition of sediments and the presence of a geotextile had a statistically significant effect on hydraulic performance.

264

265 3.2.2 The presence of a geotextile and its effect on the potential for clogging

No clogging issues were observed during storm events that simulated 2-years' worth of pollutant addition
(sediments and oil) over the laboratory models although the hydraulic behaviour was found to be different.
Eventually, however, a crust of oil and sediment developed on the rig surface and began to create an
impermeable layer preventing the downprofile migration of the sediment as found in other studies such as
Mitchell (2015).

271 It was found that the pollutants preferentially accumulated in the top 50 mm of the HFD profile despite the 272 presence of geotextile as can be seen in Table 8. More than 70% of the total amount of pollutants added to 273 the models were found in the top of the profile for rigs either without a geotextile, or with one located lower 274 in the profile. However, 98.2% of the pollutants were found at the top of the profile for rigs with an upper 275 geotextile. Whilst complete clogging of the system was not an issue over the course of the experiments, 276 nonetheless the likelihood would be that the rigs with an upper geotextile would eventually clog, and more 277 quickly than the other structures being tested. In fact, Zhao et al. (2016) found that nonwoven geotextiles 278 are beneficial in providing a groundwater drainage layer. However, there are other possible variables 279 influencing the loss of hydraulic capacity in the field such as chemical clogging (Veylon et al. 2016).

Based on this study, the hydraulic deterioration of geosynthetics should be addressed in long-term field studies in order to quantify the potential for clogging when used in an HFD. Furthermore, Yoo (2016) pointed out the need to understand the hydraulic deterioration of geosynthetic filter drainage systems for

their use in other civil engineering structures such as tunnels.

284

4. Conclusions

This research has shown that using a geotextile in an HFD can contribute positively to improve the safety of highways since peak flow is delayed as is time to peak due to the geotextile's ability to become wet whilst maintaining a head of water before allowing it to pass through (WRC).

Increasing rainfall intensity influenced the hydraulic performance of HFD rigs by decreasing time to peak in all designs. However, storm duration did not influence peak attenuation in any of the HFD designs, although it did affect the volume of runoff infiltrated. In addition, the presence of a geotextile influenced hydraulic performance by increasing peak attenuation, hence delaying the time to peak in comparison with rigs without a geotextile. Moreover, the position of the geotextile layer influenced hydraulic performance (p-value = 0.05), with the higher geotextile exhibiting longer times to peak, followed by the lower geotextile; rigs without a geotextile had the shortest time to peak.

The addition of pollutants (sediments and oil) significantly influenced hydraulic performance of all designs, reducing the capacity for infiltration with the eventual formation of an impermeable crust at the surface of the rigs. The majority of applied pollutants preferentially accumulated higher in the HFD profile in the top 50 mm, confirming the findings of previous studies such as Mitchell (2015) and Coupe et al. (2015). Furthermore, the presence of an upper geotextile trapped more than 95% of the applied pollutants in the top 50 mm of the profile in comparison with the lower geotextile (75.9%) and no geotextile (72.4%). Finally, no clogging was observed as a result of the addition of 2 years' worth of sediment.

303

304 Acknowledgements:

305 The authors would like to thank Carnell Support Services Ltd for funding the study. Luis A. Sañudo-

- 306 Fontaneda also wish to thank the funding for the development of the UOStormwater Engineering Research
- Team by the University of Oviedo through the research project with reference PAPI-17-PEMERG-22.

308

309 References

- AENOR, 2001. UNE-EN 13252:2001. Geotextiles and geotextile-related products. Characteristics required
 for use in drainage systems.
- 312 Andrés-Valeri, V.C.A., Castro-Fresno, D., Sañudo-Fontaneda, L.A., and Rodriguez-Hernandez, J., 2014.
- 313 'Comparative analysis of the outflow water quality of two sustainable linear drainage systems'. Water
- 314 Science and Technology, 70 (8), 1341-1347.
- Bayon, J.R., Jato-Espino, D., Blanco-Fernandez, E., Castro-Fresno, D., 2015. Behaviour of geotextiles
 designed for pervious pavements as a support for biofilm development. Geotextiles and
 Geomembranes, 43 (2), 139-147.
- British Standards Institution (BSI), 2006. BS EN 13242: Aggregates for unbound and hydraulically bound
 materials for use in civil engineering work and road construction. London: BSI.
- 320 Broda, J., Gawlowski, A., Laszczak, R., Mitka, A., Przybylo, S., Grzybowska-Pietras, J., Rom, M., 2017.
- Application of innovative meandrically arranged geotextiles for the protection of drainage ditches in
 the clay ground. Geotextiles and Geomembranes, 45 (1), 45-53.
- 323 Bruen, M., Johnston, P., Quinn, M.K., Desta, M., Higgins, N., Bradley, C., and Burns, S., 2006. "Impact
- Assessment of Highway Drainage on Surface Water Quality". Report prepared for the Environmental
 protection Agency by the Centre for Water Resources Research, University College Dublin.
- 326 Bustos, G. and Pérez, E., 2007. Pliego de prescripciones técnicas generales para obras de carreteras y
- 327 puentes. 5th Edition. Ediciones LITEAM. Madrid, Spain.
- 328 Carnell, 2015. SMARTscan. http://www.carnellgroup.co.uk/Services/Drainage2/SMARTscan/
- 329 Castro-Fresno, D., Andrés-Valeri, V.C., Sañudo-Fontaneda, L.A., and Rodriguez-Hernandez, J., 2013.
 330 'Sustainable drainage practices in Spain, specially focused on pervious pavements.' Water, 5 (1), 67331 93.
- 332 Chinkulkijniwat, A., Horpibulsuk, S., Bui Van, D., Udomchai, A., Goodary, R., Arulrajah, A., 2017.
- Influential factors affecting drainage design considerations for mechanical stabilised earth walls using
 geocomposites. Geosynthetics International, 24 (3), 224-241.
- Clapham, H.G., 1981. The TRAMMEL Drainage System. Transport Research Laboratory. American
 Society of Civil Engineers (ASCE). 24-26 pp.

- Coupe, S.J., Smith, H.G., Newman, A.P., Puehmeier, T., 2003. Biodegradation and microbial diversity
 within permeable pavements. European Journal of Protistology, 39 (4), 495-498.
- 339 Coupe, S. J., Sañudo-Fontaneda, L. A., Charlesworth, S. M., Rowlands, E. G. Research on novel highway
- 340filter drain designs for the protection of downstream environments. SUDSnet International341Conference,Coventry,UK,2015.Availablefrom:
- 342 <u>http://sudsnet.abertay.ac.uk/SUDSnetConf2015.htm</u>.
- Coupe, S.J., Sañudo-Fontaneda, L.A., McLaughlin, A-M., Charlesworth, S.M., Rowlands, E.G. The
 retention and in-situ treatment of contaminated sediments in laboratory highway filter drain models.
 Water Efficiency Network Conference (WATEFCON 2016). Water Frontiers: Strategies for 2020 and
 beyond. Coventry, UK, September 2016. Available from:
- 347 http://www.watefnetwork.co.uk/files/default/resources/Conference2016/Session_One/45-
- 348 <u>COUPE.pdf</u>.
- Desta, M.B., Bruen, M., Higgins, N., and Johnston, P., 2007. Highway runoff quality in Ireland. Journal of
 Environmental Monitoring, 9, 366-371.
- 351 DMRB-UK, 1996. Design Manual for Roads and Bridges: Geotechnics and Drainage. Vol. 4, sec. 2, part
 352 3. (HD 33/96). SURFACE AND SUB-SURFACE DRAINAGE SYSTEMS FOR HIGHWAYS.
- 353Technical Report, Highways Agency, UK.
- 354 DMRB-UK, 1997a. Design Manual for Roads and Bridges: Geotechnics and Drainage. Vol. 4, sec. 2, part
- 4. (HA 37/97). Hydraulic design of road-edge surface water channels. Technical Report, Highways
 Agency, UK.
- 357 DMRB-UK, 1997b. Design Manual for Roads and Bridges: Geotechnics and Drainage. Vol. 4, sec. 2, part
 358 4. (HA 79/97). Edge of pavement details for porous asphalt surface courses. Technical Report,
 359 Highways Agency, UK.
- DMRB-UK, 1999. Design Manual for Roads and Bridges: Traffic Capacity of Urban Roads. Vol. 5, sec. 1,
 part 3. (TA 79/99 Amendment No 1).
- 362 DMRB-UK, 2001. Design Manual for Roads and Bridges: Geotechnics and Drainage. Vol. 4, sec. 2, part
- 363 5. (HA 40/01). Determination of pipe and bedding combinations for drainage works. Technical
 364 Report, Highways Agency, UK.

- 365 DMRB-UK, 2004. Design Manual for Roads and Bridges: Geotechnics and Drainage. Vol. 4, sec. 2, part
- 366 1. (HA 106/04). Drainage of runoff from natural catchments. Technical Report, Highways Agency,
 367 UK.
- Ellis, J.B., Rowlands, E.G., 2007. Highway filter drain waste arisings: A challenge for urban source control
 management? Water Science and Technology, 56 (10), 125-131.
- 370 Gomez-Ullate, E., Bayon, J.R., Coupe, S., Castro-Fresno, D., 2010. Performance of pervious pavement
- 371 parking bays storing rainwater in the north of Spain. Water Science and Technology, 62(3), 615-621.
- 372 House of Commons, 2014. Maintaining strategic infrastructure: roads. Fifteenth Report on Session 2014-
- 2015. Committee of Public Accounts. London: The Stationery Office Limited.
 http://www.publications.parliament.uk/pa/cm201415/cmselect/cmpubacc/105/105.pdf.
- 375 Ingold, T.S., 1994. Prefabricated fin drains and their application. Geotextiles and Geomembranes: Manual.
- 376 Elsevier Advance Technology, UK.
- Kearns, R.E., 1992. Long-term performance of geocomposites used as highway edge drains. Geotextiles
 and Geomembranes, 11(4-6), 513-521.
- Koerner, G.R., Koerner, R.M., Wilson-Fahmy, R.F., 1996. Field performance of geosynthetic highway
 drainage systems. ASTM Special Technical Publication, 1281, 165-180.
- MCDH, 2009. Manual of Contract Documents for Highway Works. Volume 1 Specification for Highway
 Works. Series 500: Drainage and Service Ducts. Highways Agency, UK.
- 383 Mitchell, G., 2015. Clogging of filtration SUDS. Long term performance of trunk road filter drains.
- 384 SUDSnet International Conference, Coventry, UK, 2015. Available from:
 385 http://sudsnet.abertay.ac.uk/documents/SUDSnet2015_Mitchell_CloggingofFiltrationSuDS.pdf.
- Newman, A.P., Pratt, C.J., Coupe, S.J., Cresswell, N., 2002. Oil bio-degradation in permeable pavements
 by microbial communities. Water Science and Technology, 45(7), 51-56.
- 388 Nicodeme, C., Diamandouros, K., Diez, J., Durso, C., Brecx, C., Metushi, S., 2013. European Union Road
- 389Federation.EuropeanRoadStatistics2012.Report.
- 390 <u>http://www.irfnet.eu/images/Statistics/ER_Statistics Final_2012.pdf</u>.
- Portelinha, F.H.M., Zornberg, J.G., 2017. Effect of infiltration on the performance of an unsaturated
 geotextile-reinforced soil wall. Geotextiles and Geomembranes, 45(3), 211-226.

- Pratt, C.J., Newman, A.P., Bond, P.C., 1999. Mineral oil big-degradation within a permeable pavement:
 Long term observations. Water Science and Technology, 39(2), 103-109.
- Raymond, O.P., Bathurst, R.J., Hajek, J., 2000. Evaluation and suggested improvements to highway edge
 drains incorporating geotextiles. Geotextiles and Geomembranes, 18(1), 23-45.
- 397 Sañudo-Fontaneda, L.A., Rodriguez-Hernandez, J., Vega-Zamanillo, A., Castro-Fresno, D., 2013.
- 398 Laboratory analysis of the infiltration capacity of Interlocking Concrete Block Pavements in car parks.
- 399 Water Science and Technology 2013, 67(3), 675-681.
- Sañudo-Fontaneda, L.A., Andrés-Valeri, V.C.A., Rodriguez-Hernandez, J., and Castro-Fresno, D., 2014a.
 Field study of the reduction of the infiltration capacity of porous mixtures surfaces tests. Water, 6 (3),
 661-669.
- 403 Sañudo-Fontaneda, L.A., Charlesworth, S., Castro-Fresno, D., Andrés-Valeri, V.C.A., and Rodriguez-
- 404 Hernandez, J., 2014b. Water quality and quantity assessment of pervious pavements performance in
 405 experimental car park areas. Water Science and Technology, 69(7), 1526-1533.
- 406 Sañudo Fontaneda, L.A., 2014. The analysis of rainwater infiltration into permeable pavements, with 407 concrete blocks and porous mixtures, for the source control of flooding. PhD Thesis, University of
- 408 Cantabria, Spain. Available from: <u>https://repositorio.unican.es/xmlui/handle/10902/5053</u>.
- 409 Sañudo-Fontaneda, L.A., Jato-Espino, D., Lashford, C., Coupe, S.J., 2016. Investigation of the design
- 410 considerations for Highway Filter Drains through the comparison of stormwater management tools
- 411 with laboratory simulation experiments. 9th International Conference NOVATECH. Planning &
- 412 Technologies for Sustainable Urban Water Management. Lyon, France.
- Sañudo Fontaneda, L.A., Blanco-Fernández, E., Coupe, S.J., Carpio Garcia, J., Newman, A.P., CastroFresno, D., 2016. Use of Geosynthetics for Sustainable Drainage. Book chapter in "Sustainable
 Surface Water Management: A Handbook for SUDS" pp. 142-155. Ed. Wiley, U.S.A., ISBN: 978-1118-89770-6.
- 417 Sañudo-Fontaneda, L.A., Jato-Espino, D., Lashford, C., Coupe, S.J., 2017. Simulation of the hydraulic
 418 performance of highway filter drains through laboratory models and stormwater management tools.
 419 Environmental Science and Pollution Research, 1-10. Article in Press.
- 420 UK Department for Transport, 2012. Guidance on Road Classification and the Primary Route Network.
 421 Available from:

- 422 https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/315783/road-
- 423 <u>classification-guidance.pdf</u>.
- 424 UK Department of Transports, 2015. National Road Traffic Survey. 425 https://www.gov.uk/government/statistical-data-sets/tra01-traffic-by-road-class-and-region-miles.
- 426 Veylon, G., Stoltz, G., Mériaux, P., Faure, Y.-H., Touze-Foltz, N., 2016. Performance of geotextile filters
- 427 after 18 years' service in drainage trenches. Geotextiles and Geomembranes, 44 (4), pp. 515-533.
- Woods Ballard, B., Wilson, S., Udale-Clark, H., Illman, S., Ashley, R and Kellagher, R., 2015. The SuDS
 manual, CIRIA 753. CIRIA. ISBN 979-0-86017-760-9.
- 430 Yoo, C., 2016. Hydraulic deterioration of geosynthetic filter drainage system in tunnels its impact on
- 431 structural performance of tunnel linings. Geosynthetics International, 23(6), 463-480.
- 432 Zhao, A., Oelkers, C., Diviacchi, V., 2016. Geocomposite for landfill's groundwater drainage layer.
- 433 Geosynthetics, 34(1).