
New Cardinality Notations and Styles for Modeling
NoSQL Document-store Databases

Abdullahi Abubakar Imam1,2, Shuib Basri1, Rohiza Ahmad1, Norshakirah Aziz1, María Teresa González-Aparicio3
1CIS Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31570, Perak, Malaysia.

2CS Department, Ahmadu Bello University, Zaria-Nigeria.
3Computing Department, University of Oviedo Gijon, Spain.

1aiabubakar3@gmail.com; {abdullahi_g03618, shuib_basri, rohiza_ahmad, norshakirah.aziz}@utp.edu.my; maytega@uniovi.es

Abstract�Nowadays, data with several characteristics such as
volume, variety etc. are generated daily, i.e. big data; its
complexity cannot be overemphasized. On the other hand,
schema free NoSQL databases keep emerging at almost the same
phase to accommodate such data which cannot be efficiently
managed by relational databases. However, this advancement
brings about the challenge to model such flexible databases and
capably manage big data despite its complexity. In doing that,
developers tend to apply their relational modeling skills;
nonetheless, such skills may not be directly compatible with
NoSQL databases due to their schema flexibility, linear
scalability among others. To alleviate this difficulty, we propose a
standard for modeling NoSQL databases, document-stores in
particular. The standard can be classified as i) cardinality
notations, and ii) relationship modeling styles. With such
standard, NoSQL document-store databases can be properly
designed, automated database testing can be applied, and
database performance and stability can be considerably
improved. To achieve this, experimental method is applied. Also,
exploratory approach was used to explore the available literature
as well as experts consultations. All possible entity relationships
were extracted, aggregated and compiled from a heuristic
evaluation of existing 4 different document-store databases. An
experiment was conducted to assess the effect of the proposed
standards, results indicate a profound improvements in various
aspect of document modeling when the proposed standards are
adopted, especially in a large scaled databases.

Keywords� Cardinality Notations; Modeling Styles; NoSQL
Databases; Big Data; Document-Store; Modeling guidelines.

I. INTRODUCTION

According to ISO, �great things happen when the world
agrees� [1]. Thus the time for NoSQL standards is now.
NoSQL databases have become so popular for many reasons
such as their capability to handle data with numerous
characteristics like variety, velocity, volume and variability, i.e.
big data [2], [3], [4]. However, their heterogeneity, flexibility
coupled with developers limited NoSQL skills has led to low
quality designs of the NoSQL database structure [3], [5], [6],
[7]. Beforehand, programmers are acquainted with skills of
developing SQL databases for decades where schemas are
enforced by database engine, but with the emergence of
schema free NoSQL databases, experts tend to apply their SQL
skills in modeling NoSQL databases, especially with

document-store (D-store) databases as they have
commonalities with SQL databases [8], [9], [10], [11].

For instance, William (2014), Lead Technical Engineer at
MongoDB states that when modeling relationships such as
one-to-many in D-store, notation like 1:M and its concept is
adopted from SQL, however, it may not always be the case in
NoSQL databases. The M may be further classified into Few,
Many or Squillions to compliment the beauty of NoSQL
databases. In addition, embedding a child document into the
parent document doesn�t always signify best practice. At some
point, referencing might be more suitable for better
performance.

As a result of the aforementioned impediments among
others, a research was conducted by [5] to mitigate the
modeling issues associated with document-store databases
using Formal Concept Analysis, however, in their approach,
only existing relational database modeling techniques are
considered which may not always work or need more in-depth
classifications as explained in the previous paragraph.
Consequently, a standardized guide for modeling relationships
in document-store databases is proposed in this paper. This
has become necessary as data increase exponentially in size
and complexity every day; thus progressively complicate
NoSQL database modeling and increase chances of erroneous
designs, which may negatively influence system performance
[11], thereby lead to system crush at worst.

In document-store databases, depending on the nature of
the data, documents are modeled as a collection of related files
[7][11]. There exist a number of document-store databases
which include MongoDB, Apache Cassandra, Couchbase,
CouchDB among others [12]. In this paper, we use MongoDB
for implementation of our proposed cardinality standards.
MongoDB is widely embraced for its flexibility, availability of
supports and compatibility with many programming languages
such as .Net, Java, JavaScript PHP, Python and so on [13]. It
is remarkable that, ebay uses MongoDB for its online services
like session management, shopping carts, preferences and
product catalog. Also, Facebook, a social media website uses
MongoDB for its major project called Facebook Parse (FP).
With FP, programmers can build, manage and house their
mobile apps for as long as they wish on FP. This technological
support generates tons of data daily from multiple users.

To achieve our goal, four top most document-store
databases [13] are selected [4] and individually explored to
identify commonalities as well as disparity points. This leads
to the extraction of modeling harmonization areas; thereby,
ground our theories to have basis which can guide the
proposition of the new standards. Experimental approach was
adopted where one software application with one document-
store database was engineered to rigorously test the proposed
standards. Cardinality notations and relationship styles
proposed in this paper were modeled and implemented. It is at
this point evident that, NoSQL databases, especially
document-store databases, require standard modeling guide for
better database design and appropriate relationship modeling.

The key contributions of this paper include:

 New cardinality notations for modeling document-store
databases, taking into account embedding and referencing
relationship styles.

 New relationship modeling styles.

 Trade-off analysis between modeling styles such as
embedding, referencing and bucketing; thus help developers
to choose between the styles while modeling their
document-store databases.

 Evaluation of the proposed relationship standards using the
widely used NoSQL document-store databases, MongoDB
[13].

II. RELATED WORK

NoSQL document-store databases are highly flexible [7].
They are based on a flexible model that allows schemas to be
written and managed by the client side application developers
[5][14]. However, this may lead to incorrect or inappropriate
schema design especially when modeling relationships
between datasets and entities [5][9].

Document database experts have shared their experiences
on the internet about the most common questions asked by the
client side application developers. Some of these questions are
(i) how to model one-to-N relationship in document
databases? Or (ii) how does one know when to reference
instead of embedding a document? Or (iii) do document
databases allow Entity Relationship modeling at all? In an
attempt to address these and alike questions, experts
highlighted the necessity to come together and standardize
these powerful data stores [5][11][15][9]. This is partly
because many of the questions keep reappearing repeatedly in
multiple knowledge sharing platforms.

As such, few attempts were made to incorporate relational
modeling techniques into the NoSQL databases. [5] proposed
conceptual modeling using Formal Concept Analysis (FCA).
This was proposed to assist developers model document based
databases. It adopted three (3) types of relationships from
relational databases which are (i) one-to-one 1:1, (ii) one-
to-many 1:M, and (iii) many-to-many M:M
relationships. These relationships were directly inherited from
relational database and applied onto document-store databases.
This method reveals the effectiveness of the aforesaid
relationships when applied to document-store databases,
however, the type of data stored in document-stores are much
more complex and bulkier than the one stored in relational
databases; thus require more detailed cardinality breakdowns.

Also, foreign keys are not directly supported in document-
store databases. In addition, other contributing factors to
document-store modeling such as embedding are not
considered in this research despite its importance to NoSQL
database modeling practice.

In a similar concept, some contributors, such as technical
experts from JSON [11] and mongoDB [9] explained some
ways to achieve relatively good data modeling relationships,
however, the approaches are sort of proprietary, focusing on
the functionalities of the database in which they set to
promote. There is need to have a generalized approach which
can be followed by at least one category of NoSQL databases
[5][8][16].

On the contrary, [17] agrees that, data model relegates bulk
of implementation to NoSQL programmers, therefore,
aggregate data modeling style is proposed using Idef1X which
is the standard data modeling language. Again in this study,
relational database notations are used as opposed to the
understanding that states, NoSQL databases have bigger and
more complicated datasets which require more detailed
aggregate modeling techniques [8]. Whereas, an interactive,
schema-on-read approach was proposed in [2] for finding
multidimensional structures in document stores. Besides, [18]
proposed data migration architecture which will migrate data
from SQL to NoSQL document-store databases while taking
into account the data models of both the two categories of
databases.

It is therefore concluded that, as we move towards
standardization in almost every aspect of technology [19]
[20][21], NoSQL databases should not be left behind due to
the heterogeneity nature of their data model and complexity of
the data which they are designed to handle. Standardizations
such as relationship modeling and data access should be rather
encouraged to have a common agreement for best practice in
storing, managing and retrieving data from such powerful
databases.

III. PROPOSED STANDARD

NoSQL databases, specifically document-store databases,
provide high scalability, low latency, availability and partition
tolerance [6]. Moreover, they support flexible schema where
databases are modeled freely without following any standard
guide [9][5]. As a result, developers tend to apply any
available skills such as relational database modeling skills to
model such flexible databases [11][9]. By doing this, some
key features like speed of document-stores become affected as
relational database modeling skills cannot be directly applied
in modeling NoSQL document-store databases and attain
maximum benefits of their potentials [11][22][9]. However,
some commonalities can be harnessed while eliminating some
individual peculiarities. This is to simplify development
hassles and minimize erroneous implementations.

This research aims at standardizing cardinality notations
and styles which will be used when modeling NoSQL
document-store databases. The fundamental principles of one
document with respect to another are a critical aspect of
relationship modeling. Therefore, in this study, standards are
proposed while taking into cognizant the existing modeling
expertize such as one-to-one, one-to-many etc. Initially, the
cardinalities are presented followed by relationship styles.

A. Cardinalities

In modeling NoSQL document-store databases, the
following cardinalities are proposed as in Table I below.

TABLE I. NOSQL DOCUMENT-STORE CARDINALITIES

ID Cardinalities Notations Examples

1) One-to-One 1:1 Person Id card

2) One-to-Few 1:F Author Addresses

3) One-to-Many 1:M Post Comments

4) One-to-Squillions 1:S System Logs

5) May-to-Many M:M Customers Products

6) Few-to-Few F:F Employees tasks

7)
Squillions-to-
Squillionsa

S:S
Bank Transactions
Logs

a. Squillion may be million or billions of records

Table I outlines the proposed cardinalities for NoSQL
document-store databases. To describe document-stores
relationships, familiar symbols are used as notations since
relational modeling expertize already exist. The proposed
cardinalities are chronologically (using ID in Table I)
explained bellow.

1) One-to-One (1:1): To begin with, one-to-one
relationship is a familiar type of cardinality. It is used to
describe a relationship between two tables in traditional
databases. Correspondingly, identical terminology is
nominated in this study to describe a relationship between two
entities (documents). One-to-one relationship means Entity-A
relates to only Entity-B and vice versa. The following diagram
illustrates the relationship.

Fig. 1 � One-to-One Pattern

The one-to-one model illustrated in Fig. 1 can be further
elaborated using the following schema example.

2) One-to-Few (1:F): The 1:F cardinality describes a

relationship where one side of the model can contain more
than one entity while the opposite can only contain one entity.
The relationship is modeled as follows.

Fig. 2 � One-to-Few Relationship Pattern

Such relationship might be peculiar to NoSQL document-
store databases as it might have no effect in the relational

databases. Author and addresses are a perfect example that
describes one-to-few. In document-stores, documents should
be merged based on any of the relationship styles as explained
in Section III Subsection B (Relationship Styles). For instance,
one-to-few may be described as follows using the document-
stores schema.

3) One-to-Many (1:M): One-to-many relationship has a

similar concept with 1:F relationship as explained in the
previous section. However, in one-to-many relationship, the
�many� (M) part contains more documents (like hundreds or
thousands). For example, consider a blog post where visitors
respond to the post with comments, such comments will carry
along the details of the commenters which may reach up to a
couple of thousands but never too far. This type of relationship
is modeled as follows.

Fig. 3 � One-to-Many Relationship Pattern

1:M relationship can be further explained using the
following schema example. The schema represents a post with
a number of comments attached.

4) One-to-Squillion (1:S): Although there is no limit in the
number of documents that can be created in one collection, a
single document could be overflown when the document size
limit is attained such as 16MB as the case of MongoDB. For
example, consider a decentralized system that logs the
activities of all its users and send timely reports to a central
server. Such system can generate millions of records within a
very short time. 1:S can be modeled as follows.

 Fig. 4 � One-to-Squillions Relationship Pattern

1:M Post Comment

1:1 Department Address

1:F Author Address

1:S System

Logs

The following schema is presented to exemplify one-to-
squillion relationship.

5) Many-to-Many (N:M): In many-to-many relationship,

two sided connection between two entities is embraced. Many-
to-many relationship is achieved by linking the references of
the �one� side to the �many� side and the vice versa.

Fig. 5 � Many-to-Many Relationship Pattern

For instance, let us consider assignments-tracking system
where there is a staff-collection with number of staff and
assignments-collection which holds all assignments. Now, any
or multiple staff can be assigned one or more assignments,
such scenario can be represented as follows where assignment
reference IDs are added to staff entity.

Oppositely, to answer some questions like �what are the
assignments handled by more than one person?� staff IDs are
also added to assignments which indicate that the connection
between the two entities is bidirectional.

By referring to the Table I, its denoted that F:F and S:S
have similar structure with N:M. However, data access
patterns and the nature of applications data may significantly
contribute in choosing the most appropriate model when the
entities on both sides are more than one.

B. Relationship Styles

Data access patterns and the nature of application�s data are
considered the major indicators of whether or not document-
store schema should be modeled together, separate or
bucketed. In this study, these styles of relationship are termed

as shown in Table II and are briefly explained one after the
other thereafter.

TABLE II. RELATIONSHIP STYLES

ID Styles Notations Examples

1) Embedding EMB Author Addresses

2) Referencing REF Post Comments

3) Bucketting BUK System Logs

Each of the terminology presented in Table II above is
briefly explained as follows, starting from the first in the list
(Embedding):

1) Embedding (EMB): Embedding can be defined as a
process of including a sub document or multiple sub
documents inside another document. The document that is
embedded is referred to as �child� document, while �parent�
term is used to refer to the document that incorporates other
sub documents. Two types of embedding such as one-way and
two-way embedding are observed. The pattern which
describes both styles is presented in Fig. 6 below and also
explained afterwards.

Fig. 6 � Embedding Style Pattern

For example, a department in a university may incorporate
other sub documents that hold the details of all the
programs/courses available. Such type of entity attachment
may be referred to as one-way embedding style of
relationship. Whereas in two-way embedding, books and
authors can be considered where one author appears in many
books and many books appear in the author�s entity.

2) Referencing (REF): Unlike embedding which
includes sub-documents into the parent document, referencing
connects two or more separate documents together using a
unique identifier. For instance, when a document-A is said to
reference document-B, the ID of document-A will be present
in document-B or/and vice versa, depending on the system
developer. Referencing style of relationship can be described
using the following pattern.

Fig. 7 � Referencing Style Pattern

Comments N:M Comments

Embedding
1 1

Embedding

M 1

To explain it further, referencing is classified into two,
namely child-referencing and parent-referencing. Both the two
types of referencing are combined and explained using a
university system, where tasks are assigned to staff and/or vice
versa.

3) Bucketting (BUK): Bucketing refers to splitting of
documents into smaller manageable sizes either by quantity,
days, hours etc. It balances between the rigidity of embedding
and flexibility of referencing. Bucketing helps in document
retrieval and saving. For example, using 1:S relationship, the S
side can be bucketed into smaller quantity such as 5000s to
improve document retrieval speed and portability in data
presentations as the case of pagination. The following section
explains the experimental set-up, tools and their specifications.

C. Experiments

A real-world example was implemented in order to look
into how the proposed cardinality notations and relationship
styles affect document-store relationship modeling. The
experiment was conducted with the following
hardware/software: an intel dual processor, core i7-3632QM;
CPU running at 2.20GHz * 2; and 8GB of RAM. 64 bit of
windows 10 was used as the operating system; Dev-C++ as
IDE (Integrated Development Environment); C++ as the
programming language; and NoSQL document-store database
(mongoDB) as the database management system. Results of
these experiments are presented in the next section.

IV. RESULTS AND DISCUSSIONS

In this section, the results generated from the experiment
are presented and discussed. The results are classified based
on the cardinality notations presented in Table I and the styles
discussed in Section III B. Each of the cardinalities is assessed
to see which of the relationship style suits it most. It is
observed that some cardinalities have a very similar
relationship pattern. For example, F:F and N:M presented in
Table I signify two sided many-to-many relationship with
different N or M sizes. As such, in the interest of
generalization, we distinctly experiment the cardinalities and
put forward the results as follows. Each read/write operation is
measured by time, microseconds (s) in particular.

TABLE III. RESULTS OF ONE-TO-ONE & ONE-TO-FEW (1:1 & 1:F)
RELATIONSHIPS

Number of
Documents

Relationship Styles

Embedding Referencing Bucketing

W-T: s R-T: s W-T: s R-T: s W-T: s R-T: s

1:1 documents 742000 734000 813000 941000 - -

1:F documents (7) 795000 771000 894000 976000 1371000 1271000

It can be seen from Table III above that, embedding

document in one-to-one or one-to-few relationships is more
viable than referencing or bucketing the related documents.
Using embedding, write/read operations were achieved in
lesser time than referencing or bucketing. This is because the
numbers of entities are very few and referencing or bucketing
them may incur more time in both writing (W) and reading (R)
data. This is in line with the proposed styles, to embed a
document when the �many� side of the relationship is few.

TABLE IV. RESULTS OF ONE-TO-MANY (1:M) RELATIONSHIP

Number of
Documents

Relationship Styles

Embedding Referencing Bucketing

W-T: s R-T: s W-T: s R-T: s W-T: s R-T: s

1:M documents (5000) 1374000 1326000 1131000 1221000 1635000 1573000

In 1:M relationship, a document with 5000 other related
documents were considered. Unlike in the previous
experiments where embedding dominated other modeling
styles, this time, results indicate a profound improvement in
the referencing technique as it leaves embedding and
bucketing behind who scored 1374000W, 1326000R,
1635000W and 1573000R respectively. The reason is that,
when such numbers (5000) of documents are embedded, the
document becomes larger and larger which must be accessed
each time read/write data is needed.

TABLE V. RESULTS OF ONE-TO-SQUILLION (1:S) RELATIONSHIP

Number of
Documents

Relationship Styles

Embedding Referencing Bucketing

W-T: s R-T: s W-T: s R-T: s W-T: s R-T: s

1:S docs (500000) 3601000 3579000 1871000 1931000 2412000 2161000

In 1:S relationship, the difference between the relationship
styles become clear where embedding looks not to be a viable
option for modeling 1:S. whereas, bucketing shows a slight
improvement from the previous experiment, this indicates that
as data size increase relevance of bucketing become more
pronounce. However, referencing style has shown its powers
when modeling 1:S relationship. This is as a result of
decentralization method embraced by referencing style since
the increment of data does not affect the main document. So, it
can be concluded that, referencing style is the choice for 1:S.

TABLE VI. RESULTS OF FEW-TO-FEW, MANY-TO-MANY AND
SQUILLION-TO-SQUILLION RELATIONSHIP

Number of
Documents

Relationship Styles

Embedding Referencing Bucketing

W-T: s R-T: s W-T: s R-T: s W-T: s R-T: s

N:M docs (100000) 2710000 2504000 1700000 1831000 1950000 1773000

On the other hand, in N:M relationship, bucketing and
referencing styles perform very well, mostly when retrieving
documents. Whereas, embedding seems not go with such type
of data size. This is because many of the documents are large
in size, and bucketing partitioned them for faster retrieval,
however, the partitioning did not work well when writing data.
With all this competition, again, referencing style has shown
better performance for both read and write events. It is
therefore concluded that, referencing is a better option for
N;M relationship, then followed by bucketing.

V. CONCLUSION AND FUTURE WORK

It�s brought to our notice that NoSQL databases, especially
document-store databases opened a new problem area for data
modelers. These days data with several characteristics is
generated daily, its complexity cannot be overemphasized.
Also, document-store databases keep emerging periodically.
However, developers must model one or more document-stores
based on such complicated data to maximize efficiency and
minimize the chances of system breakdown and so on. As such,

this paper proposed new cardinality notations and relationship
styles for modeling NoSQL document-store databases. To
achieve this feat, experimental approach (exploratory and
confirmatory) was applied in this research. This involves
exploration of the available literature, heuristic evaluation of
existing document-store databases as well as consultations of
the document-store experts. Rigorous experiment was
conducted to assess the proposed ideas.

Results indicate a significant improvement in the general
performance of the NoSQL document-store databases when
the standards are adopted, specifically when read/write events
are performed. In addition, it is concluded that, the proposed
cardinalities and modeling styles concepts can, without doubt,
ease development process, minimize erroneous schema
implementation and improve system performance, especially
in a large scale applications. Our future focus would be to
propose an easier way to model NoSQL databases.
Undoubtedly, modeling NoSQL databases will continue to be
the focus of future research.

ACKNOWLEDGEMENT

The authors wish to acknowledge the support from
Universiti Teknologi PETRONAS (UTP) for funding this
research through Yayasan and Graduate Assistantship Scheme
(UTP-GA).

REFERENCES

[1] ISO, International Organization for Standardization Strategy 2016 -

2020. Switzerland: International Organization for Standardization, 2016.

[2] M. L. Chouder, S. Rizzi, and R. Chalal, �Enabling Self-Service BI on

Document Stores,� Work. Proceed- c ings Jt. Conf. Venice, Italy, 2017.

[3] P. Atzeni, F. Bugiotti, and L. Rossi, �Uniform access to NoSQL

systems,� Inf. Syst., vol. 43, pp. 117�133, 2014.

[4] J. G. Enríquez, F. J. Domínguez-Mayo, M. J. Escalona, M. Ross, and G.

Staples, �Entity Reconciliation in Big Data Sources: a Systematic

Mapping Study,� Expert Syst. Appl., vol. 80, pp. 14�27, 2017.

[5] V. Varga, K. T. Jánosi, and B. Kálmán, �Conceptual Design of

Document NoSQL Database with Formal Concept Analysis,� Acta

Polytech. Hungarica, vol. 13, no. 2, pp. 229�248, 2016.

[6] M. T. Gonzalez-Aparicio, M. Younas, J. Tuya, and R. Casado, �A New

Model for Testing CRUD Operations in a NoSQL Database,� in 2016

IEEE 30th International Conference on Advanced Information

Networking and Applications (AINA), 2016, vol. 6, pp. 79�86.

[7] J. Han, E. Haihong, G. Le, and J. Du, �Survey on NoSQL database,�

Proc. - 2011 6th Int. Conf. Pervasive Comp. Appl., pp. 363�366, 2011.

[8] P. Atzeni, �Data Modelling in the NoSQL world : A contradiction ?,� no.

June, pp. 23�24, 2016.

[9] Z. William, �6 Rules of Thumb for MongoDB Schema Design,�

MongoDB, 2014. [Online]. Available:

https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-

schema-design-part-1. [Accessed: 23-Jan-2017].

[10] R. April, �NoSQL Technologies: Embrace NoSQL as a relational Guy �

Column Family Store,� DBCouncil, 2016. [Online]. Available:

https://dbcouncil.net/category/nosql-technologies/. [Acc: 21-Apr-2017].

[11] R. CrawCuor and D. Makogon, Modeling Data in Document Databases.

United States: Developer Experience & Document DB, 2016.

[12] N. Jatana, S. Puri, and M. Ahuja, �A Survey and Comparison of

Relational and Non-Relational Database,� Int. J,vl.1, no.6, pp.1�5, 2012.

[13] M. Gelbmann, �DB-Engines Ranking of Document Stores,� DB-

Engines, 2017. [Online]. Available: https://db-

engines.com/en/ranking/document+store. [Accessed: 21-Feb-2017].

[14] T. A. Alhaj, M. M. Taha, and F. M. Alim, �Synchronization Wireless

Algorithm Based on Message Digest (SWAMD) For Mobile Device

Database,� 2013 Int. Conf. Comput. Electr. Electron. Eng.

Synchronization, pp. 259�262, 2013.

[15] G. Matthias, �Knowledge Base of Relational and NoSQL Database

Management Systems: DB-Engines Ranking per database model

category,� DB-Engines, 2017. [Online]. Available: https://db-

engines.com/en/ranking_categories. [Accessed: 21-Apr-2017].

[16] M. J. Mior, �Automated schema design for NoSQL databases,� Proc.

2014 SIGMOD PhD Symp. - SIGMOD�14 PhD Symp., pp. 41�45, 2014.

[17] V. Jovanovic and S. Benson, �Aggregate Data Modeling Style,� SAIS

2013 Proc., pp. 70�75, 2013.

[18] M. Mughees, �DATA MIGRATION FROM STANDARD SQL TO

NoSQL,� 2013.

[19] J. Häkkilä, �Developing Design Guidelines for Context-Aware Mobile

Applications,� Proc. 3rd Int. Conf. Mob. Technol. Appl. Syst. ACM,

2006, pp. 1�7, 2006.

[20] J. Rodriguez, �Guidelines for designing usable world wide web pages,�

Conf. Companion Hum. Factors Comput. Syst. ACM., pp277�278, 1996.

[21] J. Gong and P. Tarasewich, I. Science, �Guidelines for Handheld Mobile

Device Interface Design,� Proc. DSI Annu. Meet., pp. 3751�3756, 2004.

[22] W. Naheman, �Review ofNoSQL Databases and Performance Testing

on HBase,� Int. Conf. Mechat. Sci. E. Eng. Comp., pp.2304�2309, 2013.

