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Abstract

Graphical exploratory analysis for fuzzy data allows us to represent sets
of individuals whose attributes are perceived with imprecision on a map so
that the degree of dissimilarity between two objects is somehow compati-
ble with the distances between their respective representations. This study
will discuss the use of this tool to jointly analyze the evolution of a group
of students during a course, and to select the most suitable personnel of a
company to receive a training course, according to a catalog of competencies
and considering the reliability of information sources.
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1 Introduction

Graphical exploratory analysis consists of the projection of a set of individuals
on a plane, so that the similarities between pairs of individuals are compatible
with the distances between their corresponding representations [9]. There
are different techniques to perform this projection, depending on the model
used to link the similarities between objects to the distances between their
representations on the map. The most frequent method is applied to objects
described by a vector of numerical properties, and uses the Euclidean distance
both to calculate the distances between objects and between their projections.

Different generalizations of graphical exploratory analysis to the case of
imprecise data have been considered in the literature. More concretely, the
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case where every instance is characterized by means of a vector of fuzzy
numbers has been considered by different authors [5, 6, 7, 13]. Just as in the
exploratory analysis of crisp data each individual is associated with a point on
the map, the projection of a fuzzy vector is a geometric figure that depends
on the transformations between the spatial distances and the distances on
the map.

Exploratory data analysis techniques are part of the general knowledge
and routinely used in a multitude of knowledge discovery problems. How-
ever, the use of exploratory analysis of fuzzy data is not very widespread. In
relation to information mining in a teaching context, the algorithm defined
in [11] has been applied to the analysis of tests solved by groups of children
with learning difficulties (early diagnosis of dyslexia [12]) and to the analysis
of questionnaires of follow-up by the students of different undergraduate and
master’s degrees. In both cases, in addition to obtaining visual information
about how many different types of students are in each group, it is possi-
ble to measure the variations between the learning success of the different
subgroups, and the evolution of their relative returns over the course of the
course. This study reviews these applications and introduces a new one, se-
lecting the right people to attend in-company training courses, taking into
account different sources of information about each employee’s competencies
(statement internal examinations, questionnaires, previous work, etc.) which
are, in turn, affected by the credibility of each source.

The rest of the paper is organized as follows: Section 2 describes the use-
fulness of graphical data analysis techniques in a teaching context. Section
3 discusses the need for a representation based on fuzzy sets, and describes
some technical aspects of the algorithm. Section 4 discusses several case stud-
ies. The paper ends with some concluding remarks and future work.

2 Usefulness of graphical exploratory analysis in
teaching problems

When organizing training courses for employees of a company, it is important
to study what training skills need to be filled, so that you can choose the most
appropriate content for the courses. A similar study also serves to select the
best attendees for a course with a limited number of places, or to compare
the results of the study before and after the end of the course, in order to
check whether this effort is paying off and translates into an improvement of
the global capacity of the company.

As mentioned in the Introduction, the different graphical exploratory anal-
ysis algorithms (Sammon maps, PCA, Multidimensional Scaling (MDS), Self
Organized Maps (SOM), etc. [5]) are statistical techniques that project ob-
jects as points on a plane, so that the proximity of the projections of two
objects (instances) on the map reflects the similarity between their respec-
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tive properties (seen as functions of the corresponding vectors of attributes).
If each of these objects is associated with an employee, and the properties
of the employee are assumed to consist of numerical measures of their pro-
ficiency level in a competency catalog, the graphic exploratory analysis is
one of the most adequate techniques to evidence groups of employees with
different skills. By adding fictional individuals (hypothetical employees with
perfect knowledge of one technology and none other than other technologies),
the positions of actual employees over those of fictitious employees make it
possible to detect training gaps. Finally, comparing several maps of the same
individuals on different dates, it is possible to evaluate the impact of the
courses received.

Notwithstanding, these techniques are not directly applicable to the case
where there is some uncertainty about the values of some of the attributes
of an individual (eg missing data) and also do not consider the reliability
of the different sources of information used to characterize individuals. For
example, one of the most accessible sources for checking the level of formation
of a group is the follow-up questionnaire [10]. Unlike the exam or interview, it
is the student or employee who declares their knowledge, so this information
may be inaccurate: an individual can either declare an “advanced” knowledge
of English in the curriculum or having passed an examination of that level;
in the first case, the uncertainty about her language proficiency is greater.

A simple way to quantify the uncertainty associated with a questionnaire
is to associate different questions with the same item (a value of a single at-
tribute for a single individual); the dispersion of the corresponding responses
is an indication of the reliability of the test. For example, if a student is
approached about his or her knowledge of probability theory, he may de-
clare a “high” knowledge of the concept of the “density function” and “null”
knowledge about the notion of “Radon-Nikodym derivative”, while another
one can answer “medium” to both questions: the dispersion of the answers
associated with the same item is an indication of their reliability. Clearly,
if just a central location measure is selected in order to summarize all the
responses associated with the same property, valuable information is lost.

Another frequent problem with the data collection phase is the problem
with missing data [8]. The most frequent solution are either to remove the
individual from the sample or to follow some imputation technique. The
latter is the preferred solution when the sample size is not sufficiently high,
and generally consists in finding the closest individuals to calculate their
average values. Again, the variability of these values is being ignored, which
may mean that the distribution of the completed data is probably far from
reality, so the analysis would be distorted. Other imputation methods do not
affect the variance but only work well under some assumptions about the
coarsening process [2, 3].
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3 Use of fuzzy sets in competency analysis

The use of fuzzy sets allows a homogenous representation of all previous types
of uncertainty in the data. By means of the possibilistic interpretation of the
membership function of a fuzzy set [4, 1], each value of the attribute for a
specific object can be associated with a fuzzy number X̃ whose α-cuts are
interrpreted as nested confidence intervals in the sense that:

P ([X̃]α 3 x) ≥ 1− α, ∀α ∈ (0, 1).

Thus, for example, a missing value can be replaced by a fuzzy set that
models the distribution of the corresponding attribute in other similar objects
(even though these in turn are perceived imprecisely), and the statements of
a knowledge “Advanced” English or “Average” theory of probability will be
associated with two fuzzy numbers, whose specificities will be linked to the
reliabilities of information sources. Therefore, in this study it will be consid-
ered that the knowledge about an individual can be quantified by means of
a vector of fuzzy numbers. This generalization has two fundamental conse-
quences in order to perform a graphical analysis of the population:

1. The spatial coordinates of each individual are unknown, except for a
nested family of (multivariate) confidence intervals.

2. The Euclidean distance between two individuals whose coordinates are
uncertain, is uncertain in turn.

From the first statement it can be concluded that the projections of each
individual on the map will not be points, but families of nested sets, whose
form will depend on the distortion of the spatial geometry, proper to each
technique, in the flat projection. From the second, it follows that it is not
reasonable to use a distance between fuzzy sets and calculate a numerical
array of distances between individuals, nor between their projections. In gen-
eral, a distance like that will not induce a total order among projections that
is consistent with the ordering between the actual values of the attributes,
since such an order between the actual values is just partially known.

In previous works, different simplifications have been made to achieve an
approximate projection. For example, in the method described in [5, 6] multi-
dimensional scaling (MDS) is extended to allow distance matrices to contain
ranks or fuzzy numbers. The standard version of MDS consists of finding
the scatter plot that minimizes a stress function, defined by the quadratic
difference between the matrix of distances between the data and the matrix
of distances of the points included in the scatter plot. In the generalized
version, a fuzzy-valued stress function is defined, which measures the fit be-
tween the set of distances compatible with the map figures and the set of
distances between the fuzzy descriptions of the individuals. In this method it
is assumed that the projections are circles on the map, which is not always
correct, since the attributes are not allowed to have different levels of un-
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certainty. Subsequent extensions [13] removed this restriction, as explained
below.

3.1 How to determine the shape of projections

Let X̃i = (X̃i1 × . . . × X̃if ) and X̃j = (X̃j1 × . . . × X̃jf ) two tuples of
fuzzy sets representing our incomplete knowledge about the f attributes of
individuals number i and j. Let [X̃i]α = [x−i1, x

+
i1]×. . .×[x−if , x

+
if ] and [X̃j ]α =

[x−j1, x
+
j1] × . . . × [x−jf , x

+
jf ] be in turn two cuts at the same level α of X̃i y

X̃j .
The set of possible values for the distances at a 1− α-confidence level is:

Dαij =

{√∑f
k=1(xik − xjk)2 | xik ∈ [x−ik, x

+
ik], xjk ∈ [x−jk, x

+
jk], 1 ≤ k ≤ f

}
. (1)

Some authors have used a distance similar to this one before [6], and
further assumed that the shape of the projection of an imprecise case was
a circle. We have found that, in our problem, this last is a too restrictive
hypothesis. Instead, and according to [13], we propose to approximate the
shape of the projections by a polygon (see Figure 1) whose radii R+

ij and R−ij
are not free variables, but depend on the distances between the cases.

xi

xj

R−ij

R+
ij

Fig. 1 The α-cuts of the projected data are polygons defined by the distances Rij in the

directions that pairwise join the examples.

Let us now consider a multivariate tuple of imprecise data (X̃1, . . . , X̃N ),
where xi is the mode of X̃i and let {(z11, . . . , z1r), . . . , (zN1, . . . , zNr)} be the
projection on a map of dimension r of that N -dimensional vector.

We propose that the radii R+
ij and R−ij depend on the distance between

[X̃i]α and xj (see Figure 2 for a graphical explanation) as follows:

R+
ij = dij

(
δ+ij

δij
− 1

)
R−
ij = dij

(
δij

δ−ij
− 1

)
(2)
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where dij =
√∑r

k=1(zik − zjk)2, δij = {d(xi, xj)}, δ+ij = max{d(x, xj) |
x ∈ [X̃i]α}, and δ−ij = min{d(x, xj) | x ∈ [X̃i]α}.

3.2 Stress function

According to the above, the available knowledge about the value of the effort
function associated with the projection of the data is given by the following
fuzzy-valued function, defined by its cuts:

Sα =

{
N∑
i=1

N∑
j=i+1

||d(t, u)− β|| |

t ∈ [X̃i]α, u ∈ [X̃j ]α,

β ∈ [dij −R−
ij −R

−
ji, dij +R+

ij +R+
ji]

}
.

(3)

xi

xj

dij

zi zj

δ+
ij = max D(xi, xj)

δ−ij = minD(xi, xj)

R−ij R−ji R+
ji

R+
ij

δij = D(xi, xj)

Fig. 2 The distance between the respective projections of [X̃i]α and [X̃j ]α is between the

values dij −R−
ij −R

−
ji and dij +R+

ij +R+
ji.

As an alternative to minimizing the previous fuzzy-valued function, it is
possible to define a measure that quantifies how different the collection of
spatial distances and the collection of the distances between their projections
are, in terms of their corresponding rankings.

Let D(Xi, Xj) be the fuzzy set whose α-cuts are the sets of distances
between individuals, and let D′(Zi, Zj) be the set of distances between their
respective projections, Zi and Zj .

If the map correctly reflects the distances between individuals of the pop-
ulation, it must be observed that the rank of the distance between the i -th



Graphical exploratory analysis of fuzzy data as a teaching tool 7

and j -th objects are the same as the rank of the distance between their
projections, in the corresponding matrix. Therefore, the number of pairs of
objects for which this does not it is true that it defines an alternative cost
function.

In our case, the rank of a fuzzy-valued distance within its own matrix is
??not completely defined, since there are non-comparable pairs of distances.
However, for each level α a relation between the α− distances (which are
intervals) can be defined; given two interval-valued distances [d−, d+] and
[e−, e+], they are not comparable when

[d−, d+] ‖ [e−, e+] ⇐⇒ (d+ > e−) ∧ (e+ ≥ d−). (4)

Otherwise, we can say that one of them precedes the other (i.e., either
[d−, d+] ≺ [e−, e+] or ([e−, e+] ≺ [d−, d+]. The rank of a distance will be
defined, for the α level, according to the following iterative procedure: We
take all the distances and we select those that are not preceded by any other
in the collection. All of them are assigned rank equal to 1. We remove those
distances from the initial collection. We take the remaining ones and iterate
the process, by assigning a rank equal to 2 to those that are not dominated
by any other one. We continue with the process until we get the empty set.

The purpose of the numerical algorithm (which will not be made explicit,
due to extension limitation) is to obtain a map for which the ranks of each
of the terms of the matrices of distances between individuals and between
projections coincide for every α level. The value of the stress function is the
infimum of those α levels for which both collections of ranks do coincide.

4 Numerical and graphical results

In this section we will illustrate, with the help of three real-world datasets,
how to identify groups of students and how to stack two maps from the
same individuals at different times, for showing the temporal evolution of the
learning.

4.1 Variation of individual capacities in the same
group and between groups

In the left part of Figure 3 a diagram for 30 students of subject “Statistics”
in Ingenieria Telematica at Oviedo University, taken at the beginning of
the 2009-2010 course is shown. This survey is related to students’ previous
knowledge in other subjects. In particular, this survey evaluates previous
knowledge in Algebra (A), Logic (B), Electronics (C), Numerical Analysis
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(D), Probability (E) and Physics (F). The positions of the characteristic
points have been marked with labels. Those points are of the type “A” (all the
questions about the subject “A” are correct, the others are erroneous) “NO
A” (all the questions except “A” ones are correct, the opposite situation),
etc.

In the right part of Figure 3 we have plotted together the results of three
different groups, attending lectures by the same teacher. Each intensifica-
tion has been coded with a distinctive colour. This teacher has evaluated,
as before, the initial knowledge of the students in subjects that are a pre-
requisite. From the graphic in that figure the most relevant fact is that the
students of the intensification coded in red (Ingenieria Industrial) consider
themselves better prepared than those coded in blue (Ingeniera Tecnica In-
dustrial Electrica), with the green group in an intermediate position, closer to
red (Ingeniera Tecnica Industrial Quimica). All the students of all the groups
have a neutral orientation to math subjects, and some students in the blue
group think that their background is adequate only in subjects C (Operating
Systems) and D (Internet).

4.2 Evaluation of learning results

Ten pre-doctoral students in Computer Science, Physics and Mathematics at-
tending a research master were analyzed. The background of these students
is heterogeneous. In the survey the students were asked about 36 subjects
classified in “Control Algorithms” (A), “Statistical Data Analysis” (B), “Nu-
merical Algorithms” (C) and “Lineal Models” (D). At the top of the figure
4 we can see that there is a large dispersion between the initial knowledges.
Since the subject had strong theoretic foundations, students from technical
degrees like Computer Science evaluated themselves with the lowest scores
(shapes in the right part of each figure).

The same survey, at the end of the course, shows that all the students
moved to the left, closer to characteristic point “EVERYTHING”. Addition-
ally, the displacement has been larger for the students in the group at the
right. This displacement can be seen clearly in the right part of the same fig-
ure, where the shapes obtained from the final survey were replaced by arrows
that begin in the initial position and end in the final center. The length of
the arrows is related with the progress of the student during the course.

5 Conclusions

We have proposed the use of graphical exploratory maps to analyze the char-
acteristics of groups of students, when those attributes are observed with
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some uncertainty either due to inconsistencies in the collection of data or
missing data. The map of a group consists of several figures and a list of
characteristic points. The proximity of an individual to one of these points
means that the balance of such an individual with respect to different areas of
knowledge resembles the value represented by this indicator. This technique
can be used to corroborate the improvement of the abilities after receiving a
training course: combining in the same graph the results of two tests, sepa-
rated in time, it is possible to determine the displacement of each individual
towards other characteristic points, and thus to detect the individuals who
have best taken advantage of the course.
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3. Couso I, Dubois D, Hüllermeier E, Maximum Likelihood Estimation and Coarse Data.

In: Moral et al (eds) Proceedings of the 11th International Conference on Scalable
Uncertainty Management, SUM 2017.

4. Couso I, Sánchez L (2008) Higher order models for fuzzy random variables, Fuzzy

Sets and Systems 159: 237–258.
5. Denœux T, Masson M-H (2000) Multidimensional scaling of interval-valued dissimi-

larity data, Pattern Recognition Letters: 21, 83–92.

6. Hebert PA, Masson M-H, Denœux T (2006) Fuzzy multidimensional scaling. Compu-
tational Statistics and Data Analysis 51: 335–359.

7. Honda K, Ichihashi H (2006) Fuzzy local independent component analysis with ex-
ternal criteria and its application to knowledge discovery in databases, International

Journal of Approximate Reasoning 42:159–173.

8. Kim W, Choi B, Hong E-K, Kim S-K (2003) A Taxonomy of Dirty Data, Data Mining
and Knowledge Discovery 7: 81–99.

9. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psy-

chometrika 29:115–129.
10. Nuhfer E, Knipp D (2006) The use of a knowledge survey as an indicator of student

learning in an introductory Biology course, CBE life sciences education 5: 313–316.
11. Mazza R, Milani C (2005) Exploring usage analysis in learning systems: Gaining in-

sights from visualisations. In: Proceedings of the Workshop on usage analysis in learn-

ing systems at 12th International Conference on Artificial Intelligence in Education,

New York, USA 1–6.
12. Palacios A, Sánchez L, Couso I (2010) Diagnosis of dyslexia with low quality data with

genetic fuzzy systems, International Journal on Approximate Reasoning 51: 993-1009.
13. Sánchez L, Couso I, Otero J, Palacios A (2010) Assessing the evolution of learning

capabilities and disorders with a graphical exploratory analysis of surveys containing

missing and conflicting answers. Neural Network World 20: 825–838.



10 Inés Couso, Luis Junco, José Otero, and Luciano Sánchez
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Fig. 3 Left part: Differences in knowledge of Statistics for students in Ingenieria Telem-
atica. Right part: Differences in knowledge about Computer Science between the students

of Ingenieria Tecnica Industrial specialized in Chemistry, Electricity and Mechanics.
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superposition of initial and final maps. Right part: The displacement has been shown by

arrows.


