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Abstract Substitution boxes (S-boxes) are an important part of the design
of block ciphers. They provide nonlinearity and so the security of the ci-
pher depends strongly on them. Some block ciphers use S-boxes given by
lookup tables (e.g., DES) where as others use S-boxes obtained from finite
field operations (e.g., AES). As a generalization of the latter, finite semifields
(i.e., finite nonassociative division rings) have been suggested as algebraic
structures from which S-boxes with good cryptographic properties might be
obtained. In this paper we present the results of experiments on the construc-
tion of S-boxes from finite semifields of orders 256 and 64, using the left and
right inverses of these rings.
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1 Introduction

[...] a new science, called Criptology, arises. It has a field devoted to encryption

(Cryptography) an another one to decryption (Cryptanalysis). Its origins are as old
as humanity: remember the writing on a strip of parchment wrapped around a staff

or Lacedaemonian ‘scytale’; or the Caesar cipher consisting on a constant shifting

of the letters of the alphabet.

These words are part of the opening lecture of the accademic year 1996-97
delivered by Pedro Gil at University of Oviedo [7]. The lecture, which was
titled “The Mathematics of the uncertain”, had a first part devoted to ran-
domness, Probability and Statistics. The second part dealt with Information
Theory and the mathematics of communication (it even has a third and final
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part dedicated to fuzzy sets). It is difficult to understand modern Cryptogra-
phy without a probabilistic point of view [8]. The first author to systematize
this approach was Claude Shannon, the father of Information Theory. Ap-
part from introducing the concepts of entropy and information in the context
of communication in noiseless and noisy channels [19] (just as mentioned in
Pedro Gil’s lecture1), he considered a probabilistic model of perfect secrecy
[20]. Following this idea, semantic security (which is, from a certain point of
view, the theoretical notion of a secure cryptographic system) is founded on
a probabilistic setting [9].

Block ciphers (which transform a block of bits of fixed size into another
block of the same size with the help of a bit-key of also fixed, perhaps dif-
ferent, size) are a symmetric (i.e., private) key cryptographic primitive used
in many other designs (e.g., cryptosystems, message authentication codes,
hash functions,...) [13]. Substitution boxes (called S-boxes) are an important
part of the design of block ciphers. They provide nonlinearity to the trans-
formation and so the security of the cipher depends strongly on them. Some
block ciphers use S-boxes given by lookup tables (e.g., DES) where as others
use S-boxes obtained from finite field operations (e.g., AES) [21]. As a gen-
eralization of the latter, finite semifields (i.e., finite nonassociative division
rings) have been suggested as algebraic structures from which S-boxes with
good cryptographic properties might be obtained [5]. This is not the first
time that nonassociative structures have been considered in a cryptographic
setting (just recall, for instance, [6, 15, 22, 10]).

In this paper, following the path of [5], we present the results of experi-
ments on the construction of S-boxes from finite semifields of order 256, using
the left and right inverses of these rings. We process all finite semifields of
such an order and rank 4 (and not only the 28 representatives up to isotopy
considered in [5, Section 5.3]), and also all finite semifields of dimension 6 over
F2 (as this is the biggest dimension for which all finite semifields of charac-
teristic 2 have been classified). The paper is organized as follows: in section 2
basic notions of block ciphers (including properties of S-boxes) are reminded.
Section 3 is devoted to finite semifields and their properties. Finally, in the
last section we collect the results obtained from our computational experi-
ments.

2 Block ciphers and substitution boxes

A block cipher is a deterministic cipher E : {0, 1}b × {0, 1}k → {0, 1}b which
transforms a block M of b bits of fixed size into another block C of the same
size with the help of a key K of also fixed, perhaps different, size k [13].

1 Incidentally, let us mention that we had the privilege of learning the basic aspects of

Probability, Statistics and Information theory from Pedro himself, in two courses delivered

at University of Oviedo some twenty years ago.
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Well-known examples of block ciphers include the previous and the current
NIST standards for encryption data: DES and AES [21]. For instance, in DES
b = 64, d = 56, wheras in AES b = 256, d ∈ {128, 196, 256}. These ciphers are
of utmost importance because, as pointed out in [2],

Block ciphers are the “work horse” of practical cryptography: not only can they can

be used to build a stream cipher, but they can be used to build ciphers with stronger

security properties [...], as well as many other cryptographic primitives.

A common design of block ciphers is that of iterated ciphers, where a round
function is used repeatedly r times to process the block of bits M using a set
of round keys obtained from the master key K with the help of an auxiliary
key schedule algorithm (e.g., in DES r = 14, in AES r ∈ {10, 12, 14}). In
these ciphers, the ultimate transformation of the block M depends on the
round function F . Traditionally, the function F can be of Feistel type (such
as in DES) or a Substitution-Permutation Network (such as in AES) [21]. In
either case, both use substitution boxes in the design of F .

A substitution box (called S-box ) is a fixed boolean function S : {0, 1}n →
{0, 1}m, where the parameters n,m depend on the actual cipher considered
(for instance, in DES n = 6,m = 4, in AES n = m = 8). S-boxes are a
core part of the design of block ciphers as they provide nonlinearity to the
transformation. The security of the cipher (e.g., robustness against differential
or linear attacks) depends strongly on them. Some block ciphers use S-boxes
given by lookup tables (e.g., DES) where as others use S-boxes obtained
from finite field operations [21]. For instance, AES S-boxes identify the set
{0, 1}8 with the Galois field F28 of 256 elements (multiplication is taken
modulo the polynomial x8+x4+x3+x+1) and before applying an F2−affine
transformation, the input element is changed into its multiplicative inverse
in F28 (the zero element is replicated).

Different properties of an S-box can be introduced in order to determine its
cryptographic utility, and so multiple criteria can be found in the literature
(e.g., [14, 18]). In this paper we study properties #1, #3 and #4 in [5] for
S-boxes of sizes 256 and 64. Namely, we identify the sets {0, 1}8 and {0, 1}6
with F8

2 and F6
2, and consider

1. Bijectivity: n = m = 8 (alt. n = m = 6), and the S-box must be bijective.
3. Non-linearity: the linear invariant λS is defined as

λS = max{ | − 2n−1 + #{x ∈ Fn
2 : (a|x) = (b|S(x))}| : a, b ∈ Fn

2 , b 6= 0}

where (a|x) denotes the usual inner product in Fn
2 , n = 8 (alt. n = 6).

4. The differential invariant δS is equal to

δS = max{ #{x ∈ Fn
2 : S(x)⊕ S(a⊕ x) = b} : a, b ∈ Fn

2 , a 6= 0}

where a⊕ x denotes bitwise addition mod 2, and n = 8 (alt. n = 6).
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With respect to these properties AES S-boxes are optimal in the sense
that they are bijective, have minimal non-linearity λAES = 16, and minimal
differential invariant δAES = 4 among non-APN functions [5]. Also, λF64

= 8
and δF64 = 4.

3 Finite semifields

In this section we collect definitions and facts on finite semifields [11, 4]. A
finite nonassociative ring D is called finite semifield, if the set of nonzero
elements D∗ is closed under the product, and it has an identity element.
In such a case D∗ is a multiplicative loop. That is, there exists an element
e ∈ D∗ (the identity of D) such that ex = xe = x, for all x ∈ D and, for all
a, b ∈ D∗, the equation ax = b (resp. xa = b) has a unique solution. Let us
emphasize that these left and right inverses might be different elements of
the finite semifield. This is an important fact apparently obviated in [5] and
[6].

Finite semifields are nonassociative finite division rings and, apart from
finite fields, proper finite semifields exist. The characteristic of a finite semi-
field D is a prime number p, and D is a finite-dimensional algebra over Fq

(q = pc) of dimension d, for some c, d ∈ N, so that the order of D is |D| = qd.
Moreover, Fq can be chosen to be contained in the associative-commutative
center Z(D) of D. In this paper we will be interested in finite semifields of
order 256, i.e., of dimension 8 over its center Z(D) = F2 or of rank 4 (i.e., of
dimension 4 over F4 ⊆ Z(D)). The finite field F256 is included in the latter
case. Also, we will be interested in semifields of order 64, i.e., 8-dimensional
over F64. E.g., the Galois field F28 .

Isomorphism of finite semifields is defined as usual for algebras, and the
classification of finite semifields up to isomorphism can be naturally con-
sidered. Because of the connections to finite geometries [1], the following
notion must be considered. An isotopy between two finite semifields D1 and
D2 is a triple (F,G,H) of bijective Fq−linear maps D1 → D2 such that
H(ab) = F (a)G(b), for all a, b ∈ D1. Clearly, any isomorphism between two
semifields is an isotopy, but the converse is not necessarily true. From any
finite semifield D, a projective plane P(D) can be constructed [11]. Theorem
6 in [1] shows that isotopy of finite semifields is the algebraic translation of
the isomorphism between the corresponding projective planes.

By [11][Theorem 5.2.1], up to six projective planes can be constructed
from a given finite semifield D using the transformations of the group S3.
Actually, S3 acts on the set of semifield planes of a given order producing, for
each semifield D, its Knuth orbit [11]. So, the classification of finite semifields
can be reduced to the classification of the corresponding Knuth orbits.

In the particular case of semifields of order 256 and rank 4, i.e., with
center containing F4, a computer-assisted classification was presented in [3].



Some experiments on finite semifield based substitution boxes 5

A total amount of 28 Knuth classes were obtained. The actual number of
semifields is much bigger. Namely, the number of isotopy classes is 51 and
the number of nonisomorphic finite semifields containing F4 is 75939 (these
numbers were obtained with the techniques describe in [3]). Unfortunately, a
complete classification of finite semifields of order 256 has not been achieved
(not even of order 128 [17]). Moreover, it is even unknown how many of them
might there exist (the number must be clearly much bigger than those 75939
containing F4 in the center).

The biggest dimension for which all finite semifields of characteristic 2
have been classified is 6 [16]. There are 80 Knuth orbits of such an order
containing 322 isotopy classes for a total amount of 376971 semifields.

4 Some experiments on finite semifield based S-boxes

Inspired by the S-boxes of AES, the authors propose in [5] the construction
of S-boxes from the multiplicative structure of finite semifields. Namely, they
suggest “using the inverse function” [5, Section 5.3]. As was noticed in the
previous section, a distinction between left and right inverse is needed when
dealing with (noncommutative) finite semifields. So, given a finite semifield
D of order 256 (alt. 64) and identity e, we have considered the two following
S-boxes:

Sr : D → D
a 6= 0→ b s.t. ab = e

0 → 0

Sl : D → D
a 6= 0→ b s.t. ba = e

0 → 0

It is clear that, when D is commutative (in particular, if S is the Galois
field F28), both S-boxes coincide. It is also evident that, because D is a finite
semifield, the bijectivity property holds in both cases. In order to compute
the linear λSr , λSl

and differential δSr , δSl
invariants we identify the elements

of D with those of the set F8
2 (alt. F6

2). This can be straightforwardly done
as the representation of finite semifields introduced in [3] is exactly that one.
Moreover, in Table 2 of such a paper it is contained a complete description
of all finite semifields of order 256 and rank 4, i.e., and center containing the
finite field F4 [3, Section 4.2], up to Knuth orbit. These are the semifields
also considered in [5, Section 5.3], where it is claimed that

We thus have also tried to construct S-boxes based on all these 28 semifields up to

isotopy, by using the inverse function.

It appears that the authors have only consider the 28 representatives in their
construction and at most one of the two possible “inverse function”. As it
was said in the previous section, up to isomorphy, the actual number of finite
semifields or order 256 with center containing F4 is much bigger. So, we have
used the computational machinery described in [3, Section 3] to generate all
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those finite semifields. For each one of them, we have explicitly constructed
the aforementioned S-boxes Sr and Sl. Since we are interested in S-boxes with
“good” cryptographic properties, we have taken as a reference the invariants
for the AES S-box (λAES = 16, δAES = 4). Let us remark the following fact.

Proposition 1. λSl
= λSr , for any finite semifield D of order 2n.

Proof. For all x, y ∈ D, we have that y = Sl(x) iff x = Sr(x). Therefore, for
all nonzero a, b ∈ Fn

2 :

#{x ∈ Fn
2 : (a|x) = (b|Sl(x))} = #{y ∈ Fn

2 : (b|y) = (a|Sr(y))}

On the other hand, since (0|x) = 0, for all x ∈ Fn
2 , and because the maps Sl

and Sr are bijections:

#{x ∈ Fn
2 : 0 = (c|Sl(x))} = #{y ∈ Fn

2 : 0 = (c|Sr(y))}

for all 0 6= c ∈ Fn
2 . Hence,

λSl
= max{ | − 2n−1 + #{x ∈ Fn

2 : (a|x) = (b|Sl(x))}| : a, b ∈ Fn
2 , b 6= 0}

= max{ |−2n−1 +#{y ∈ Fn
2 : (b|y) = (a|Sr(x))}| : a, b ∈ Fn

2 , a 6= 0} = λSr

Our computations show that none of the generated S-boxes had a pair of
invariants matching those of the finite field F28 . So, no S-box with “good”
cryptographic properties was obtained from the constructions Sr or Sl on
semifields of order 256 containing F4 in the center. Let us mention, for the
record, that the linear and differential parameters might be different for iso-
topic non-isomorphic finite semifields. This means that these parameters are
not isotopy invariants, such as the center or nuclei sizes [12]. So, for instance, a
full computation of the linear and differential parameters for finite semifields
isotopic to Semifield #II of [3, Table 2], shows that we can find parameters
(λSr

, δSr
) = (38, 12), (38, 14), (36, 10), (34, 10), . . . .

The construction of S-boxes Sr and Sl was also applied to all finite semi-
fields of order 64. Remember that the parameters of the finite field of such
an order are λF64

= 8 and δF64
= 4. The computational results show that

there are some proper semifields with δSl
= 4. Namely, semifields falling in

Knuth orbits #IV,V,VIII,X. Among these, only 6 proper semifields in Knuth
orbit #V share the pair (λSr , δSr ) = (8, 4) with the finite field F64. We have
plotted in the following graph all pairs (λSr , δSr ) and (λSl

, δSl
) found in our

study.
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We finish this short note by showing one of the S-boxes with the same
parameters of the finite field S-box SF64

, but constructed from left inverses
in a finite semifield of order 64.

Sl 0 1 2 3 4 5 6 7

0 00 40 73 24 30 45 62 27
1 41 70 55 47 05 03 46 32

2 15 37 31 11 17 66 74 06
3 72 34 57 02 10 35 14 64
4 44 77 43 67 71 36 53 25
5 20 21 13 56 33 54 01 61

6 60 50 26 12 75 16 76 65
7 23 52 51 22 42 63 07 04

Table 1 An S-Box with minimal linear and differential parameters (constructed from a
proper semifield of order 64)

Conclusion

We have explicitly constructed S-boxes from proper finite semifields of orders
256 and 64, and computed their linear and differential parameters. The results
in the case of 256 elements are not satisfactory, since none of these S-boxes
have the same minimal invariants as those of the AES S-box. This is not
surprising since only rank 4 semifields of such an order where analyzed, as
this was the only subclass of semifields of order 256 for which a complete
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classification has been achieved so far. On the other hand, the case of order
64 semifields (for which a full classification is known) is more promising. Some
S-boxes have been constructed with the same parameters of those obtained
from the Galois field F64.
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17. Rúa, I.F. and Combarro, E.F. and Ranilla, J. (2012) Determination of division alge-

bras with 243 elements. Finite Fields and Their Applications 18: 1148–1155.

18. Saarinen, M-J.O. (2012) Cryptographic Analysis of All 4 4-Bit S-Boxes. In: Selected

Areas in Cryptography, Lecture Notes in Computer Science 7118: 118–133.
19. Shannon, C. (1948) A Mathematical Theory of Communication. Bell System Technical

Journal 27(3): 379–423.



Some experiments on finite semifield based substitution boxes 9

20. Shannon, C. (1949) Communication Theory of Secrecy Systems. Bell System Technical

Journal 28(4): 656–715.
21. Stinson D.R. (2006) Cryptography Theorey and Practice (3rd edition). Chapman &

Hall/CRC.

22. Malekian, E. and Zakerolhosseini, A. (2010) A non-associative lattice-based public
key cryptosystem. Security and Communication Networks 5(2): 145–163.


