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Summary. The link between information theory and fuzzy logic has been proven
in several previous papers. From this starting point, we propose here a review about
the concept of divergence measures, which was proposed as a tool for comparing two
fuzzy sets. The initial definition comes from the ideas behind the classical concept
of divergence between two probability distributions. Following a path similar to
the one considered to obtain fuzziness measures from uncertainty measures, we are
able to define fuzzy divergences. Apart from that, some possible generalizations are
considered.

Summary. *The link between information theory and fuzzy logic has been proven
in several previous papers. From this starting point, we propose here a review about
the concept of divergence measures, which was proposed as a tool for comparing two
fuzzy sets. The initial definition comes from the ideas behind the classical concept
of divergence between two probability distributions. Following a path similar to the
one considered to obtain fuzziness measures from uncertainty measures, we are able
to define the fuzzy divergences. Apart from that, some possible generalizations are
considered.

1 Introduction

Dealing with lack of information is a usual problem in many areas. This lack of
information can be given in two different ways: uncertainty or imprecision. In the
first case, we deal with experiments where we can have more than one possible
outcome, each possible outcome can be specified in advance, but the outcome of
the experiment depends on chance. For instance, in a coin toss, we know the two
possible outcomes, head or tail, but we do not know the final result. In the second
case, we have no uncertainty about the result of the experiment but imprecision.
Thus, for instance, if we consider again the experiment of the coin toss, the coin
could be already thrown but maybe it is too old and we are not sure that the face
it shows is clearly a head.
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Information theory studies the quantification and communication of the informa-
tion and, in particular, it measures the amount of uncertainty involved in the value
of a random experiment. It was originally proposed by Shannon in 1948 ([30]) as a
tool in signal processing. Thus, this theory combines a lot of different fields such as
mathematics, statistics, computer science, physics and electrical engineering. From
the beginning, this theory was revealed as an interesting tool in many other areas
and therefore a lot of researchers started to work on it (Rényi [29], Oniçescu [26],
Sharma and Mittal [31], Havrda and Charvát [11], etc.). Later, an important step
was given by Kampé de Fèriet and Forte [12] with an axiomatic definition of the
information with or without a probability measure. From the theoretical aspects of
this theory, Kullback [17] found a lot of interesting applications in statistical infer-
ence. From this initial application a lot of papers have been developed in this area.
In particular, some very important achievements have been obtained by Pardo (see,
among others, [27, 28]). An important review about all these theories can be found
in Gil [10], since he was one of the most important researchers in this area in Spain.
Divergence measures between probability distribution were an important topic on
this monograph and it is the starting point of this chapter, as we will see later.

On the other hand, Zadeh [33] introduced in 1965 the concept of fuzzy set,
as a way to model vague or poorly defined properties for situations in which it is
not possible to fully discriminate between having and not having said properties.
From that, a whole mathematical and applied theory to deal with imprecision was
developed. It is known as Fuzzy Logic Theory. Two interesting monographs about
this theory were written by Dubois and Prade [6] and Klir and Folger [13].

As we can see from the title of this last book, the concepts fuzzy sets, uncertainty
and information are mixed. This is not by chance, since these topics are very related,
as we can see in [7, 8, 9]. In particular, we have studied ([25]) the relationship
between uncertainty measures defined in Information Theory ([12]) and the fuzziness
measures introduced by De Luca and Termini ([5]) and later analyzed in a deeper way
by Knopfmacher ([14]). The link between measures of uncertainty and imprecision
in fuzzy environments will lie in what we will refer as divergence measure, because of
the analogy with the classical meaning of the term used in comparing two probability
distributions (see, for instance, [28]). The main purpose of this chapter is to use these
measures to compare two fuzzy sets.

As introductory notions, we present two axiomatic definitions to measure the
entropy – uncertainty measures and fuzziness measures in Section 2. A study on
the relationship between them, in the most general context, is given there. The
definition of divergence measure between fuzzy sets is given in Section 3 following
the ideas considered previously. The most important results are contained in that
section where we also comment some extensions. Finally, we conclude the work with
some comments in Section 4.

2 Preliminary

Necessary concepts to understand the remaining parts of this work are given in this
section. In particular, we will focus on the definitions and notations for uncertainty
measures and fuzziness measures.
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2.1 Uncertainty measures

The first probabilistic uncertainty measure (also called entropy) was given by Shan-
non ([30]) in the context of Communication Theory. That initial definition consid-
ered that the uncertainty for a random experiment can be measured by means of
the quantity

H(P ) = −
n∑
i=1

pilog2(pi)

where the values pi represent the probabilities of the possible results of the experi-
ment.

From that initial definition, a lot of generalization have been proposed in the
literature. Thus, Salicru et al. (see [27]) proved that all these measures of entropy
are part of a wider family, which are named h−φ−entropies. This family is slightly
more general than Ben Bassat’s family of f -entropies that were defined as those
functions that can be expressed like

H(P ) =
n∑
i=1

f(pi)

where f is a concave function. Later, the quasi-φ-entropies were introduced and
characterized in the case of discrete distributions ([2]). Thus, it is a family more
general than Ben Bassat’s one but different from the family of h − φ−entropies.
More precisely, they are defined by

H(P ) =

n∑
i=1

φ(pi)

where φ is a function such that φ(λx + (1 − λ)y) ≥ λφ(x) + (1 − λ)φ(y), ∀x, y ∈
[0, 1], x+ y ≤ 1.

An important property of uncertainty measures is the Principle of Transfer
or Pigou-Dalton’s condition. An uncertainty measure H fulfils this property if
given two probability distributions P and P

′
with parameters (p1, p2, . . . , pn) and

(p′1, p
′
2, . . . , p

′
n) respectively, then H(P ) ≤ H(P ′), where, pk = p′k,∀k /∈ {i, j} and

p′i = pi + δ, p′j = pj − δ for some δ ≤ (pi − pj)/2. It is a very logical property, since
it means that the more similar the probabilities of two outcomes of an experiment
are, the higher the uncertainty is.

2.2 Fuzziness measures

After having commented some results about uncertainty measures or probabilistic
entropies, we now introduce fuzzy sets and the measures of their fuzziness, i.e. the
non-probabilistic entropies. They are well-known and can be found in a wide range
of sources (see, for instance, the classical books [6, 13]).

The universal set is denoted by X. A fuzzy subset of X is a mapping from X
into the unit interval [0, 1]. In this framework, we use the following notations:

• P(X) is the set of all subsets of X,
• F(X) is the set of all fuzzy subsets of X,
• A ∈ P(X) will denote any crisp set,
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• Ã ∈ F(X) will denote any fuzzy set.

We identify a fuzzy set and its membership function. Thus we have thatX(x) = 1
for all x ∈ X and for the empty set we have ∅(x) = 0 for all x ∈ X.

Two further important concepts are the containment relation and the comple-
ment set. We consider the standard Zadeh’s negation for the complement (see [33]).

Definition 1. Let Ã, B̃ ∈ F(X). The complement of Ã is the fuzzy set Ãc(x) =

1 − Ã(x), x ∈ X. Ã is contained in B̃, denoted by Ã ⊆ B̃ if Ã(x) ≤ B̃(x) for all
x ∈ X.

Apart from the previous relation of containment, we consider the concepts of
intersection and union of fuzzy sets. The initial definitions were also given in [33]
by means of the minimum and the maximum operators. However, they are not the
only way to generalize the classical set operations, since there exist a broader class
of functions to represent them. In fact, for the intersection, this class is referred as
t-norm and for the union as t-conorm.

A triangular norm (t-norm) is a function T : [0, 1]× [0, 1]→ [0, 1] satisfying the
following properties:

(T1) T (a, b) = T (b, a), for all a, b ∈ [0, 1],
(T2) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c ∈ [0, 1],
(T3) b ≤ c⇒ T (a, b) ≤ T (a, c), for all a, b, c ∈ [0, 1],
(T4) T (a, 1) = a, for all a ∈ [0, 1].

Some important examples of t-norms are:

• Minimum: TM (a, b) = min(a, b), for all a, b ∈ [0, 1],
• Product: TP (a, b) = a · b, for all a, b ∈ [0, 1],
•  Lukasiewicz t-norm: TL(a, b) = max(a+ b− 1, 0), for all a, b ∈ [0, 1],
• Drastic t-norm:

TD(a, b) =

{
min(a, b), if max(a, b) = 1
0, otherwise.

For these basic t-norms, it holds that TD ≤ TL ≤ TP ≤ TM . In fact, for any
t-norm T , it is true that TD ≤ T ≤ TM . By changing the neutral element from 1 to
0, we obtain the triangular conorms (t-conorm). A t-norm T and a t-conorm S are
dual iff for each a, b ∈ [0, 1] it holds that T (a, b) = 1− S(1− a, 1− b).

The duals conorms of the t-norms presented earlier are the following:

• Maximum: SM (a, b) = max(a, b), for all a, b ∈ [0, 1],
• Probabilistic sum: SP (a, b) = a+ b− a · b, for all a, b ∈ [0, 1],
•  Lukasiewicz t-conorm: SL(a, b) = min(a+ b, 1), for all a, b ∈ [0, 1],
• Drastic t-conorm:

SD(a, b) =

{
max(a, b), if min(a, b) = 0.
1, otherwise .

Using t-norms and t-conorms, we can define the intersection and union of two
fuzzy as follows.

Definition 2. Let Ã, B̃ ∈ F(X). Given a t-norm T and a t-conorm S,
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• Ã ∩ B̃(x) = T (Ã(x), B̃(x)), ∀x ∈ X;

• Ã ∪ B̃(x) = S(Ã(x), B(x)), ∀x ∈ X.

Thus, we can denote by (X,T, S) the triple formed by the universe with the
t-norm and the t-conorm defining the intersection and the union, respectively.

The entropy for a fuzzy sets is quantified by means of the non-probabilistic
entropies or fuzziness measures (see, for instance, [32]), which are defined as follows.

Definition 3. A fuzziness measure is a real function f defined on F(X), fulfilling
the following requirements:

1. f(Ã) = 0⇐⇒ Ã is a crisp set.

2. If Ã, B̃ ∈ F(X) and Ã is “sharper” than B̃, then f(Ã) ≤ f(B̃).

3. f(Ã) takes maximum value if and only if Ã is “maximally fuzzy”.

This last definition is based on the concepts “sharper than” and “maximally
fuzzy”, although the second one follows from the former. Thus, the most usual
criteria to define the relation “to be sharper than” are the following:

• Ã is sharper than B̃ iff either Ã(x) ≤ B̃(x) ≤ 1/2 or Ã(x) ≥ B̃(x) ≥ 1/2 for any
x in X (see [13]) or

• Ã is sharper than B̃ iff |Ã(x)− 1/2| ≤ |B̃(x)− 1/2| for any x in X (see [6]).

It is clear that the first one is a particular case of the second one and therefore we
are going to consider the most general definition.

Knopfmacher introduced in 1975 a very important family of fuzziness measure,
the Knopfmacher’s class ([14]), which is given by the functions f such that

f(Ã) = F

(∑
x∈X

cx · gx(Ã(x))

)

for any Ã in P(X) where cx ∈ <+; gx is a real-valued function such that gx(0) =
gx(1) = 0, gx(t) = gx(1 − t), ∀t ∈ [0, 1] and gx is strictly increasing on [0, 1/2]; F is
a positive strictly increasing function with F (0) = 0.

Later, we consider a particular class of Knopfmacher fuzziness measure (see
[21, 23]) when F is the identity, gx is the same for all x ∈ X (we denoted gx by uf
or simply u) and u is concave. Any function in this family was named local fuzziness
measure.

2.3 From uncertainty to fuzziness

Proposition 1. ([25]) Let (X,A, µ) a measurable space and let H be an uncertainty
measure fulfilling the Pigou-Dalton’s condition and such that H(P ) = 0 ⇐⇒ P is
degenerate. The map f defined as follows

f : A∗ −→ <+

Ã −→
∫
X

H(Ã(x), Ãc(x))dµ(x)

is a fuzziness measure and it belongs to the Knopfmacher’s class.
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If we work on some particular spaces, we are also able to establish a one-to-one
correspondence between fuzziness measures and uncertainty measures. Thus, if we
consider the subset of uncertainty measures given by

H2 = {H|H is a quasi-φ-entropy with φ continue, φ(x) = φ(1− x),
∀x ∈ [0, 1

2
] and φ(x) = 0⇔ x = 0}.

, we have the injective property, as we can see in the following proposition.

Proposition 2. ([25]) If F1 is a map from H2 in F such that

F1(H)(Ã) =

∫
X

H(Ã(x), Ãc(x))dµ(x)

where F denotes the Knopfmacher’s class of fuzziness measures, then we have that
F1 is injective.

If we restrict our study to the family of φ-entropies given by Hφ = {H ∈
H2|φ is concave} and the family of fuzziness measures given by F1 = {f ∈
F with g continue} we have the bijection.

Theorem 1. ([25]) There exists an one-to-one correspondence between the family
of uncertainty measures Hφ and the family of fuzziness measures F1.

3 Divergence measures

From the previous section, we could notice that the imprecision about the member-
ship of any element x ∈ X in a fuzzy set Ã could be represented by a probability
distribution {Ã(x), Ãc(x)}. Then, we looked at the classical divergence measures
between probability distributions (see, for instance, [10, 28]) to try to compare two
fuzzy sets. Thus, from this starting point, we proposed a new way to compare two
fuzzy set ([21]), the divergence, with the following properties:

• It becomes zero when the two sets coincide.
• It is a nonnegative and symmetric function.
• It decreases when the two subsets become “more similar” in some sense.

While it is easy to formulate the first and the second conditions analytically,
the third one depends on the formalization of the concept “more similar”. We base
our approach on the fact that if we add a subset C̃ to both fuzzy subsets Ã, B̃, we
obtain two subsets which are closer to each other; the same with the intersection.

Definition 4. Let (X,T, S) be a triple with X a universe and T and S any t-norm
and t-conorm, respectively. A map D : F(X)× F(X)→ R is a divergence measure

with respect to (X,T, S) iff for all Ã, B̃ ∈ F(X), D satisfies the following conditions:

1. D(Ã, Ã) = 0;

2. D(Ã, B̃) = D(B̃, Ã);

3. max{D(Ã ∪ C̃, B̃ ∪ C̃), D(Ã ∩ C̃, B̃ ∩ C̃)} ≤ D(Ã, B̃), for all C̃ ∈ F(X), where
the union and intersection are defined by means of S and T , respectively.



Divergence measures: from uncertainty to imprecision 7

It is clear that a divergence measure is associated to a triple (X,T, S) and a
map D can be a divergence measure with respect to a t-norm and it can be not a
divergence measure with respect to a different t-norm. However, when there is not
ambiguity, we will say just a divergence measure without specifying the used t-norm
and t-conorm.

After different studies of this concept [3, 21, 23, 24, 25], we presented the most
general study in [15], where we can also find the following examples.

Example 1. ([15]) The map

D(Ã, B̃) =

{
0, if Ã = B̃.

1, if Ã 6= B̃.

is a divergence for any triple (X,T, S).
On the other hand, if we consider the map

D(Ã, B̃) =
∑
x∈X

αx · |Ã(x)− B̃(x)|

where αx ≥ 0 for any x ∈ X,
∑
x∈X αx = 1 and X is a finite space, D is a divergence

for the minimum t-norm, the product t-norm or the  Lukasiewicz t-norm, but it is
not for the drastic t-norm.

A divergence measure can be seen as a particular case of dissimilarity when
the minimum t-norm is considered, which is the most usual way to compare two
fuzzy sets [18]. Moreover, it avoids some counterintuitive examples for dissimilarities,
while both divergence and dissimilarity measures can be seen as a particular case
of the general measures of comparison given by Bouchon-Meunier in 1996 ([1]). An
interesting study about different ways to compare fuzzy sets can be found in [4].

From this starting point, we have been able to generalize this concept to de-
fine the divergence measure for comparing two intuitionistic fuzzy sets [19]. The
particular case of local divergences for intuitionistic fuzzy sets was studied in [20].
There, we presented interesting applications of this concept in Pattern Recognition
and Decision Theory. A similar generalization have been done for hesitant fuzzy sets
in [16]. Moreover, we have been able to use the divergences to measure the fuzziness
of a fuzzy set by comparing it with the closest crisp set and conversely, we have
used fuzziness measures to define a divergence measure [22]. All these definitions
and results can be considered as a heritage of the classical divergence measures, and
more precisely, of the knowledge about them conveyed by Prof. Gil to the authors
of this work.

4 Conclusion

In this paper we have studied some relationships among different ways to compare
two elements, under uncertainty and imprecision. Thus, we have used the classical
divergence measures between two probability distributions to obtain a new way to
compare two fuzzy sets. This is a particularly interesting case of dissimilarity in some
cases and it has very interesting and specific properties. The link between random-
ness and fuzziness is proven one more time, as we did previously for probabilistic
and non-probabilistic entropies.
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