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Abstract.  14 

Paper-based working electrodes were modified by the addition of nanomaterials (carbon 15 

nanofibers, gold nanoparticles, graphene and hybrids of them), with the aim to increase 16 

the conductivity and to obtain an electroactive platform with improved analytical 17 

behaviour. The effect of the nanostructures was evaluated by using cyclic voltammetry 18 

and dopamine as electrochemical probe. The modifications with in-situ generated 19 

nanomaterials such as gold nanoparticles (AuNPs) or others requiring treatment like 20 

graphene oxide (GO), were optimized by factorial design. The characterization of the 21 

cellulose based electrodes by scanning electron microscopy (SEM) showed the 22 

distribution of carbon nanofibers and the presence of AuNPs around the cellulose fibers. 23 

The partial modification made by the carbon ink was also monitored by attenuated total 24 

reflection (ATR) spectrometry. Electrodes modified with rGO and AuNPs exhibited 25 

higher intensity peaks with more reversibility and reproducibility than unmodified 26 

paper. The highest intensities and lowest limits of detection were achieved with paper 27 

electrodes modified with hybrid nanostructures composed by both CNFs and AuNPs. 28 

 29 

Keywords. Paper electrodes, carbon nanomaterials, gold nanoparticles, factorial design, 30 

dopamine. 31 

 32 

 33 

 34 

 35 
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1. Introduction 36 

 One of the actual trends in sensor research is the development of low cost 37 

electrodes with low volume requirements, easy fabrication and simplicity, but without 38 

losing selectivity or reproducibility [1]. Among the materials that can be used as 39 

substrate for sensing devices, paper is a very attractive option [2-4]: it is mainly 40 

composed of a porous three-dimensional network of cellulose-fibres, which can 41 

transport either reagents or samples towards a detection chamber [5]. The 42 

electrochemical detection in Paper Analytical Devices (ePADs) has been recently 43 

reviewed [6]. These substrates can also be modified by the addition of hydrophobic 44 

materials such as wax, to form barriers, which define the biosensor area [7-9]. There is 45 

also a great variety of options on capillary flow rate and chemical adsorption, depending 46 

on the pore size and surface treatments applied. This allows choosing the best substrate 47 

for every target analyte. Besides, several types of paper with different pore size can be 48 

combined by origami strategies, to design the optimum sensor for biomarkers, heavy 49 

metal detection or the required application [10-17].  50 

 Modification of the cellulose network is usually necessary to develop a suitable 51 

electrochemical sensor, since cellulose is a non-conductive and porous material. 52 

However, some areas can be covered by conductive materials, to allow the study of 53 

electrochemical signals and optimize the performance of the electrodes [18-19]. There 54 

are several ways to modify the cellulose network to have a conductive surface, like gold 55 

sputtering or printing conductive inks, but the easiest way to achieve this conductive 56 

surface is drop casting an aliquot of carbon-ink suspension at the selected area. With 57 

this procedure, the modified paper can act as a working electrode, where the 58 

electrochemical reactions take place [20]. Paper-based working electrodes can also be 59 

modified by monolayers or electrogenerated polymers or nanomaterials such as gold 60 
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nanoparticles (AuNPs).  An auxiliary and a reference electrode are then required to 61 

construct the electrochemical cell, but these electrodes can also be printed with carbon 62 

or other materials like silver [21]. There are also more options like connecting the 63 

working paper electrode to screen-printed electrodes or external systems like gold-64 

plated pins [22]. This design with the screen-printed electrode placed below the paper 65 

substrates has been applied in or group to the determination of arsenic in wines, 66 

showing that it was possible to reuse the screen-printed electrode with another working 67 

paper-based electrode without any interference. This resulted on a suitable and 68 

sustainable route for sensor development [23].  69 

 In this paper, we have carried out for the first time a systematic study of the 70 

optimization of the electrochemical properties of paper electrodes, modified by the 71 

addition of several nanomaterials: carbon nanofibers (CNFs), graphene oxide (GO), 72 

gold nanoparticles (AuNPs). Similar studies have been done before with conventional 73 

screen-printed electrodes [24-25].  It was expected that these modifications would 74 

improve the sensitivity of the electrochemical detection of the analytes, as compared to 75 

unmodified paper electrodes, obtaining a more conductive working electrode with 76 

advantages for the development of low cost sensors. In order to apply electrochemical 77 

treatments or in-situ synthesis of nanomaterials, the ink side of the paper substrate was 78 

placed on top of the working electrode of a commercial screen-printed card, with the ink 79 

acting as contact layer. The nanomaterials were added (or generated) on the uncoated 80 

side, keeping the screen-printed electrode below unmodified and ready to study another 81 

specimen. The modification with gold nanoparticles was carried out in-situ, and 82 

monitored by chronopotentiometry. The procedures developed here have been 83 

customised for each type of the nanomaterial. A multivariate optimization was used, 84 

because this is the only approach that allows us to identify interactions among factors 85 
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[26-28]. Dopamine (a neurotransmitter that plays an important work in human life [29-86 

30]) was chosen as electrochemical probe. The analysis of the multivariant data 87 

collected allowed us to identify the interaction of every factor with the response (current 88 

intensity) and the interactions among them, by using the minimal number of 89 

experiments. This approach reduces reagent consumption and working time. In this 90 

case, we have used a full factorial design with a central point for the modification 91 

involving graphene-oxide reduction or gold deposition. Impedance measurements were 92 

also made to evaluate the resistance of the system with the paper electrode and how the 93 

modification with nanomaterials can change it. The discussion is based on the results 94 

obtained with the best conditions found for every modification procedure. 95 

2.  Experimental section 96 

 97 

2.1. Materials and electrochemical instrumentation 98 

Screen-printed electrode cards were obtained from DropSens S.L. (SPCEs, ref. 99 

DRP-110, Spain). Their working and an auxiliary electrode are made of carbon ink, and 100 

the pseudoreference electrode is made of silver. A DSC connector (ref. DRP-DSC) from 101 

the same company was used to connect them with the potentiostat. 102 

 Graphene oxides (GOs) were a gift from Instituto Nacional del Carbón (INCAR, 103 

CSIC, Spain). They were made by pyrolysis of anthracene tars in a process to obtain 104 

“coke”, (fuel made of calcified coal).  Graphite was obtained following a heat treatment 105 

at 2800ºC. It was converted into GO by the modified Hummers’ method [31]. 106 

Nanofibers were obtained from Grupo Antolin (Spain). Carbon paste (ref. C10903P14) 107 

was acquired by Gwent group (United Kingdom).  108 

 The cellulose substrate was Whatman Grade 1 chromatography paper. 109 

Hydrophobic wax patterns were printed on the paper by using a wax printer (Xerox 110 
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Colorqube 8570). A thermostat model (Nabertherm d-2804) was used to melt the wax 111 

printed on paper Whatman Grade 1. The spray adhesive 3M Spray MountTM was 112 

adquired by local stores. 113 

 Electrochemical measurements were carried out with a potentiostat (Autolab, 114 

PGSTAT 10) controlled by the Autolab GPES software. 115 

 Impedance measurements were carried out with a potentiostat (Autolab 116 

PGSTAT 12) controlled by the Autolab FRA software measuring a range from 1000 Hz 117 

to 1 Hz (n=30). 118 

2.2. Reagents and preparation of solutions 119 

 General reagents, Potassium hexacyanoferrate (II) trihydrate potassium 120 

hexacyanoferrate (III), Tris (hydroxymethyl)aminomethane (Tris) and dopamine were 121 

purchased from Sigma-Aldrich (USA). Water used was obtained from a Millipore Milli-122 

Q purification system (Millipore Direct-QTM 5). Solutions of sulphuric acid, sodium 123 

hydroxide and phosphate buffer saline (PBS pH = 7) were prepared as supporting 124 

electrolytes for the reduction of the graphene oxide and the rest of electrochemical 125 

measurements. The solutions of dopamine were made in 0.1 M H2SO4.  126 

 Solutions of hexacyanoferrate (II/III) 0.01 M were prepared in a 0.1 M Tris-127 

HNO3 pH = 7 buffer. 128 

 Paper patterns were fabricated on Whatman Grade 1 paper and then placed in a 129 

thermostat at 90 ºC to melt the wax. The design was made by means of Inkscape 130 

program. 131 

 The carbon ink used to modify the paper was made by the dissolution of the 132 

commercial carbon paste in anhydrous N, N-dimethylformamide (DMF) in an 133 

ultrasound bath for one hour. The concentration of the carbon paste was 20 % (w/w). 134 
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After cooling at room temperature, the paper was modified by addition of 2 µL of 135 

carbon ink solution by drop casting on one of the sides, and was left to dry having a side 136 

covered by ink (bottom side) and a side which will be used to add the nanomaterials and 137 

samples to measure (upper side). This prepared cellulosic electrode was cut with an area 138 

which covered the working electrode from the screen-printed platform and the ceramic 139 

surface between the working and auxiliary electrode. The surface of the paper electrode 140 

overlaying the working screen-printed card was covered by a protector and the rest was 141 

covered by an adhesive spray. The final electrode was placed on the surface of the 142 

working electrode of a screen-printed electrode card (SPCE).  With this procedure there 143 

was good contact between the carbon ink on the paper and the carbon ink on the SPCE 144 

without any interference from the adhesive spray. Before the measurements, it was 145 

verified that there was full overlap, and the solution added on the surface of the paper 146 

electrode was not in contact with the working SPCE. In order to check that, we have 147 

used the SPCE after a run with overlapping nanomaterials modified paper prepared by 148 

the techniques described below. We have found that there were not differences with a 149 

fresh SPCE, confirming therefore, that the solutions do not contact the underlying 150 

SPCE. 151 

 152 

2.3. Modification of the prepared cellulose based electrodes  153 

Paper electrodes with carbon ink were modified with different types of 154 

nanomaterials of different chemical nature:   metallic (AuNPs) and carbon materials 155 

(CNFs and GO) were employed. Two-dimensional (graphene) as well as one 156 

(nanofibers) or zero (nanoparticles)-dimensional materials were considered, together 157 

with hybrid modification procedures. 158 

 159 
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2.3.1. Modification with carbon nanofibers (CNFs) 160 

Suspensions of CNFs were prepared in DMF and ultrapure water by solving 161 

CNFs weighted in these solvents and put them in an ultrasonic bath for 1 hour. An 162 

aliquot with volume varying from 1 to 4 µL and nanofiber concentration ranging from 163 

0.1 to 10 mg/mL was deposited onto the upper part of the paper before placing it on the 164 

screen-printed electrode card. Modified papers were kept at 80 ºC for 40 min when 165 

working with DMF suspensions, whereas those modified with ultrapure water were left 166 

to dry at room temperature. 167 

2.3.2. Modification with graphene oxide (GO) 168 

 GO needs to be reduced in order to destroy oxide and hydroxide groups which 169 

can interfere with the electrochemical signal. Two procedures for modification with GO 170 

were carried out. The first one started with the preparation of suspensions of GO in 171 

water, with different concentrations (1-100 mg/mL), and direct deposition of 6 µL on 172 

the paper substrates, similarly to the procedure for modification with CNFs, previously 173 

described. After the overlaying with the screen-printed electrode, the graphene oxide on 174 

the paper-based working electrode (PWE) was reduced applying a constant current to 175 

reduce the chemical groups of GO. The modification was followed by 176 

chronopotentiometry. This reduction step was carried out in 3 different solvents (H2SO4, 177 

NaOH, PBS 0.1 M). This process could be influenced by several factors interacting 178 

among them, and therefore it was optimized for every solvent with a full factorial 179 

design with a central point as is commented in. The most significant factors were 180 

chosen for the factorial design (i.e. GO concentration, current intensity and time). The 181 

upper and lower limits chosen were: 1 - 100 mg/L for GO concentration, -1 and -100 182 

µA for current intensity, and 60 and 900 s for time. The full factorial design involved a 183 
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total of 19 experiments (duplicates of 8 different conditions and a triplicate of the 184 

central point). 185 

 186 

 A second procedure for modification of paper electrodes with GO was tested 187 

trying to simplify the protocol. In this case, 40 µL of GO solution (500 µg/mL on 0.1 M 188 

NaCl) were placed on the upper side of the cellulose disc overlaying the surface of a 189 

screen-printed working electrode. GO could be reduced applying either, 190 

chronopotentiometry with different reduction intensities, or multicyclic voltammetry. In 191 

the multicyclic voltammetry procedure, a potential from 0 V to – 1.5 V was applied at a 192 

scan rate of 100 mV/s.  The electrode was then ready for the electrochemical 193 

measurements. 194 

2.3.3. Modification with gold nanoparticles (AuNPs) 195 

 AuNPs were electrogenerated by chronopotentiometry after deposition of 40 µL 196 

of a HAuCl4 solution with different concentrations (0.1, 1 mM) on a cellulose paper 197 

overlaying the surface of a screen-printed working electrode following a procedure 198 

previously developed for screen-printed carbon electrodes in our research group [32]. 199 

2.3.4. Modification with hybrid nanostructures 200 

 All these nanomaterials (CNFs, GO and AuNPs) could be combined on the same 201 

paper specimen generating a more conductive material, which could give a better 202 

electrochemical signal than the paper modified with a single nanomaterial. Several 203 

combinations were studied but preliminary results indicated that the most advantageous 204 

involved the combination of a carbon nanomaterial (CNFs or reduced GO) with gold 205 

nanoparticles. The electrodeposition of AuNPs on a paper modified with nanofibers was 206 

also optimised by a factorial design whereas for the AuNPs/GO modification the best 207 
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individual conditions were employed. The limit values for the most significant factors 208 

were: 0.1 and 1 mM for AuCl4
- concentration, -1 and -100 µA for current intensity and 209 

60 and 180 s for time. The combination of several nanoparticles was also studied. 210 

The Figure 1 summarizes the main routes used in this work for the preparation 211 

of nanostructured paper electrodes. 212 

Insert figure 1 213 

2.4. Analytical procedure 214 

The modified electrodes were evaluated by cyclic voltammetry (from 0 V to 215 

+0.5 V at a scan rate of 50 mV/s), adding 40-µL drops of 100 µM dopamine solutions 216 

(in 0.1 M H2SO4). The paper disc placed on the commercial screen-printed carbon 217 

electrode was washed with ultrapure water (Milli-Q) between the modification and the 218 

analysis step. The analytical signal monitored was the intensity of the peak current. 219 

Results were obtained when the signal was stabilized.  220 

2.5. Paper substrate characterization  221 

The modified papers with the best properties were characterized by several 222 

techniques such as Scanning Electron Microscopy (SEM) or Attenuated Total 223 

Reflection (ATR) Spectrometry. SEM characterization was carried out at a microscope 224 

JEOL 6610LV using 5-20 kV as voltage for the electron beam. The homogeneity of the 225 

surface nanostructured with AuNPs was checked by scanning at different points of the 226 

paper and recording the Electron Dispersive X-Ray (EDX) spectra with an EDX 227 

attachment (JSM-6610). For obtaining lateral images of SEM papers, they were cut with 228 

a scalpel, to obtain a clean cut. AuNPs were imaged by backscattered electron images. 229 

The ATR measurements were carried out at both sides of the modified papers (also for 230 

the GO reduced papers). A FTIR spectrometer (Varian Golden Gate, Varian 670-IR) 231 
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was used. The paper electrodes were placed on the surface of a diamond crystal to 232 

monitor the ATR spectrum.  233 

3. Results and discussion 234 

 235 

3.1. Preliminary studies on single-nanomaterial modification procedures 236 

 The deposition of each nanomaterial generated electrodes with different 237 

electrochemical behaviour. Figure 2A shows the morphology of the plain cellulose 238 

network and cross sections of the substrates coated with the carbon ink. The paper used 239 

had a thickness of around 150 µm. A 4 - 10 µm thick carbon layer could be observed at 240 

the cross section of the paper. Ink deposition could also be monitored at the ATR 241 

spectrum at Figure S1. As expected, the bare paper has the same spectrum at both sides, 242 

showing peaks at 3340 nm associated to -OH groups and at 2906 nm due to -C-OH 243 

bonds. CH2OH groups were also identified at other studies with coated filter paper [33]. 244 

In contrast, the carbon ink that was employed as a contact layer with the working 245 

electrode of the SPCE (from now, bottom side of the paper) showed only a huge band of 246 

absorption associated to the carbon groups related to the ink. This agrees with the cross 247 

sections observed at the SEM images in Figure 2A having ink only at one side of the 248 

paper electrode. 249 

INSERT FIGURE 2  250 

 251 

 252 

3.1.1. Modification with CNFs 253 

 Modification with CNFs was carried out by drop casting an aliquot on the paper 254 

substrates, and therefore the process was simple and not time consuming only needing 255 

one cycle of cyclic voltammetry to get a stable signal.  Several concentrations between 256 
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0.1 mg/mL and 1 mg/mL were studied with both working solvents (DMF and H2O), 257 

being DMF the best option to increase the intensity of the dopamine oxidation peak. 258 

Increasing the added volume of the CNF solution on the paper did not improve the 259 

signal of dopamine, and therefore, we have chosen for further studies the minimum 260 

addition (2 µL of a stock solution of 1 mg/mL). The overall effect of the modification 261 

was only a slight increase in the intensity current peaks. Results obtained showed an 262 

increment of the oxidation peak current for dopamine around 0.31 and 0.57 µA using 263 

carbon nanofibers suspended in H2O and DMF. Reproducibility of the process was 264 

better, as compared with the results with unmodified paper. Peak separation improves 265 

considerably, indicating higher electronic transfer rates with a decrease in the ∆Ep 266 

around 150 mV in comparison with unmodified paper electrodes.  267 

 The characterization of some modified papers with nanofibers under the SEM 268 

microscope showed a modified upper-side totally covered by a homogenous layer of 269 

carbon nanofibers in comparison to an unmodified paper with carbon ink as we can see 270 

in Figure 2B. This would yield to higher conductive area in contact with the solution, 271 

explaining the improvement of the oxidation peak current. However, the 272 

homogenization of the CNFs through the paper thickness was not fully successful, since 273 

the lateral view shows a layer of CNFs at the surface which was not observed in the 274 

inner layers of the paper. This is probably due to the high aspect ratio of CNFs. 275 

Therefore, this procedure results on a partially modified paper with two conductive 276 

layers at the outer surfaces but with a not visibly-modified core of cellulose fibers with 277 

low conductivity, which might explain the slight improvement of the electrochemical 278 

behaviour observed. 279 

 280 

3.1.2. Modification with AuNPs 281 
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 The modification with AuNPs was made by the electrodeposition of Au (0) 282 

using 1 mM HAuCl4 in 0.1 M HCl and applying a reduction intensity of 100 µA. Unlike 283 

the procedure with CNF paper electrodes, this procedure needs a stabilisation time 284 

(quiet time) of 6 min after the reduction process to obtain a stable background signal. 285 

Although this procedure takes longer than the AuNPs electrogeneration at a SPCE [32], 286 

it requires fewer reagents than batch synthesis, and therefore, there is less contamination 287 

on the cellulose matrix. [34-36] In this case, the effect obtained was a high improvement 288 

on the intensity peaks of dopamine showing an anodic intensity around 2.4 µA, and on 289 

the reproducibility of the process, in comparison with the results obtained on 290 

unmodified paper. Peak separation decreases considerably showing a ∆Ep around 40 291 

mV obtaining a reversible electrochemical process of dopamine, as it is shown in Table 292 

S1.  293 

 The AuNPs-modified paper electrodes were characterized under the SEM 294 

(Figure 3), using backscattered electrons images and energy dispersive X-Ray 295 

spectrometry (EDX). Au was clearly identified at the points seen as particles at the 296 

backscattered electron´s image. The microanalysis study could not be carried out at the 297 

lateral paper section due to instrumental limitations.  INSERT FIGURE 3 298 

 299 

3.1.3. Modification with graphene oxide (GO) 300 

 In order to prepare the nanostructured electrochemical transducer, graphene-301 

oxide must be reduced. This could be made by chronoamperometry or cyclic 302 

voltammetry. The result was a reduced graphene-oxide (rGO) with a minimum amount 303 

of oxides-groups which could interfere with the conductivity of the system. In this 304 

work, a stabilisation time of around 6 min after the reduction process was also required 305 

to obtain a stable background signal similar to that of the AuNPs paper electrodes.  306 
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 Factorial design was applied to elucidate the most significant variables for 307 

transducer preparation on different reduction solvents such as 0.1 M H2SO4, 0.1 M 308 

NaOH and 0.1 M PBS (pH 7.0) by using chronopotentiometry. The variables studied 309 

were the intensity of the current required for the reduction of GO, the time of 310 

application and the concentration of GO, with the minimum and maximum values 311 

shown previously chosen. The objective was to maximize the intensity of the current of 312 

the anodic peak of dopamine, and to achieve the lowest ∆Ep, in order to improve the 313 

performance of the sensors developed with these transducers. Every variable made a 314 

different influence on the response depending on the solvent. When H2SO4 was used as 315 

electrolyte, the GO concentration and its interaction with the reduction current intensity 316 

were the most important factors if we aimed the lowest ∆Ep. However, long time was 317 

necessary for obtaining the highest anodic peak current intensity, combined with the GO 318 

concentration. GO reduction using PBS was found to be greatly influenced by the time 319 

applied, having the intensity of the current applied a weaker effect. Finally, in case of 320 

NaOH, no statistically significant factors were found. The Pareto charts and 3D plots 321 

obtained by multifactorial design were used to identify the most significative variables 322 

based on the optimization criteria: minimum ∆Ep or maximum anodic peak current 323 

intensity Ipa are in figures S4-S9. The best electrolyte for GO reduction at paper-ink 324 

electrodes was NaOH. The results of the influence of every variable are shown in Table 325 

S2 and S3. The optimum conditions were:  100 mg/L GO solution, employing a current 326 

intensity of -100 µA for 60 s.  Other possible options for reduction were 100 mg/L of 327 

GO, with -100 µA for 60 s in H2SO4, or 100 ppm GO -10 µA for 900 s in PBS. All these 328 

possibilities were better than the unmodified paper, with higher peak current intensities, 329 

better reproducibility and a more reversible electrochemical process. 330 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

 The second procedure for modification with graphene oxide and further 331 

reduction also improves the electrochemical behaviour of dopamine obtaining current 332 

intensity of 2.6 µA for the anodic peak and a ∆Ep of 44 mV. The reduction of graphene 333 

oxide in this case involved 5 cycles of cyclic voltammetry. This was faster, because 334 

there was no need to dry the solvent. Results are shown at Table S6.  335 

 336 

We can conclude that the procedures used to deposit and reduce graphene oxide 337 

generated the highest anodic intensity but also the highest background. This could 338 

difficult the determination of analytes with lower concentration in comparison with the 339 

modification with AuNPs. These procedures have better reproducibility compared with 340 

the AuNPs modification. They could result in more precise and reliable transducers with 341 

a simpler synthesis procedure than other methods described in the literature [37-38]. 342 

 343 

 The modification of the paper electrodes with GO was studied under the SEM 344 

but GO could not be identified neither at the paper disc or their cross sections. Although 345 

this nanomaterial could potentially be seen at the SEM [39], in this case the cellulose 346 

matrix of the electrode could have hindered its detection. ATR spectra did not change 347 

after the modification with GO as we can see in Figure S2. It is possible that the 348 

sensitivity of this technique was not good enough to characterize this type of 349 

nanomaterial in a thick cellulose matrix. 350 

 351 

 352 

3.2. Nanostructuration with hybrid nanomaterials (CNFs or GO with AuNPs) 353 
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 Paper-based electrodes were modified by combinations of both carbon 354 

nanomaterials and gold nanoparticles, yielding transducers with the best electrochemical 355 

features. Results from both combinations were obtained after a quiet time of 6 min after 356 

adding the drop on the paper electrode. 357 

 The CNFs modified paper electrodes had a higher conductive surface, and this 358 

helped to improve the reproducibility of the electrodeposition of gold. A factorial design 359 

was used to reduce the number of experiments and optimize the procedure. This 360 

factorial design was made involving the following variables: current intensity, time of 361 

application of the current intensity and AuCl4
- concentration. All the factors summarised 362 

in Figure S3 were found significant (p<0.05) in response of obtaining high current 363 

intensity peaks and an electrochemical process more reversible (lower ∆Ep).  Best 364 

conditions were the highest concentration, the higher current intensity and the longest 365 

reduction time (1 mM, -100 µA, 180 s) because of the higher anodic peak current 366 

intensity and better reversibility obtained with a paper with CNFs + AuNPs with an 367 

oxidation current intensity of 2 µA and a reversibility or ∆Ep of 54 mV in comparison 368 

with unmodified papers (ipa = 1.4 µA, ∆Ep = 220 mV) and papers modified with just 369 

one type of these nanomaterials for dopamine oxidation. Table S7 show the results 370 

obtained for the best hybrid combinations of nanomaterials studied. The results of the 371 

influence of every variable are shown on Tables S4 and S5. Results obtained for higher 372 

gold concentration or higher reduction current intensity did not show any improvement 373 

on the response, and therefore they were discarded.  374 

 On the other hand, the GO-AuNPs hybrids were studied with the individual 375 

optimal conditions (100 mg/L in NaOH by applying a reduction current intensity of 100 376 

µA for 60 s, or reducing 40 µL of 500 mg/L of GO by applying 5 cycles at cyclic 377 

voltammetry). The results obtained showed a higher improvement of the anodic process 378 
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and more reversible electrochemical behaviour, as compared with paper substrates 379 

modified with only reduced GO. The anodic peak current intensity was the highest, and 380 

the peak separation the lowest, but non-faradaic effects were very significant, with the 381 

highest capacitive currents among of all the nanostructured possibilities explored 382 

(Figure 4). Even though the two procedures of modification with graphene oxide have 383 

similar results obtained with dopamine, the reduction by cyclic voltammetry results in 384 

higher capacitive current, as compared with the other procedure shown in Figure 4.  The 385 

electrochemical process of dopamine by multicycle voltammetry in paper ink electrodes 386 

with reduced graphene oxide appears at lower potential, as compared to the other case. 387 

One possible hypothesis is the formation of AgCl over the reference electrode during 388 

the reduction process due to the high concentration of Cl-. 389 

The combination of the three types of nanomaterials did not make any improvement, 390 

and therefore this option was not further explored.  391 

 392 

3.3. Comparison of the modified paper-based electrodes 393 

 It has been shown that the modification of the paper electrodes with several 394 

nanomaterials (CNFs, rGO, AuNPs) produced different electrochemical effects. Hybrids 395 

of CNFs and AuNPs yielded the lowest capacitive current, whereas the rGO with 396 

AuNPs hybrids produced the highest anodic peak intensity. Figure 4 summarizes the 397 

most representative voltammograms.  398 

 Finally, in order to evaluate the improvement on sensitivity, the best electrodes 399 

(rGO by NaOH with a reduction intensity current of 100 µA for 60 s with AuNPs and 400 

CNFs with AuNPs) were tested by triplicate with increasing concentrations of dopamine 401 

from 5 µM to 100 µM, and compared with those obtained with plain paper.  Two 402 

quantification techniques were used: square wave voltammetry (SWV, with 75 mV of 403 
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amplitude, 20 Hz of frequency, 2 mV of step potential, quiet time of 360 s) and 404 

differential pulse voltammetry (DPV, with 20 mV of pulse amplitude, 2 mV of step 405 

potential, quiet time of 360 s). The best linear regression and sensitivity was achieved 406 

for the hybrid structure of CNFs (DMF) and AuNPs, by using DPV (ipa (µA) = 0.0779 407 

[Dopamine] (µM) - 0.049, R² = 0.989) with a LOD of 14 µM (n=6). 408 

INSERT FIGURE 4 409 

3.4. Estimation of the resistance of paper-based electrodes by Electrochemical 410 

Impedance Spectroscopy (EIS)  411 

Impedance measurements were carried out in order to evaluate this property at the 412 

system under study and how it is affected by the modification with nanomaterials. 413 

Measurements of impedance were made on SPCE with paper-based modified with the 414 

best conditions.  During a redox reaction at an electrode, the currents involved at the 415 

capacitance of the double layer can be represented by the Randles-Ershler circuit. The 416 

corresponding Nyquist diagram is shown in figure 5, in comparison with some Nyquist 417 

diagram measured on paper based modified with carbon nanomaterials and gold 418 

nanoparticles. 419 

INSERT FIGURE 5 420 

From this plot, we can calculate the charge transfer resistance Rt and the solution 421 

resistance RΩ. The latter in this case depends on the contact between SPCE and the 422 

paper electrode. We have also carried out measurements of impedance on bare SPCE, to 423 

calculate the resistance obtained on the paper electrode by substracting this value from 424 

the total reading.  Results are shown in table 1. 425 

Resistance between the contact of the SPCE and the carbon ink on a non-nanostructured 426 

paper was 146 Ω. This value decreases with the modification with AuNPs, and it is the 427 
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reason for the lower background at the voltammogram of dopamine (figure 4). In 428 

contrast, reduced graphene oxide increases the resistance, in agreement with the higher 429 

capacitive current shown at figure 4. 430 

 The charge transfer resistance (Rt) in turn had the lowest values for the 431 

combinations of rGO-AuNPs and CNFs-AuNPs. This is probably due to the higher 432 

conductivity of the system. 433 

Insert Table 1 434 

 We have studied the variation of Ep/2 and Ep at different scan rates for these 435 

nanomaterials electrode modifications. The representation of (Ep/2 - Ep) vs. scan rate 436 

gave a bad linear regression coefficient. It could be considered that the processes are 437 

reversible, since there was no influence of the scan rate. The representation of peak 438 

intensity vs. ν1/2 was linear, indicating that the processes in our work were diffusion 439 

controlled. 440 

 Regarding mass transfer processes, for reversible systems, surface concentration 441 

of electroactive species depends only on the potential. Therefore, in our work, it can be 442 

considered that peak currents are independent on the geometry of the electrode. 443 

4. Conclusions 444 

 Paper working electrodes were modified by the deposition of several 445 

nanomaterials in order to improve the conductivity of the transducer and obtaining a 446 

better electrochemical signal. SEM-EDX and impedance measurements were 447 

appropriate to characterize ink modified paper substrates unmodified and modified with 448 

CNFs or AuNPs and observe the influence made by the nanomaterials added on the 449 

resistance and conductivity parameters of the cellulose system. Optimization of the 450 

transducers was carried out aiming the maximum anodic peak current for dopamine, and 451 
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the minimum peak separation. The best transducers were those obtained with a 452 

combination of carbon nanomaterials and gold nanoparticles: rGO-AuNPs and CNFs-453 

AuNPs. These nanomaterials increase the conductivity of the system improving 454 

intensity currents and reversibility of the dopamine oxidation. Peak currents could be 455 

considered independent of the geometry of the electrode. The LOD for dopamine 456 

determination was 14 µM for CNF-AuNPs and 20 µM for rGO-AuNPs. These results 457 

could be applied to other analytes. This work opens the path for the development of low 458 

cost sensors with improved analytical characteristics through the use of metallic and/or 459 

carbon nanostructures on paper substrates. As future perspectives, it is also possible to 460 

develop a multiple layer portable sensor with the possibility to tune the modification of 461 

the paper layers for a given purpose. 462 
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Table 1. Charge transfer and surface resistance of hexacyanoferrate (II/III) 0.01 M 

corresponding to impedance measures at modified and unmodified paper electrodes. Values 

shown are the average of 3 measurements at independent electrodes.  

 

Transducer Charge transfer 

resistance Rt (Ohm) 

Surface resistance 

RΩ (Ohm) 

Resistance of the 

contact between 

carbon inks (Ohm) 

Unmodified SPCE 184.9 ± 30 246 ± 57  

Unmodified paper 144 ± 3 392 ± 14 146 

AuNPs 139 ± 10 328 ± 21 82 

CNF 175.1 ± 50 409 ± 19 163 

CNF+ AuNPs 99.8 ± 6 343 ± 74 97 

rGO 99 ± 7 411 ± 42 165 

rGO-AuNPs 84 ± 17 396 ± 53 150 
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Figure 1. Schematic diagram showing the preparation of the paper electrodes used in this 

work. (A) Modification of the upper part of the paper with both carbon nanofibers (CNFs) and 

electrodeposited AuNPs. (B) Modification of the upper side of paper with graphene-oxide (GO) 

before overlaying it on the screen-printed electrode card to electrodeposit AuNPs. (C) 

Modification of the upper part of paper with both GO and electrodeposited AuNPs 
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Figure (2). A) SEM micrographs of a paper disc with a carbon ink contact at one side. (A1) 

Morphology of the upper side (unmodified cellulose network). A2) and A3) Cross section with 

two different magnifications. (B) SEM images of a CNFs modified paper with carbon ink contact 

below. B1) Micrograph of the upper side. B2) Cross section. 
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Figure (3). A) Backscattered electrons image of a AuNPs modified paper B) EDX spectra at 3 

different points confirming the presence of gold and another paper impurities. 
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Figure 4: (A). Cyclic voltammetry of an unmodified paper electrode and several modified paper 

electrodes with different combinations of nanomaterials.  
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Figure 5: Nyquist diagram obtained in paper-based working electrodes modified with carbon 

nanomaterials and gold nanoparticles. The electrochemical probe was hexacyanoferrate (II/III) 

0.01 M prepared in a 0.1 M Tris-HNO3 pH = 7.0 buffer. 
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