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Abstract—This paper describes the characterization of reflec-
tarray unit cells using Support Vector Machines (SVMs) to obtain
fast and accurately the full matrix of reflection coefficients,
which is used for an analysis of dual-polarized reflectarrays,
demonstrating the performance of the model. First, a surrogate
model of the reflectarray unit cell is obtained using SVMs. To this
end, a set of random samples of the reflection coefficient matrix
with a full-wave Method of Moments based on Local Periodicity
(MoM-LP) is used to train the SVMs. To efficiently obtain the
surrogate model, a novel strategy to accelerate the training
process is presented, remarkably reducing computing time. Next,
the model is tested against a different set of samples, obtaining
an excellent agreement between the SVM model and MoM-LP
simulations for all reflection coefficients, including the cross-
coefficients. The surrogate model is then used for an efficient
analysis of three reflectarrays with pencil beam for point-to-
point communications, isoflux pattern for global Earth coverage,
and a shaped-beam for Local Multipoint Distribution Service
application, showing excellent agreement in both copolar and
crosspolar patterns between the SVM and MoM-LP simulations.
Finally, the analysis is accelerated by a factor larger than three
orders of magnitude using SVMs instead of MoM-LP.

Index Terms—Support Vector Machine (SVM), unit cell, effi-
cient analysis, reflectarray, shaped beam antenna, point-to-point
communications, Local Multipoint Distribution Service (LMDS),
isoflux pattern

I. INTRODUCTION

REFLECTARRAY antennas have been widely studied in
the last three decades since the popularization of the mi-

crostrip technology [1]. This kind of antenna unifies the worlds
of the parabolic reflectors and phased-arrays, overcoming
some of their drawbacks and resulting in a low mass, low vol-
ume and low profile antenna with great capabilities of beam-
forming while keeping low losses [1]. The main drawback
of reflectarray antennas is their inherent narrow bandwidth,
although it can be overcome by employing broadband elements
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[2]–[5] and/or performing optimizations at several frequencies
[6], [7] in the range of interest.

Regarding the analysis of reflectarrays, there are many
different approaches, although the most popular, given the
quasi-periodicity nature of this antenna, is the one based
on a full-wave analysis assuming local periodicity [1], [8]–
[10]. This kind of approach uses the Floquet theorem and it
embeds the reflectarray unit cell in an infinite array comprised
of the same unit cell, and it is illuminated by an oblique
incident plane wave, taking approximately into account mutual
coupling and substrate losses [8]–[10]. Although it is common
in the literature to implement such an analysis with the Method
of Moments, as in [8]–[13], the use of other full-wave analysis
techniques such as Finite Differences in Time Domain (FDTD)
[14], [15] or Finite Element Method (FEM) [16], [17] is also
possible. Full wave analysis of the whole antenna can be done
with different methods (e.g., FEM [18], MoM [19] or others
[20]), but due to the large amounts of memory and computing
time involved, they may not be of practical use for antenna
design or optimization.

Reflectarray full-wave analysis based on local periodicity
presents a good trade-off between accuracy and computing
time, and has been widely used to analyze and design anten-
nas with very tight requirements for space applications [1],
[6], [7]. Very recently, reflectarray optimization using a full-
wave analysis based on local periodicity has demonstrated
a reasonable computational performance [21]. Nonetheless,
other optimization approaches, relying on the use of Artificial
Neural Networks (ANNs) [22], [23] or databases [11], are
faster, although at the expense of losing accuracy in the unit
cell model. One of the reasons for the use of full-wave analysis
techniques based on local periodicity is the accurate prediction
of the crosspolar pattern. Since this component of the far field
is several orders of magnitude lower than the copolar pattern,
high accuracy in the computation of the reflection coefficient
matrix, which fully characterizes the behavior of the unit cell
[1], is needed.

In order to accelerate the reflectarray analysis and opti-
mization, a unit cell model based on ANNs [22]–[30] or
databases [11], [31]–[34] may be used. The main disadvan-
tages of databases are the high number of samples required
and the use of interpolation. The latter produces a loss of
accuracy, specially in the cross-coefficients of the reflection
coefficient matrix, whose magnitude is very low compared to
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the direct coefficients [1]. The ANN obtains a model for the
electromagnetic behavior of the cell and it is free from the
accuracy loss associated to the interpolation. Nevertheless, this
approach may suffer from overfitting [35]. In addition, most
works related to ANNs have only produced models dealing
with phases of the direct coefficients [22]–[27], sometimes
also including the magnitude of a direct coefficient [28],
[30], and usually only taking into account one polarization
[23]–[26], [28], [30], which limits the applications of the
designed reflectarrays with that technique. In [22], [27] dual-
polarized reflectarrays are considered, but only the phase of
the reflection coefficients are modeled. Finally, limited results
have been obtained in the cross-coefficients [29], [30] and
crosspolar far field when ANNs are used for the prediction of
the full reflection coefficient matrix. Up to the knowledge of
the authors, [29] is the only work dealing with dual-polarized
reflectarrays and the full matrix of reflection coefficients using
ANNs.

In this work, we propose the use of Support Vector Ma-
chines (SVMs) [36] as an alternative to the use of databases
or ANNs in order to obtain an accurate model of the full
reflection coefficient matrix to efficiently analyze linear, dual-
polarized reflectarray antennas. SVMs improve ANNs since
they overcome the ANNs limitation of overfitting and require
less training patterns to obtain accurate results, thus taking less
time in obtaining a more accurate model. In order to accelerate
the SVM training and improve its accuracy, strategies to speed
up computations and reduce the number of input variables to
the SVM are detailed. The SVM model is tested against a set
of different test patterns, produced by the MoM-LP, obtaining
accurate results for all coefficients of the reflection coefficient
matrix. Finally, the SVM model is used in the analysis of re-
flectarray antennas, comparing the obtained radiation patterns
with those of a MoM-LP simulation, obtaining a high degree
of agreement for both copolar and crosspolar patterns in both
linear polarizations, while greatly speeding up the analysis
computing time.

This paper is organized as follows. Section II provides a
brief overview of the SVMs theory and reflectarray analysis.
Section III details the strategies followed for the SVM training
in order to increase accuracy and speed up computations.
Section IV shows the comparison between the SVM model
and MoM-LP simulation for different reflection coefficients
and the analysis of the whole antenna comparing the radiation
patterns. Finally, Section V contains the conclusions.

II. SVM THEORY AND REFLECTARRAY ANALYSIS

A. SVM Theoretical background

SVMs are automatic learning structures that are able to deal
with both classification and regression problems [37]. In this
work, the regression problem is adapted to find a model that
best fits the behavior of a reflectarray unit cell for a given set of
inputs. SVMs belong to a class of supervised learning in which
a training set, that is a set of inputs (~xi) and outputs (yi), is
used to estimate a function f that relates inputs and outputs.
Then, the estimated function f is employed to associate each
new input to its corresponding output. Formally speaking,

given a training set T = {(~xi, yi)}i=1, 2, ..., Nr
, ~xi ∈ χ ⊆

RL, yi ∈ R, it is possible to find a mathematical function
f : χ → R, such that the output for a new element ~x that
belongs to the input space (χ) is estimated as follows:

ỹ = f (~x) , (1)

where ỹ is the SVM estimation of the actual output y corre-
sponding to ~x.

The regression function f may be nonlinear. In such cases,
the SVM maps the input space into a high-dimensional space,
called feature space (H), where the regression may be accu-
rately performed using a linear function. Feature space and
input space are the same when f is linear. Assuming that the
training data (mapped, if necessary, to H) is properly fitted to
a linear function, the statistical learning theory states that the
optimal regression function is maximally flat [37]. In this case,
optimality means that f has good generalization properties,
i.e., that it will properly fit data of the same nature but not
initially included in the training set. To obtain a maximally
flat function that properly fits the training data, it is suggested
to minimize the regularized risk functional, Rreg[f ], which
considers the empirical errors and the flatness of f :

Rreg[f ] ∝ ‖~w‖
2

2
+ C

Nr∑

i=1

c (~xi, yi, f (~xi)) , (2)

where ~w is a weight vector in H, ‖ · ‖ stands for the
Euclidean norm, and ‖~w‖2/2 acts as a regularization term
whose minimization assures to provide flatness of f in H;
c (~x, y, f (~x)) is the cost (or loss) function associated to the
regression error and C is a positive constant that determines
a trade-off between minimizing the empirical risk (regression
error) and providing good generalization properties [38]. The
introduction of slack variables to the regression problem leads
to a constrained minimization problem whose solution is a
function f of the form:

f(~x) = 〈~w, ~φ (~x)〉+ b =

Ns∑

i=1

[(
α−i − α+

i

)
K(~xi, ~x)

]
+ b, (3)

where ~xi are the support vectors; Ns is the number of support
vectors; α−i and α+

i are the optimal Lagrange multipliers; b is
the offset, and K (~xi, ~x) is the kernel function that, operating
with arguments in the input space (~xi, ~x), produces the dot
product of their images in the feature space, i.e.: K (~xi, ~x) =
〈~φ (~xi) , ~φ (~x)〉.

In this work, we use the ε-insensitive loss function since it
provides a sparse representation of function f in terms of the
support vectors, i.e. it requires a smaller value of Ns than other
loss functions [37]. The ε-insensitive loss function is defined
as follows:

c (~x, y, f (~x)) = max {0, |y − f (~x)| − ε} . (4)

Note that the cost function defined in (4) does not penalize re-
gression errors below a given ε ≥ 0. Therefore, the parameter
ε, that must be chosen beforehand, is related to the maximum
accuracy that the SVM model may achieve. In addition, we
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use a Gaussian Kernel (also known as Radial Basis Function,
RBF) which follows the equation

K(~x, ~x ′) = exp
(
−γ ‖~x− ~x ′‖2

)
, (5)

where γ is a tunable parameter that may be interpreted as
the inverse of double the variance of the Gaussian function.
Equation (3) expresses function f as a linear combination of
versions of the kernel function plus an offset. A low value of γ
yields a mixture of wide Gaussian functions and, very likely, a
soft function f . On the other hand, a high value of γ produces
a mixture of narrow Gaussian functions and, very likely, a
very rich function f . As a consequence, the optimal value of
γ depends on the shape of the function to be estimated.

From the above description it is clear that the SVM model is
defined by the parameters C, γ and ε. Furthermore, the proper
selection of these parameters is of fundamental importance
since, for a given problem, they are related to the model
accuracy.

B. Reflectarray analysis

Assuming a single-offset reflectarray configuration [1] (see
Fig. 1), the primary feed imposes an incident electric field
on the reflectarray surface. The reflected electric field can be
computed at each reflectarray element (m,n) as follows:

~E
X/Y
ref (xm, yn) = Rmn · ~EX/Yinc (xm, yn), (6)

where the superscript indicates the antenna polarization,
(xm, yn) are the coordinates of the (m,n)th element and

Rmn =

(
ρmnxx ρmnxy

ρmnyx ρmnyy

)
, (7)

is the reflection coefficient matrix which relates both fields at
each element. The components of matrix Rmn are complex
numbers and fully characterize the reflectarray unit cell. ρmnxx
and ρmnyy are known as the direct coefficients while ρmnxy and
ρmnyx are the cross-coefficients. An accurate characterization
of the cross-coefficients, as well as the direct coefficients, is
necessary to achieve a correct prediction of the crosspolar
far field [21]. To that end, matrix Rmn is computed with
a full-wave analysis tool assuming local periodicity. This
task is the most time consuming operation when analyzing
a reflectarray. Hence, in order to substantially speed up the
reflectarray analysis, a fast computation of Rmn is required.
This acceleration may be achieved using SVMs to obtain
a surrogate model of Rmn. To the best of the authors’
knowledge, most noted efforts to speed up the computation
of Rmn have been focused on the fast characterization of the
phases of the direct coefficients [22]–[25] though not on the
complete reflection coefficient matrix.

Finally, once the tangential reflected field has been obtained
with (6), the radiation patterns can be efficiently computed
using the Fast Fourier Transform algorithm, and the copolar
and crosspolar far field components obtained using Ludwig’s
third definition of crosspolarization [21] for linear polarization.

ŷr

x̂r

ẑr

~rf

ẑf

−ŷf

x̂f

Fig. 1. Sketch of the reflectarray single-offset geometry.

III. CHARACTERIZATION OF UNIT CELLS USING SVM

A. Input space and input parameters

The considered reflectarray unit cell is shown in Fig. 2. It is
comprised of eight parallel and coplanar dipoles in two layers
of metallization. Each polarization is controlled by a set of
four dipoles and both sets are shifted half a unit cell’s period
from each other. The goal of the SVM training is to obtain a
surrogate model of the reflection coefficient matrix in (7). To
obtain the training samples for the SVM, Rmn is computed
using the spectral domain MoM-LP presented in [9], which
has been validated with measurements of prototypes [39]–[41],
waveguide measurements to simulate periodic conditions [42],
full-wave simulations of the whole antenna [43] and full-wave
simulations assuming local periodicity [42], [44].

This matrix depends on several variables, such as: fre-
quency, angle of the impinging plane wave (incident angle),
geometry specifications (periodicity, length and width of the
dipoles, and separation between them, see Fig. 2), and sub-
strate properties. Therefore, the unit cell offers many degrees
of freedom, with multiple resonances where the function
exhibits a highly non-linear behavior, and the number of those
resonances grows with the number of input variables. Since
the SVM model should accurately predict Rmn for any value
of those input variables, in this paper we propose to reduce
the number of variables to generate the surrogate model.

We initially fix the substrate and the periodicity. The
substrate is usually set to the values of some commercially
available substrate. For the present case, the CuClad 233
substrate is used for both layers, with a thickness of 0.787 mm
and a complex relative permittivity εr = 2.33− j3.029 ·10−3.
To maintain fixed the physical dimensions of the array, we
employ a unit cell size of 5.84 mm × 5.84 mm, which is
approximately half a wavelength at the frequency of analysis,
which is set to 25.5 GHz. In addition, we also consider a
reduction on the geometry specifications of the unit cell. For
the element employed in this work, the phase shift for the
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Fig. 2. Employed reflectarray unit cell based on parallel and coplanar dipoles
in two layers of metallization.

reflectarray design is obtained by varying the dipole lengths
(see [4], [39]), thus the dipole widths and the separation
between dipoles may be fixed without a noticeable loss in
performance. In this work, we set the dipole width to 0.5 mm
and the separation between dipoles to 4 mm.

The incident angle (θ, ϕ) of the impinging plane wave
on each reflectarray element depends on the position of the
element. An accurate analysis of the reflectarray requires to
take this fact into account. In this work, a different surrogate
model is obtained for each incident angle, and thus the incident
angle is treated as an input parameter and not as an input
variable to produce the SVM model.

Even though the input variables have been reduced to eight
dipole lengths, a further complexity reduction would facilitate
the SVM training process. In this regard, two geometrical
variables are defined, Tx and Ty , and each one controls the
dipole lengths for each polarization. The variables Tx and Ty
are considered to be defined over the interval [0.1, 5] mm; thus,
the input space is χ = [0.1, 5] mm× [0.1, 5] mm. The relation
between the dipole lengths and these new variables are as
follows (see Fig. 2):

La4 = Tx ; Lb1 = Lb3 = 0.63Tx ; Lb2 = 0.93Tx,

Lb4 = 0.95Ty ; La1 = La3 = 0.58Ty ; La2 = Ty.
(8)

In summary, Tx and Ty are the input variables of the SVM,
and an SVM model is obtained for each value of the input
parameters. Finally, despite the proposed reduction in the
number of degrees of freedom of the unit cell shown in
Fig. 2, it is worth mentioning that shaped beams with high
performances may be obtained in practice by optimizing just
one or two reflectarray geometrical parameters [11].

B. Output variables

The reflection coefficients of (7) are complex numbers and
SVMs are conceived to estimate real valued functions. Thus,
at least eight models must be trained for each incident angle.
Initially, it is best to train the real and imaginary parts instead
of the magnitude and phase since it is not possible to provide

an accurate unwrapped version of the phase over a randomly
distributed set of points in χ. The obtention of the magnitude
and the phase of the reflection coefficients is straightforward
from their real and imaginary parts.

However, the shape of the direct coefficients magnitude is
very soft and close to unity, while the shape of their real
and imaginary parts fluctuate in a more striking way. As a
result, the estimation of |ρxx| and of |ρyy| is much more
accurate if these variables are trained directly than if they
are computed from the estimation of the real and imaginary
parts. This behavior is not extensive to the cross-coefficients.
Therefore, we consider ten output variables for each incident
angle: |ρxx|, |ρyy|, Re {ρxx}, Im {ρxx}, Re {ρxy}, Im {ρxy},
Re {ρyx}, Im {ρyx}, Re {ρyy}, and Im {ρyy}.

C. Model selection and training

The LIBSVM library [38] with the Gaussian kernel of (5)
is used to get the SVM model. The main goal of the SVM
model selection is to find the optimal parameters (C, γ), noted
as (C∗, γ∗), that are supposed to minimize the relative error of
the estimation over a set of data that were not initially included
in the training set. The error function is defined as follows:

e (~x, y, f (~x)) = y − f (~x) , (9)

where f(~x) is the output of the SVM model and y is the actual
output of the MoM-LP.

Lets assume that the regression, for a given SVM model, is
computed over a set of M input samples ~xi, i = 1, 2, . . . ,M .
Consequently, a set of output samples (yi), a set of samples
of function f (f (~xi)), and the corresponding set of samples
of error function (ei = e (~xi, yi, f (~xi))) are produced. In
this manner, we may define the vectors of samples: ~y =
(y1, y2, . . . , yM ) and ~e = (e1, e2, . . . , eM ). To obtain a mea-
surement of the accuracy of the function estimation over the
set of M samples, we use the relative error that is defined by

RE =
‖~e ‖
‖~y ‖ =

√
M∑
i=1

|ei|2

√
M∑
i=1

|yi|2
, (10)

or equivalently, its logarithmic value in dB as follows

10 log
(
RE2

)
= 10 log

( ‖~e ‖2
‖~y ‖2

)
, (11)

that expresses the quotient between the energy of the error
vector ~e and the energy of the output vector ~y. This way,
a small error produces an approximation function f that is
close to the reference function y without regard to the function
being close to 0 (cross-coefficients) or close to 1 (direct
coefficients), since the error is referenced to the corresponding
output samples. The selected optimal parameters (C∗, γ∗)
should minimize (10) and (11).

In addition to the selection of the parameters (C∗, γ∗), as
indicated in a previous section, it is necessary to choose the
parameter ε. The size of the insensitive zone (ε) is related to
the maximum achievable precision on the function estimation



PRADO et al.: FAST AND ACCURATE CHARACTERIZATION OF DUAL-POLARIZED REFLECTARRAY UNIT CELLS USING SVM 5

by the SVM model. In fact, all the samples of the function
that fall inside the ε-tube (or the insensitive zone) produce no
contribution to the loss function of (4), though they actually
contribute to the regression error of (10). Assuming that,
asymptotically, all the training samples, except the support
vectors, fall within the ε-tube and that the samples of the error
function are uniformly distributed in the interval [−ε,+ε], it is
possible to estimate the variance of the error function samples
by σ2

e = E
{
|e|2
}

= ε2/3. Then, using (10), the variance of
the RE over a set of Nr training samples is calculated as

σ2
RE = E

{
RE2

}
=
Nrσ

2
e

‖~y‖2 . (12)

Therefore, given a set of Nr samples and a desired accuracy,
expressed in terms of σ2

RE , the value of ε turns out to be

ε ≈
√

3

Nr
σRE‖~y‖. (13)

In practice, eq. (12) represents a lower threshold for the
quadratic value of the relative error that is only achieved
for a sufficiently large Nr (in principle, Nr → ∞). As a
consequence, the approximation of ε given by (13) is more
accurate the larger Nr is. Thus, a proper value of Nr is also
necessary to achieve a desired accuracy. The selection of Nr
for the problem at hand is discussed in a following section.

The selection of the optimal parameters (C∗, γ∗) is not a
trivial question and it is very dependent on the problem under
study. It is actually not possible to make an adequate choice
beforehand. Hence, it is necessary to use a trial and error
procedure. In this work, we use the cross-validation procedure
to select (C∗, γ∗). In this procedure, the whole data set,
composed by N samples, is divided into three non-overlapping
subsets: training (≤70%, i.e. Nr ≤ 0.7N ), validation (15%,
i.e. Nv = 0.15N ) and test (15%, i.e. Nt = 0.15N ). For a
given value of (C, γ), the training set is used to train the SVM,
i.e. to obtain the SVM model. The produced surrogate model
is evaluated over the validation set and the RE over this set,
associated to (C, γ), is computed. This procedure is performed
over a limited size grid on the (C, γ) plane, usually about a
few tenths (in logarithm to base 2) above and below 0 for both
C and γ. The optimum parameters (C∗, γ∗) are selected as
those which minimize the RE over the validation set. Finally,
the error of the selected optimum model is evaluated with
the test set to estimate the error produced on new samples.
This process ensures that the sets employed to compute the
error during the grid search and to test the final model remain
hidden during the training process and are not actual training
samples, so the generalization properties of the model are
better accounted for.

In the following, C2 = log2 C and γ2 = log2 γ to alleviate
notation. Fig. 3 shows the relative error (in dB) of the SVM
models generated with different values of (C2, γ2) for the
estimation of Re {ρyx} and incidence (θ = 20◦, ϕ = 20◦). In
this case, the number of samples is Nr = 1750, Nv =
Nt = 375 and the step considered for both C2 and γ2 is
∆C2 = ∆γ2 = 0.2. The grid search yields C∗2 = 10.4,
γ∗2 = 5.4 and 10 log

(
RE2

)
= −36.05 dB, over the validation

set. This search, or model selection, took 50 006 s (about 13 h
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Fig. 3. Relative error (in dB) over the validation set for an exhaustive grid
search in the (C2, γ2) plane with ∆C2 = ∆γ2 = 0.2 and estimating
Re{ρyx} for incident angle (θ = 20°, ϕ = 20°).
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Fig. 4. Training time in logarithmic units (10 log (ttrain[s])) for each point
of the grid search of Fig. 3.

and 54 min). Considering that we estimate 10 output variables
per incident angle and that the number of incident angles may
be substantial, this brings to light the necessity of using an
efficient grid search.

D. Efficient grid search

In this section, we detail a strategy to speed up the search
of the optimal model (C∗2 , γ

∗
2 ). The first approach to reduce

the model selection time is based on the observation of the
shape of the RE in the (C2, γ2) plane. The shape of the RE
is very similar for different output parameters and incident
angles and it is characterized by a narrow valley along C2,
as shown in Fig. 3. In addition, Fig. 4 plots the time cost of
the training associated to each point on the (C2, γ2) grid of
Fig. 3. This plot shows that the training time cost for large
values of C2 in the area of interest may be three orders of
magnitude higher than for smaller values of C2. Taking all this
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Fig. 5. Relative error (in dB) over the validation set (Nv = 375) for an exhaustive grid search in the (C2, γ2) plane with ∆C2 = ∆γ2 = 1, estimating
Im{ρxy} for oblique incidence (θ = 10°, ϕ = 20°) and using (a) 5%, (b) 20% and (c) 100% samples of the training pattern set (Nr = 1750).

into consideration, we have decided to limit the grid search to
the domain γ2 ∈ [−20,+20] and C2 ∈ [−10,+6].

Another way of reducing the grid search time cost is reduc-
ing the number of training samples. Fig. 5 shows the relative
error on the (C2, γ2) grid for the estimation of Im {ρxy}
with incidence (θ = 10◦, ϕ = 20◦) and using three different
training set sizes (Nr = 87, 350, 1750). In this case, the
considered step for both C2 and γ2 is ∆C2 = ∆γ2 = 1
and the search took 1.2 s for Nr = 87, 10.0 s for Nr = 350,
and 196.4 s for Nr = 1750. As it can be observed, the valley
where the optimum is located shifts its position and becomes
deeper, though the region where it appears is approximately
the same. Note that the scale is intentionally different for
each case to clearly place the valley. Therefore, a grid search
with a reduced number of samples (note the great resemblance
between Figs. 5(b) and 5(c)) may yield a good starting point
to get (C∗2 , γ

∗
2) at an affordable time cost.

In order to obtain an accurate estimation of (C∗2 , γ
∗
2) it is

possible to use a local optimizer starting at a point that is near
to it. We use the Nelder-Mead simplex method [45] as local
optimizer due to its computational performance. The Nelder-
Mead method is classified as a direct search method since
it tries to minimize a scalar-valued non-linear function using
only function values, without derivative information. At each
iteration, it keeps a simplex of L + 1 vertices, where L is
the dimensionality of the problem. In the present case, L = 2
and the simplex is a triangle. At each iteration, the number
of function evaluations can be 1, 2 or L + 2, depending on
the steps taken by the algorithm [46]. In practice, the most
common steps only perform 1 or 2 evaluations of the function,
with the steps performing L + 2 evaluations being very rare
[46]. Given the relative error as a function of (C2, γ2) and a
suitable starting point, this optimization algorithm would take
few function evaluations to reach the minimum.

Sometimes, the Nelder-Mead method may stagnate on a
local minimum whose associated RE is higher than expected.
In those cases, it is necessary to re-initiate the algorithm
on another, better starting point. Moreover, the grid search
performed with a reduced number of samples (see Fig. 5), may

give a starting point to the Nelder-Mead method that drives it
to one of those undesired local minima. This drawback may
be overcome by performing a grid search in the vicinity of the
minimum which was obtained by the search with the reduced
number of samples, but this time considering all the training
samples before the Nelder-Mead proceeds. In addition, it is
also of interest that the Nelder-Mead method avoids searching
on large values of C2 since those values considerably slow
down the error function evaluation. Since the Nelder-Mead
method does not allow to perform a bounded search, we have
used a variant of this method1 that inserts a wrapper function
around the relative error function which permits to accomplish
a bounded search. In this particular case, we have imposed that
C2 ≤ 6.

The suggested grid search is as follows:

1) Perform a wide grid search, using 20% of the training
samples, over γ2 ∈ [−20,+20] and C2 ∈ [−10,+6]
with ∆C2 = ∆γ2 = 1. The value of (C2, γ2) where the
minimum RE on the validation set is achieved at this
stage is noted as

(
C

1)
2 , γ

1)
2

)
.

2) Perform a localized grid search, using all the training
samples and the same resolution than in 1), over the
proximity of

(
C

1)
2 , γ

1)
2

)
. The value of (C2, γ2) where

the minimum RE on the validation set is achieved at
this stage is noted as

(
C

2)
2 , γ

2)
2

)
.

3) If
(
C

2)
2 , γ

2)
2

)
provides the desired accuracy on the

validation data, then approximate the optimal parameters
as
(
C∗2 = C

2)
2 , γ

∗
2 = γ

2)
2

)
.

Otherwise, use the training data to run the Nelder-Mead
algorithm with starting point at

(
C

2)
2 , γ

2)
2

)
and impose

C2 ≤ 6 to find (C∗2 , γ
∗
2 ) that minimizes the validation

error.

Finally, the model error is obtained with the test set at
(C∗2 , γ

∗
2). Using this strategy the model selection time for

the first example (shown in Figs. 3 and 4) has been reduced

1Matlab function fminsearchbnd.m by John D’Errico



PRADO et al.: FAST AND ACCURATE CHARACTERIZATION OF DUAL-POLARIZED REFLECTARRAY UNIT CELLS USING SVM 7

200 400 800 1,200 1,600 2,000 2,400 2,800
0

50

100

150

200

250

300

350

Nr

t s
el

(s
)

|ρxx|∣∣ρyy
∣∣

Re{ρxx}
Im{ρxx}
Re
{

ρxy
}

Im
{

ρxy
}

Re
{

ρyx
}

Im
{

ρyx
}

Re
{

ρyy
}

Im
{

ρyy
}

Fig. 6. Evolution of the average model selection time with the number of
training patterns.

from 50 006 s to 65 s. The efficient grid search technique
yields C∗2 = 3.8096 and γ∗2 = 5.7188 and 10 log

(
RE2

)
=

−35.32 dB, over the validation set. Thus, this technique re-
duces the time cost of the exhaustive grid search about three
orders of magnitude while it provides a slight increase of the
relative error (less than one dB in the present example).

E. Discussion on the number of training patterns, time cost
and achieved error

The grid search strategy detailed in the previous section to
obtain (C∗, γ∗) yields values of C and γ close to the optimal
ones with a limited time cost. Nonetheless, it is interesting to
study the influence of the number of training patterns on the
achieved accuracy and error.

On the one hand, the model selection time cost (tsel)
increases with the number of training patterns. Fig. 6 shows
the average time cost (tsel) of the proposed grid search strategy
for every estimated output variable of the SVM model. This
average has been performed over all the considered incident
angles. On the other hand, the relative error decreases with the
number of training patterns. Fig. 7 plots the average value, over
all the considered incident angles, of the relative error

(
RE
)

in dB over the test set for every estimated output variable.
It shows that the error rapidly decreases with the number of
training patterns until approximately 1600 − 2000 patterns,
where the slope of the relative error starts to approach to
zero. As a consequence, from Figs. 6 and 7 it seems that
a good trade-off between training time and relative error may
be achieved for Nr ∈ [1600, 2000]. In this work, we have
decided to use Nr = 1750. Nonetheless, it must be taken
into consideration that this number depends on the problem to
solve. It is also possible to observe that the achieved relative
error for the magnitude of both direct coefficients is almost the
same (asymptotically tending to −80 dB) and that the relative
error for the real and imaginary parts of all the reflection
coefficients is also very similar (asymptotically tending to
−40 dB). Note that σ2

RE was set to −40 dB for the real and
imaginary parts and to −80 dB for the magnitude of direct
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Fig. 7. Variation of the average relative error over the test set with the number
of training patterns.

coefficients, and that using (13) the value of ε is adaptively
computed as a function of the Euclidean norm of the output
training data vector (‖~y‖), for a given value of Nr.

Table I summarizes the results for both model selection time
cost and relative error over the test set, for all the estimated
output variables when using Nr = 1750, Nv = 375, and
Nt = 375. All the results given in this section have been
obtained using, in sequential mode, a workstation with 2 Intel
Xeon E5-2650v3 CPU at 2.3 GHz and 256 GB of RAM. It is
worth mentioning that the visible reduction of the time cost
registered on the table values compared to the plot in Fig. 6
is because the simulations of the table strictly follow the grid
search strategy given in Section III.D, while the simulations
related to the plots do not avoid the Nelder-Mead method even
when the SVM model with parameters

(
C

2)
2 , γ

2)
2

)
yields the

desired accuracy.

IV. ANTENNA ANALYSIS RESULTS

A. Antenna specifications

A single-offset reflectarray configuration is considered (see
Fig. 1). The antenna is rectangular and is comprised of 900
elements in a regular grid of 30×30 elements. As primary feed,
a horn modeled as a cosq θ function is employed [47], with
an illumination taper of −19.5 dB at the reflectarray edges.
The feed phase center is placed at (−94, 0, 214) mm in the
reflectarray coordinate system [1] and points to the reflectarray
center. The considered unit cell is the one described in
Section III and shown in Fig. 2. The working frequency is
25.5 GHz and the periodicity is 5.84 mm × 5.84 mm, which
is approximately half a wavelength. In addition, the incident
angles are discretized in 10° steps on θ and ϕ, as shown in
Fig. 8, in order to reduce the number of SVM models. A total
of 57 (θ, ϕ) incident angles are considered, although only 31
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Table I
AVERAGE RELATIVE ERROR OVER THE TEST SET AND AVERAGE MODEL SELECTION TIME OF THE BEST SVM MODEL FOR EACH OUTPUT VARIABLE.

Variable |ρxx| |ρyy | Re{ρxx} Im{ρxx} Re{ρxy} Im{ρxy} Re{ρyx} Im{ρyx} Re{ρyy} Im{ρyy}

10 log
(
RE

2
)

(dB) −74.4 −74.4 −32.9 −33.7 −35.4 −33.4 −33.7 −35.2 −34.4 −34.8

tsel (s) 72.4 80.2 48.0 55.6 71.8 71.8 71.8 71.8 79.6 75.0
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Fig. 8. Discretization of the incident angles in (a) θ and (b) ϕ in 10° steps.

of them are used to train the SVM, and the rest of SVMs
are constructed using symmetries. Since 10 SVM models per
angle are considered (magnitude of the direct coefficients, real
and imaginary parts of the four reflection coefficients), a total
of 310 SVM models will be trained for this reflectarray. In
addition, the training of each reflection coefficient for each
incident angle is independent from the rest, so it can be easily
parallelized, further saving computing time.

B. Reflection coefficients

Once all the SVM models have been obtained, and in
order to assess the accuracy of the models, simulations of
the reflection coefficients with the SVM model and MoM-
LP will be compared. Fig. 9 shows the results in phase for
the two reflection coefficients with the largest test error: ρxx
for (θ = 40°, ϕ = 0°) and ρxy for (θ = 30°, ϕ = 60°).
As it can be seen, the difference between the two curves,
provided by MoM-LP and SVM, is very small. The highest
discrepancies occur for the cross-coefficient ρxy where there
are phase jumps. Nevertheless, the abrupt phase changes are
followed by the SVM model and the mean absolute error
is 1.17° for the phase of ρxy and 0.39° for ρxx. On the
other hand, Fig. 10 shows the magnitude for the same cut
and the same coefficients. As it can be seen, even though
the cross-coefficient presents a highly non-linear behavior, the
SVM model matches with very high accuracy the MoM-LP
simulation, including the amplitude resonances.

Furthermore, the SVM model was compared to MoM-LP
simulations in the whole (Tx, Ty) grid, and they show a high
degree of agreement, similar to the results shown in Figs. 9
and 10, for all coefficients. From the two coefficients shown
in Figs. 9 and 10, ρxy for (θ = 30°, ϕ = 60°) presents the
highest test error, both in real and imaginary parts, and they
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Fig. 9. Comparison of ρxx (θ = 40°, ϕ = 0°) and ρxy (θ = 30°, ϕ = 60°)
between SVM and MoM-LP as a function of Tx for the cut Ty = 3 mm in
(a) phase and (b) phase difference in degrees between SVM and MoM-LP.
These two coefficients present the highest test error for a direct and cross-
coefficient.

are shown in Fig. 11 in the (Tx, Ty) plane with a step of
0.05 mm in both dimensions. The coefficient was simulated
using MoM-LP, and the SVM needs to fit those functions. On
the other hand, Fig. 12 shows the phase of ρxy , both for SVM
and MoM-LP simulations. For the MoM-LP case, the phase
was calculated using the data from Fig. 11. As it can be seen,
the SVM predicts the shape of the phase distribution with
a high degree of accuracy, in particular all the 180° jumps,
which correspond with minima in the amplitude of the cross-
coefficients (as observed in the amplitude and phase of ρxy
in Figs. 9 and 10), and can be used in reflectarray design to
lower the crosspolar pattern [48], [49].

C. Radiation patterns

The final goal of using the SVM to model the reflectarray
unit cell is to efficiently analyze the antenna to accurately
predict the radiation patterns. Three test cases are provided
here for the same antenna optics: a pencil beam pointing
at (θ = 5.4°, ϕ = 0°), an isoflux pattern for global Earth
coverage [50] and a shaped pattern for Local Multipoint
Distribution Service central station with a squared-cosecant
pattern in elevation and sectored-beam pattern in azimuth [51].
For all cases, three analyses were performed, one with the
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Fig. 10. Comparison of ρxx (θ = 40°, ϕ = 0°) and ρxy (θ = 30°, ϕ = 60°)
between SVM and MoM-LP as a function of Tx for the cut Ty = 3 mm in
(a) magnitude and (b) magnitude difference in dB between SVM and MoM-
LP. These two coefficients present the highest test error for a direct and cross-
coefficient.
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Fig. 11. (a) Real and (b) imaginary parts of ρxy for (θ = 30°, ϕ = 60°)
simulated with MoM-LP. This coefficient presents the highest test error both
in real and imaginary parts after the SVM model is obtained.

SVM and two with MoM-LP considering the actual angles
of incidence from the feed at each reflectarray element, and
another with the same discretization of the angles of incidence
shown in Fig. 8, which is the same used by the SVM.

Fig. 13 shows the comparison between MoM-LP and SVM
in predicting the pencil beam radiation pattern for Y polar-
ization. As it can be seen, the copolar pattern is accurately
predicted by the SVM, including the secondary lobes and all
the nulls. For the crosspolar pattern, the agreement is also
very good in the regions where the crosspolar presents the
maximum value. However, there are some discrepancies for
lower values of the crosspolar pattern when comparing the
SVM simulation with MoM-LP considering the real angles
of incidence. Nevertheless, these differences are due to the
discretization employed in the SVM (shown in Fig. 8), and
they appear at pattern levels 60 dB below the maximum value.
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Fig. 12. Comparison of the phase of ρxy for (θ = 30°, ϕ = 60°) obtained
with (a) MoM-LP and (b) SVM in the whole (Tx, Ty) plane. This coefficient
presents the highest test error both in real and imaginary parts.
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Fig. 13. Copolar and crosspolar main cut (ϕ = 90°) for a pencil beam pattern
comparing MoM-LP and SVM simulations for Y polarization.

When the same discretization is used by SVM and MoM-LP,
the crosspolar pattern is accurately predicted.

Figs. 14 and 15 show the main cuts for the copolar and
crosspolar components for the isoflux and LMDS patterns,
respectively, for Y polarization. Again, both copolar and
crosspolar patterns are accurately predicted, as well as all
the nulls and side lobes when the same discretization of
the incidence angles is used. In all cases, the prediction of
the copolar pattern is more robust against this discretization,
which mainly affects the crosspolar pattern for regions outside
its maximum value. If higher accuracy is desired for the
crosspolar pattern in those regions, a finer discretization than
the one shown in Fig. 8 should be employed.

All the results shown were produced for Y polarization,
but similar results and conclusions were obtained for X
polarization. Overall, the agreement between the MoM-LP
simulation and the SVM model is very high for both copolar
and crosspolar patterns, as demonstrated by the results of
the three radiation patterns for both linear polarizations. In
addition, all three patterns were compared in the whole visible
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Fig. 14. Main cuts of the copolar and crosspolar patterns (Y polarization)
for an isoflux pattern for global Earth coverage comparing simulations of the
MoM-LP and SVM. (a) ϕ = 0°. (b) ϕ = 90°.

region, computing the relative error between the SVM and
MoM-LP simulations according to:

RE =
||EMoM − ESVM||
||EMoM||

, (14)

where ‖·‖ denotes the Euclidean norm and E either the copolar
or the crosspolar pattern. The results are shown in Table II,
where the error (14) is shown in percentage, the analysis
was performed with the same incident angles for MoM-LP
and SVM, and the radiation patterns were computed with a
resolution of 512 × 512 points, but only those belonging to
the visible region were used in computing the error. As it
can be seen, the errors are very low due to the high accuracy
obtained in the SVM models.

Finally, the reflectarray analysis is accelerated by a factor
larger than three orders of magnitude, specifically, a factor
larger than 2000 was obtained using the SVM in comparison
with MoM-LP. Tests were carried out in an Intel Core i3-
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Fig. 15. Main cuts of the copolar and crosspolar patterns (Y polarization) for
LMDS application in (a) elevation (azimuth at 0°) and (b) azimuth (elevation
at 5.4°), comparing simulations of the MoM-LP and SVM.

2100 with 4 CPU (two physical and two virtual) at 3.1 GHz,
where the 900-element reflectarray took a mean time of 84.5 s
to be analyzed with MoM-LP, while it took only 0.031 s with
the SVM, when analyzed in single-threaded mode (gain factor
of 2725). When the analysis was parallelized using OpenMP
[52], those times were 22.3 s for MoM-LP and 0.0085 s for
the SVM (gain factor of 2623). As comparison, some ANN
implementations have been reported to be between 200 [27]
and 700 [22] times faster than MoM-LP, although only com-
puting the phases of the direct coefficients, which saves some
computational burden with regard to the computation of the
full matrix. Regarding memory usage, the SVM requires more
than MoM-LP since many SVM models need to be loaded, one
per output variable and angle of incidence. In the example
considered, while the MoM-LP tool used around 600 KB of
memory, the SVM used roughly 27 MB. In addition, if more
SVM models were employed, the memory requirements would
increase. Nevertheless, the memory requirement for the SVM
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Table II
RELATIVE ERROR BETWEEN THE RADIATION PATTERNS PREDICTED BY

MOM-LP AND THE SVM FOR BOTH POLARIZATIONS.

Pol. X Pol. Y

CP XP CP XP

Pencil 0.20% 0.61% 0.36% 0.75%
LMDS 0.51% 1.07% 0.57% 1.18%
Isoflux 0.43% 1.32% 0.56% 0.36%

is negligible if compared with other data structures used in
array optimization [21], [53], and nowadays it is not an issue
even in personal computers.

Once the surrogate model is obtained, it can be employed
in design and optimization processes instead of the MoM-
LP routine, saving considerably more time than the required
to obtain the model. Furthermore, if high accuracy is needed
for the crosspolar optimization of reflectarray antennas, the
SVM may be trained with a finer discretization of the incident
angles. Moreover, the SVM model can be used in the first
stages of the optimization, in order to obtain a suitable starting
point for a more accurate optimization using MoM-LP with
more degrees of freedom, as in [21], [54]. This way, the
optimization process is sped up thanks to the use of SVMs,
while still obtaining accurate results since a further refinement
is achieved employing MoM-LP in the latest steps. In addition,
the availability of an accurate and computationally fast model
of the full reflection coefficient matrix by means of SVMs
allows the use of global search algorithms for reflectarray
crosspolar optimization within reasonable computing time,
which is not currently possible using MoM-LP since the
computations are very slow for such a task.

V. CONCLUSIONS

This paper has addressed the characterization of the full
matrix of reflection coefficients by means of Support Vector
Machines (SVMs) for a fast and accurate analysis of dual-
polarized reflectarray antennas as an alternative to the use of
Artificial Neural Networks (ANNs) and databases to overcome
some of their issues. The SVM is used to obtain surrogate
models of the amplitudes of the direct coefficients as well
as the real and imaginary parts of the four reflection coeffi-
cients. A detailed discussion on the selection of optimal SVM
parameters is provided. In addition, since the SVM training
process is slow, a strategy to speed it up has been presented,
which relies on a combination of the reduction of the initial
number of training patterns, a localized grid search and the
use of a grid-search local optimizer. It allows to improve
the average training time by a factor larger than three orders
of magnitude with regard to a naive exhaustive grid search.
This strategy was employed to obtain the SVM models for
a reflectarray unit cell comprised of two sets of four parallel
dipoles in two layers of metallization. Each set controls one
linear polarization, so the SVM models can be employed for
the analysis of dual-polarized shaped-beam reflectarrays. The
results for amplitude and phase of the reflection coefficients

show excellent agreement between the Method of Moments
based on Local Periodicity (MoM-LP) and SVM simulations,
even for the cross-coefficients, despite their highly non-linear
behavior, which is difficult to model. Finally, three different
radiation patterns were considered to assess the accuracy of
the new technique, a pencil beam pattern for point-to-point
communications, an isoflux pattern for global Earth coverage
and a shaped-beam pattern for Local Multipoint Distribution
Service application. The radiation patterns were computed
for both linear polarizations and the copolar and crosspolar
components were compared. For the three patterns, both far
field components show a high degree of agreement between
the SVM and MoM-LP simulations. Moreover, the analysis
is sped up by a factor larger than three orders of magnitude
using the SVM instead of MoM-LP.

ACKNOWLEDGMENT

The authors would like to thank R. F. Dı́az, Ph.D.; Prof.
R. R. Boix, and Prof. J. A. Encinar for providing the MoM-
LP software to obtain training samples and carry out the
simulations.

REFERENCES

[1] J. Huang and J. A. Encinar, Reflectarray Antennas. Hoboken, NJ, USA:
John Wiley & Sons, 2008.

[2] J. A. Encinar and J. A. Zornoza, “Broadband design of three-layer
printed reflectarrays,” IEEE Trans. Antennas Propag., vol. 51, no. 7,
pp. 1662–1664, Jul. 2003.

[3] J. H. Yoon, Y. J. Yoon, W. sang Lee, and J. ho So, “Broadband microstrip
reflectarray with five parallel dipole elements,” IEEE Antennas Wireless
Propag. Lett., vol. 14, pp. 1109–1112, 2015.

[4] R. Florencio, J. Encinar, R. R. Boix, and G. Perez-Palomino, “Dual-
polarisation reflectarray made of cells with two orthogonal sets of
parallel dipoles for bandwidth and cross-polarisation improvement,” IET
Microw. Antennas Propag., vol. 8, no. 15, pp. 1389–1397, Aug. 2014.

[5] L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard,
“The phoenix cell: A new reflectarray cell with large bandwidth and
rebirth capabilities,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp.
71–74, 2011.

[6] J. A. Encinar, L. S. Datashvili, J. A. Zornoza, M. Arrebola, M. Sierra-
Castaner, J. L. Besada-Sanmartin, H. Baier, and H. Legay, “Dual-
polarization dual-coverage reflectarray for space applications,” IEEE
Trans. Antennas Propag., vol. 54, no. 10, pp. 2827–2837, Oct. 2006.

[7] J. A. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-
receive reflectarray antenna for direct broadcast satellite applications,”
IEEE Trans. Antennas Propag., vol. 59, no. 9, pp. 3255–3264, Sep.
2011.

[8] C. Wan and J. A. Encinar, “Efficient computation of generalized scatter-
ing matrix for analyzing multilayered periodic structures,” IEEE Trans.
Antennas Propag., vol. 43, no. 11, pp. 1233–1242, Nov. 1995.

[9] R. Florencio, R. R. Boix, and J. A. Encinar, “Enhanced MoM analysis
of the scattering by periodic strip gratings in multilayered substrates,”
IEEE Trans. Antennas Propag., vol. 61, no. 10, pp. 5088–5099, Oct.
2013.

[10] D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using
microstrip patches of variable size,” Electron. Lett., vol. 29, no. 8, pp.
657–658, Apr. 1993.

[11] M. Zhou, S. B. Sørensen, O. S. Kim, E. Jørgensen, P. Meincke, and
O. Breinbjerg, “Direct optimization of printed reflectarrays for contoured
beam satellite antenna applications,” IEEE Trans. Antennas Propag.,
vol. 61, no. 4, pp. 1995–2004, Apr. 2013.

[12] D. Gonzalez-Ovejero, F. Mesa, and C. Craeye, “Accelerated macro basis
functions analysis of finite printed antenna arrays through 2D and 3D
multipole expansions,” IEEE Trans. Antennas Propag., vol. 61, no. 2,
pp. 707–717, Feb. 2013.

[13] O. M. Bucci, A. Capozzoli, G. D’Elia, and S. Musto, “A new approach to
the power pattern synthesis of reflectarrays,” in Proc. URSI International
Symposium on Electromagnetic Theory (EMTS’04), Pisa, Italy, May 23–
27, 2004, pp. 1053–1055.



12 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. X, XXXX XXXX

[14] R. T. Lee and G. S. Smith, “An alternative approach for implementing
periodic boundary conditions in the FDTD method using multiple unit
cells,” IEEE Trans. Antennas Propag., vol. 54, no. 2, pp. 698–705, Feb.
2006.

[15] E. Girard, R. Moulinet, R. Gillard, and H. Legay, “An FDTD optimiza-
tion of a circularly polarized reflectarray unit cell,” in IEEE Antennas
and Propagation Society International Symposium, vol. 3, San Antonio,
Texas, USA, Jun. 16–21, 2002, pp. 136–139.

[16] R. Chiniard, A. Barka, and O. Pascal, “Hybrid FEM/Floquet modes/PO
technique for multi-incidence RCS prediction of array antennas,” IEEE
Trans. Antennas Propag., vol. 56, no. 6, pp. 1679–1686, Jun. 2008.

[17] V. de la Rubia, J. Zapata, and M. A. González, “Finite element
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