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Abstract. An important problem in fuzzy theory is how to determine if two elements are similar or not. There are different
definitions to measure how similar or close are elements. One of the most important concepts in this context is that one of
similarity. This paper aims at studying fuzzy similarities defined by fuzzy implications, logical equivalences expressed by fuzzy
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1. Introduction

The procedure of determining how close or simi-
lar (or the converse, how different) two elements ap-
pear in many fields like pattern recognition, clustering
and classification (see, e.g., [29,30]). Thus, many pro-
posals to overcome this problem can be found in the
literature (see, e.g., [1,6,9,10,19,21,22,30] ). A wide
range of definitions were introduced to measure prox-
imity (or the converse, differences) between samples.
Among them we can cite distances, divergences or dis-
similarities or their opposite, similarities, are one of
those basic definitions when dealing with fuzzy sets. In
this paper we have focused on the study of similarity
relations obtained from implications.

One option in the fuzzy approach to similarities is
the measure based on the geometric distance model
(see [9]), where two vectors of fuzzy truth values are
compared by means of some metric measures, usually
the Minkowski r-metric defined for r ≥ 1, which in-
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cludes well-known metrics like Hamming (or Manhat-
tan), Euclidean and Tchebychev (or sup distance), but
other metric measures can be included (see [17]).

Other ways to define fuzzy similarities using mea-
sures based on the set theoretic approach, where clas-
sical fuzzy intersection, union and complement are
used or by measures based on the matching function S,
where a vector function is defined (see [9]).

The fuzzy generalization of the crisp equivalence re-
lation can also be found, (see for example, [1] and [5]).
There, the classical axioms of equivalence relations,
reflexivity, symmetry and transitivity, are fuzzified.

In few words, there exists a great amount of simi-
larity measures in the literature, defined from differ-
ent criteria. However, no one of them proves to be
adequate for all purposes [24]. For example, geomet-
ric measures like Minkowski metric are useful when a
priori objective dimensions have to be measured, but
they are not effective for other purposes like compar-
ing faces, countries or personalities [31].
The main lack of geometric measures is they have to
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satisfy a metric axiomatic, which is difficult to fulfill
[17,27].

Feature-measure models discard the necessity that
similarity measure be a metric. Nevertheless, they can
not deal with intra-dimensional similarities. Besides,
they admit representation of ordinal data, but they
don’t model the order [27].

Surveys about similarity measures, their advantages
and drawbacks can be found in [27,31].

In this paper we follow the fuzzy logic approach to
define similarity, which can be found in [17,18] by us-
ing fuzzy implications, the logical bi-implication and
aggregation operators. Also, in [4], by defining the
fuzzy operators from the concept of algebra of resid-
uated lattice. In [2] we can find some notions of this
approach applied to pattern recognition.

In this paper we propose measuring similarity be-
tween fuzzy sets using t-norms, t-conorms and nega-
tions together with fuzzy implications, logical equiva-
lences expressed by fuzzy bi-implication operators and
aggregation operators. We also study under which con-
ditions that measure satisfies the definition of similar-
ity.

In the literature, this kind of similarity measures
are based on T-equalities [11,17]. A T-equality is a
T-equivalence, and hence includes the axiom of T-
transitivity. This axiom constrains similarity measures
to be defined by R-implications.

This paper aims to demonstrate that the substitution
of T-transitivity by monotonicity, like in [19], expands
the scope of similarities based on bi-implications to an
unexplored field. Nevertheless, we will show that not
all bi-implications are similarity measures.

The advantages of our approach are the following:

– Fuzzy similarity measures based on bi-implications
generalize the formulas of propositional logic.
Therefore, the results maintain a logical perspec-
tive. This is an improvement on geometric mea-
sures.

– R-implications are defined with the supremum
of a set, hence comparing for example with S-
implications, they are less simple to calculate.

– It is uncommon to find a parameterized family of
R-implications, maybe because of its definition.
We found an exception in [28]. However in this
paper we shall obtain easily other parameterized
bi-implications.
It is important for experimental adjusting in de-
cision making and in Similarity-based reasoning
[2,24].

– We shall prove that the axiomatic we use is not
independent of this kind of measures. This prop-
erty simplifies the way to obtain new similarity
measures based on bi-implications.

– This approach allows us to model dimensional
similarities in the objects, like with geometric
measures, and also its features. That is intrinsic to
fuzzy sets.

Once characterized those t-norms that allow our mea-
sure to satisfy the definition of similarity, we classify
several families of t-norms into those that satisfy these
axioms. The results obtained allow us to select t-norms
and aggregation operators to obtain the best similarity
measure in each case.

Finally, we illustrate with an image processing ex-
ample the applicability of the measure introduced.

The structure of the paper is the following: in Sec-
tion 2 the basic concepts we use in the paper are sum-
marized. In Section 3 the axiomatic of similarity that
we will use along the paper and our measure of similar-
ity based on logical equivalence are presented. More-
over, we present some theoretical results about similar-
ity when dealing with R-implications, S-implications,
QL-implications and f and g-generated implications,
respectively. In Section 4 one example of image pro-
cessing is used to illustrate the applicability of our the-
ory. Finally, we address some conclusions in Section 5.

2. Basic concepts

In this section we will recall some basic notions and
properties that will be useful hereafter. We will con-
sider a finite universe X and we will denote F(X) the
set of fuzzy subsets of X and A,B,C... the fuzzy sub-
sets of X .

2.1. Operators

Definition 1 ([7,8,14]) An aggregation operator is a
function Aggreg :

⋃
n∈N[0,1]n→ [0,1] that satisfies the

following conditions:

1. Boundary conditions. Aggreg(0,0, · · · ,0) = 0
and Aggreg(1,1, · · · ,1) = 1.

2. Symmetry. For (a1, · · · ,ai, · · · ,a j, · · · ,an)∈ [0,1]n,
Aggreg(a1, · · · ,ai, · · · ,a j, · · · ,an) =
Aggreg(a1, · · · ,a j, · · · ,ai, · · · ,an).

3. Monotonicity. If a1 = b1, · · · ,ai≤ bi, · · · ,an = bn,
then Aggreg(a1, · · · ,ai, · · · ,an)≤
Aggreg(b1, · · · ,bi, · · · ,bn).
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An operator is called compensatory if it satisfies
the following axiom (see [12]): Aggreg(a1, · · · ,an) be-
longs to the interval [min(a1, · · · ,an),max(a1, · · · ,an)],
for any a1, . . . ,an ∈ [0,1].

Definition 2 (see [12]) Let f : [0,1] → [0,∞] be a
real valued, continuous, strictly increasing function. A
Quasi-arithmetic mean is defined by the formula:

M(a1,a2, · · · ,an) = f−1

[
n

∑
i=1

1
n

f (ai)

]
.

Hereafter, we will use the definition above for the com-
pensatory operators appearing in this paper:

Example 1 A kind of Quasi-arithmetic mean family is
obtained when we consider f (a) = ap, that is,

Mp(a1,a2, · · · ,an) =

[
n

∑
i=1

1
n

ap
i

]1/p

, p ∈ R ,

where we agree that for p < 0,∞p = 0 and 0p = ∞. Let
us note that if p = 0, Mp is not defined, but it tends to
the geometric mean. Moreover, M−1 is the harmonic
mean and M1 is the arithmetic mean.

T-norms and t-conorms (see [3]) are particular cases
of aggregation operators. They are usually considered
in the context of fuzzy sets to formalize intersection
and union respectively.

Definition 3 A t-norm is a binary operation T : [0,1]2→
[0,1], such that for a,b,c ∈ [0,1] the following four
axioms are satisfied:

1. T (a,b) = T (b,a). (Commutativity)
2. T (a,T (b,c)) = T (T (a,b),c). (Associativity)
3. T (a,b)≤ T (a,c) whenever b≤ c. (Monotonicity)
4. T (a,1) = a. (Boundary condition)

The most important examples of t-norms are: The min-
imum, TM(a,b) = min(a,b), the (algebraic) product,
TP(a,b) = a · b, the Łukasiewicz t-norm, TL(a,b) =
max(a+b−1,0) and the drastic product,

TD(a,b) =
{

0 if max(a,b)< 1 ,
min(a,b) otherwise.

The minimum is the greatest t-norm and the drastic
product is the smallest one.
An automorphism ϕ is a strictly increasing continu-

ous function ϕ : [0,1]→ [0,1] such that ϕ(0) = 0 and
ϕ(1) = 1. Given a t-norm T and an automorphism
ϕ , it holds that Tϕ(a,b) = ϕ−1(T (ϕ(a),ϕ(b))) is also
a t-norm. A t-norm is continuous if it is continuous
as a function on its two components. Continuous t-
norms are characterized as follows (see [16]): every
continuous t-norm is either a ϕ-transformation of the
Łukasiewicz t-norm or a ϕ-transformation of the prod-
uct or an ordinal sum of t-norms in the two previous
families. An ordinal sum of the countable family of t-
norms {〈]as,bs[,Ts〉,s ∈ S} is a new t-norm defined as
follows:

T (a,b) =


as +(bs−as)Ts

(
a−as
bs−as

, b−as
bs−as

)
if (a,b) ∈ [as,bs]

2 ,
min(a,b) otherwise.

Definition 4 Let T be a t-norm.

– An element a ∈]0,1[ is called a nilpotent element
of T if there exists some n ∈ N such that a(n)T = 0.

– An element a∈]0,1[ is called a zero divisor of T if
there exists some b ∈]0,1[ such that T (a,b) = 0.

It is well-known that each nilpotent element a of a t-
norm T is also a zero divisor of T. If n > 1 is the small-
est integer such that a(n)T = 0 then T (a,a(n−1)

T ) = 0 with
a(n−1)

T > 0, but not conversely.

Another family of operators very useful and related
to t-norms is the family of t-conorms.

Definition 5 A t-conorm is a binary operation S :
[0,1]2→ [0,1], such that for a,b,c ∈ [0,1] the follow-
ing four axioms are satisfied:

1. Commutativity. S(a,b) = S(b,a).
2. Associativity. S(a,S(b,c)) = S(S(a,b),c).
3. Monotonicity. S(a,b)≤ S(a,c) whenever b≤ c.
4. Boundary condition. S(a,0) = a.

T-conorms are dual operators of t-norms. For any t-
norm T , the operator S(a,b) = 1− T (1− a,1− b)
is a t-conorm and the other way around, for any t-
conorm, S the operator T (a,b) = 1− S(1− a,1− b)
is a t-norm. This way, the most important t-conorms
are the maximum, SM(a,b) = max(a,b), the product
t-conorm, SP(a,b) = a+ b− a · b, the Łukasiewicz t-
conorm, SL(a,b) = min(a+b,1) and the drastic prod-
uct t-conorm,

SD(a,b) =
{

1 if min(a,b)> 0 ,
max(a,b) otherwise.
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The maximum is the smallest t-conorm and the drastic
product t-conorm is the greatest one.

Definition 6 A negation is a decreasing function N :
[0,1]× [0,1]→ [0,1] such that N(0) = 1 and N(1) = 0.
A negation is called strong if it is continuous, strictly
decreasing and involutive, this is, if N(N(a)) = a.

The standard negation, defined as N(a) = 1−a for all
a ∈ [0,1], is a strong negation.

2.2. Fuzzy implications

Fuzzy implications appeared as the fuzzy counterpart
of the classical implication: p→ q. Since there are dif-
ferent ways of expressing this condition in the classical
case, many different proposals appeared for the fuzzy
counterpart in the literature as can be seen in [3]. One
of the most commonly accepted axiomatic definition is
the following one:

Definition 7 ([13,20]) A map I : [0,1]× [0,1]→ [0,1]
is called a fuzzy implication if it satisfies the following
conditions:

– I(·,b) is decreasing for any fixed b ∈ [0,1],
– I(a, ·) is increasing for any fixed a ∈ [0,1] and
– I(0,0) = I(1,1) = 1 and I(1,0) = 0.

We next recall some of the most important families
of fuzzy implications, starting by R-implications that
are related to the formalism of Boolean logic (see [3,
13] among many others).

Definition 8 Let T be a t-norm, the implication de-
fined by

IT (a,b) = sup{c ∈ [0,1] | T (a,c)≤ b}

is called an R-implication, (see [3]).

Implications in the classical logic can also be written
as ¬p∨ q (not p or q). The following family tries to
generalize this expression to the fuzzy context.

Definition 9 An S-implication associated with a t-
conorm S and a strong negation N is defined by
IS,N(a,b) = S(N(a),b), ∀a,b ∈ [0,1] .

We will consider the most usual negation, the standard
negation, N(a) = 1− a,∀a ∈ [0,1] and therefore the
notation will be simplified to IS.

Yet another way to express implications in the clas-
sical or crisp context is ¬p∨ (p∧ q) (not p or both p
and q) and this is the departing point for defining QL-
implications:

Definition 10 A QL-implication associated with a t-
norm T , a t-conorm S and a fuzzy negation N is
a function I : [0,1]2 → [0,1] defined by IT,S(a,b) =
S(N(a),T (a,b)), a,b ∈ [0,1].

Along the paper, when we work with QL-implications,
we will consider for each t-norm its dual t-conorm.

Definition 11 (see [3]) Let f : [0,1] → [0,∞] be a
strictly decreasing and continuous function with f (1)=
0. The function I f : [0,1]2→ [0,1] defined by I f (a,b) =
f−1(a f (b)), a,b ∈ [0,1], with the understanding 0 ·
∞ = 0, is called an f -generated implication. The func-
tion f itself is called an f -generator of I f .

Definition 12 (see [3]) Let g : [0,1] → [0,∞] be a
strictly increasing and continuous function with g(0)=
0. The function Ig : [0,1]2→ [0,1] defined by Ig(a,b) =
g(−1)( 1

a g(b)), a,b ∈ [0,1], with the understanding 1
0 =

∞, 0 ·∞ = ∞, where g(−1)(a) is the pseudo-inverse of
g, given by:

g(−1)(a) =
{

g−1(a), if a ∈ [0,g(1)],
1, if a ∈ [g(1),∞].

is called a g-generated implication. The function g it-
self is called a g-generator of Ig.

3. Measures of similarity based on fuzzy
implications

For real numbers, if a is smaller than or equal to b
and b is smaller than or equal to a, we can conclude
that both numbers are equal. In fact, a = b if and only
if a≤ b ∧ b≤ a .

In a similar way, the connectives used in fuzzy logic,
implications, can also be symmetrized to obtain a log-
ical equivalence (see [25]):

E(a,b) = T (I(a,b), I(b,a)) . (1)

Taking into account this measure of equality between
two numbers, a measure of the similarity or equality
between two fuzzy sets was defined (see [2]) as fol-
lows:

E(A,B) = Aggregx∈X (E(A(x),B(x))) . (2)

Let us note that we will use the same formula for mea-
suring similarity between two fuzzy subsets and for
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the degree of equality between two values. There is no
possible confusion since one of them refers to values
in the interval [0,1] and the other one to fuzzy subsets
of a universe X .

Definition 13 ([19]) Let F(X) be the set of fuzzy sub-
sets of X. A map E : F(X)×F(X)→ [0,1] is a simi-
larity measure if it satisfies, for any A,B,C ∈ F(X), the
following axiomatic:

1. Reflexivity. E(A,A) = 1.
2. Symmetry. E(A,B) = E(B,A).
3. Monotonicity. E(A,B) ≥ E(A,C) and E(B,C) ≥

E(A,C) if A⊆ B⊆C.

We are interested in the properties of the operator
defined in Eq. (2). In particular, we would like to check
in which cases it is a similarity in the sense of Def. 13,
since that definition is one of the most usual measures
of comparison between fuzzy sets.

Obviously, the properties satisfied by Eq. (2) will
depend on the operators involved, i.e., on the implica-
tion and the t-norm considered. We present a detailed
study for different types of implications in the follow-
ing sections. Previously, we will prove some general
results.

Proposition 1 Eq. (2) satisfies reflexivity if and only if
the associated implication operator satisfies I(a,a) =
1 for all a ∈ [0,1].

Proof Assume that I satisfies that I(a,a) = 1 for all
a ∈ [0,1]. Then for any subset A ⊆ X and any ele-
ment x ∈ X , it holds that I(A(x),A(x)) = 1. There-
fore, E(A,A) = Aggregx∈X (E(A(x),A(x))) and then
E(A,A) = Aggregx∈X (T (1,1)) = 1.

Conversely, if there exists a value a∈ [0,1] such that
I(a,a)< 1, we can consider the subset A of X defined
by A(x) = a for all x ∈ X . Then

E(A,A) = Aggregx∈X (E(A(x),A(x)))
= Aggregx∈X (T (I(a,a), I(a,a)))
≤ Aggregx∈X (I(a,a)) = I(a,a)< 1 .

And this means that E is not reflexive.

It follows from here that the first property that an
implication has to satisfy to allow E to be a similarity
measure is that any value implies itself with degree 1.
But we can say more, if the implication satisfies that
property, then the operator E also satisfies the third ax-
iom of similarities.

Proposition 2 Let E be an operator defined as in
Eq. (2) and such that the associated implication I ver-
ifies I(a,a) = 1 for all a ∈ [0,1]. Then E satisfies the
third axiom of similarities.

Proof Observe that for any pair of values a,b ∈ [0,1]
such that a ≤ b, since I is increasing in the second
argument, it holds that I(a,b) ≥ I(a,a) = 1 whereas
I(a,b) = 1. This implies E(a,b) = T (I(a,b), I(b,a)) =
I(b,a) for all a≤ b.

Let us now consider three subsets A ⊆ B ⊆ C of a
universe X . Take some x ∈ X and denote a = A(x),b =
B(x) and c = C(x). Then it holds that a ≤ b ≤ c with
a,b,c ∈ [0,1]. As we have proven above, in this case
it holds that E(a,b) = I(b,a), E(b,c) = I(c,b) and
E(a,c) = I(c,a). On the other hand, since I is decreas-
ing in the first component and increasing in the sec-
ond one, then E(a,b) = I(b,a)≥ I(c,a) = E(a,c) and
E(b,c) = I(c,b)≥ I(c,a) = E(a,c). Equivalently,

E(A(x),B(x)) = I(B(x),A(x))≥ I(C(x),A(x))
= E(A(x),C(x))

E(B(x),C(x)) = I(C(x),B(x))≥ I(C(x),A(x))
= E(A(x),C(x)) .

These inequalities hold for any x ∈ X . Thus, the result
follows from the monotonicity of aggregation opera-
tors.

The condition I(a,a) = 1 for any a ∈ [0,1] is suf-
ficient to assure that the operator E satisfies the third
condition of similarity, as we have just seen. However,
it is not a necessary condition as we can see in the fol-
lowing example.

Example 2 The S-implicator obtained from the max-
imum t-conorm and the standard negation provides a
counterexample. Let’s suppose a,b ∈ [0,1] and a ≤ b.
Then ISM (a,b) = SM(1−a,b) and ISM (b,a) = SM(1−
b,a). Since 1− a ≥ 1− b we have that ISM (a,b) ≥
ISM (b,a) and therefore

ETM (a,b) = TM(ISM (a,b), ISM (b,a)) = ISM (b,a).

Thus, if a≤ b≤ c we have that

ETM (a,b) = ISM (b,a)≥ ISM (c,a) = ETM (a,c)

and

ETM (b,c) = ISM (c,b)≥ ISM (c,a) = ETM (a,c).

However, ISM (a,a)= SM(1−a,a)=max(1−a,a) 6=
1 for all a ∈ (0,1).
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Proposition 3 Let E be an operator defined as in
Eq. (2). Then E satisfies the second axiom of similari-
ties.

Proof The proof is immediate by the commutativ-
ity fulfilled by any t-norm. Thus E(A(x),B(x)) =
E(B(x),A(x)), ∀x ∈ X and ∀A,B ∈ F(X). .

Theorem 1 Let E be an operator defined as in Eq. (2).
It is a similarity if and only if the associated implica-
tion operator fulfills I(a,a) = 1 for all a ∈ [0,1].

Proof The proof is an immediate consequence of
Propositions 1, 2 and 3.

3.1. R-implications

First of all, we are going to prove that when we con-
sider an R-implication, the operator in Eq. (1) does not
depend on the t-norm considered. Then, neither does
the operator defined in Eq. (2).

Lemma 1 Let T be a t-norm and IT the R-implication
obtained from T . For any t-norm T1 and for any pair
of values a,b ∈ [0,1] it holds that

T1(IT (a,b), IT (b,a)) = min(IT (a,b), IT (b,a)) .

Proof Observe that for any pair of values a,b we
have that a ≤ b or b ≤ a. Then IT (a,b) = 1 or
IT (b,a) = 1. Assume without loss of generality that
IT (a,b) = 1. Then for any t-norm T1 it holds that
T1(IT (a,b), IT (b,a)) = T1(1, IT (b,a)) = IT (b,a) =
min(IT (a,b), IT (b,a)).

Apart from this property of stability, we can prove
that if we consider an R-implication, the operator E is
a similarity measure.

Proposition 4 Let T be a t-norm and IT the R-
implication defined from T . Then the operator E :
F(X)×F(X)→ [0,1] defined as

ER(A,B) = Aggregx∈X (ER(A(x),B(x)))

is a similarity relation, where ER is the operator de-
fined by

ER(a,b) = T1(IT (a,b), IT (b,a))

for any a,b ∈ [0,1] and for any t-norm T1.

Proof This follows from Theorem 1, since it is imme-
diate that IT (a,a) = 1 for all a ∈ [0,1].

Thus, we always obtain a similarity from an R-
implication.

3.2. S-implications

If we replace R-implications by S-implications, we
can also obtain a measure of equivalence (see [25]).
The expression looks as follows in this case. For any
pair of values a,b ∈ [0,1],

ES(a,b) = T (IS(a,b), IS(b,a)) ,

where S is a t-conorm, IS is the implication defined
from S as in Def. 9 and the t-norm T is the dual t-norm
of the t-conorm S.

This expression can be used in Eq. (2) to provide a
new measure of the equivalence or proximity between
two fuzzy sets.

ES(A,B) = Aggregx∈X ES(A(x),B(x)),

where A and B are two fuzzy subsets of the universe X .
Despite what happens with R-implications, in the

context of S-implications the t-norm chosen changes
the measure of equivalence or similarity considered, as
we can see in the following example.

Example 3 Consider the t-conorm SP and the values
a = 0.6,b = 0.5 it holds that ISP(a,b) = (1−a)+b−
(1− a)b = (1− 0.6)+ 0.5− (1− 0.6) · 0.5 = 0.7 and
ISP(b,a) = (1− b)+ a− (1− b)a = (1− 0.5)+ 0.6−
(1−0.5) ·0.6 = 0.8. Therefore,

ESP(0.6,0.5) = T (ISP(0.6,0.5), ISP(0.5,0.6))
= T (0.7,0.8) ,

and the final result depends on the t-norm chosen.

Moreover, now we cannot assure that IS(a,a) = 1
for any a ∈ [0,1]. In fact, there are t-conorms such that
this is not true for any a.

Example 4 If we continue with the previous example,
ISP(a,a)= (1−a)+a−(1−a)a= 1−a+a2 6= 1,∀a∈
(0,1).

Thus, we cannot use Propositions 1 and 2. However,
reflexivity is totally characterized for S-implications as
follows.

Proposition 5 Let T be a t-norm. The associated log-
ical equivalence ES is reflexive if and only if T (a,1−
a) = 0, for all a ∈ [0,1].
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Proof We have proven in Theorem 1 that the operator
ES is reflexive if and only if IS(a,a)= 1 for all a∈ [0,1]
and this happens if and only if S(a,1− a) = 1 for all
a ∈ [0,1], equivalently, if and only if T (a,1− a) = 0
for all a ∈ [0,1].

It follows from the previous Proposition that only a
particular type of t-norms with zero divisors allow us
to construct similarities by means of S-implications. In
particular, the previous result rules out the minimum
and product t-norms. On the other side, Łukasiewicz
and the nilpotent-minimum t-norms guarantee that the
operator E is a similarity.

Remark 1 Thus, if the logical equivalence is reflex-
ive, we have that the t-norm is such that the set of
nilpotent elements is ]0,1[. Unfortunately, the con-
verse is not true. Thus, for instance, the Schweizer-

Sklar t-norm TSS(a,b) =
(

max
(√

a+
√

b−1,0
))2

fulfills that any a ∈]0,1[ is a nilpotent element, since
TSS(a,(1−

√
a)2) = 0 and (1−

√
a)2 ∈ [0,1] for any

a ∈]0,1[. However, ETSS(0.3,0.3) = 0.7163 6= 1.

The previous characterization allows us to identify
which of the operators in the main families of t-norms
(see [16]) allow us to build operators ES that are simi-
larities. We next classify them into operators that lead
to similarities and those that do not.

If we first consider the four most important t-norms,
the minimum, product, Łukasiewicz and the drastic t-
norm, it is easy to verify that only Łukasiewicz and
the drastic t-norms satisfy the condition T (a,1−a) =
0. Another t-norm that satisfies this condition is the
nilpotent minimum defined as follows

TnM(a,b) =
{

0, if a+b≤ 1
min(a,b), otherwise.

Let us consider some of the most important families
of t-norms.

The Yager Family of t-norms (see, [16]) is defined
BY:

T λ
Y (a,b)=


TD(a,b), if λ = 0
TM(a,b), if λ = ∞

max
{

1−
[
(1− x)λ +(1− y)λ

]1/λ

,0
}
,

if λ ∈ (0,∞)

The Sugeno-Weber t-norms are defined by:

T λ
SW (a,b) =


TD(a,b), if λ =−1
TP(a,b), if λ = ∞

max( a+b−1+λab
1+λ

,0), if ∈ (−1,∞)

The Schweizer-Sklar family is defined by:

T λ
SS(a,b) =


TM(a,b), if λ =−∞

TP(a,b), if λ = 0
TD(a,b), if λ = ∞(
max

(
aλ +bλ −1,0

))1/λ
,

if λ ∈ R−{0}

We have not recalled the complete definition of
other families, since in those cases only one member
of the family satisfies the condition T (a,1− a) = 0.
An exhaustive list of these families and their properties
can be found in [16]. In the family of Hamacher, only
the drastic t-norm (λ = 0) satisfies T (a,1−a) = 0 and
therefore only this operator allows ES to be a similarity.
The same happens if we consider the Mayor-Torrens
family or the Frank family: only the Łukasiewicz
t-norm, corresponding to the parameter λ = 1 and
λ = ∞ respectively, satisfies the condition. In the case
of Aczél-Alsina and Dombi’s family, is the drastic t-
norm, corresponding to λ = 0 in both cases, the one
that satisfies the condition.

Next we discuss for the Yager, Sugeno-Weber and
Schweizer-Sklar families which t-norms satisfy the ax-
ioms of similarity, equivalently, which of them satisfy
T (a,1−a) = 0.

– We first consider the family of Yager. Condition
T (a,1−a) = 0 is equivalent to solve the inequal-

ity 1−
[
(1−a)λ +aλ

]1/λ

≤ 0 or (1−a)λ +aλ ≥
1. This inequality holds if and only if λ ≤ 1. For
any λ > 1 it holds that 0.5λ < 0.5 and therefore
0.5λ +(1−0.5)λ < 1. On the other hand, for any
λ ≤ 1 it holds that aλ ≥ a for all a≤ 1 and there-
fore, aλ +(1−a)λ ≥ 1 for all a ∈ [0,1].

– For the Sugeno-Weber family, the condition is
a+(1−a)−1+λa(1−a)

1+λ
≤ 0, which is equivalent to

λa(1−a)≤ 0. Since a(1−a)≥ 0, the inequality
only holds if λ ≤ 0, this is, if λ ∈]−1,0].
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– For the Schweizer-Sklar family we have to find
the values where the condition aλ + (1− a)λ −
1 ≤ 0 or equivalently aλ +(1− a)λ ≤ 1 is satis-
fied. It is easy to prove that this inequality is true
for λ ∈ [1,∞[.

Table 1 summarizes the families of t-norms which
allow us to obtain similarities from S-implications,
where S is the dual t-conorm associated with this t-
norm. The interval where the definition of similarity is
valid is also included.

The set of nilpotent t-norms which satisfy the ax-
ioms of similarity is not restricted to the t-norms in-
cluded in Table 1, as we can see in the following ex-
ample.

Families of t-norms Generation of similarity

Schweizer-Sklar λ ∈ [−∞,∞] λ ∈ [1,∞]

Hamacher λ ∈ [0,∞] λ = ∞

Frank λ ∈ [0,∞] λ = ∞

Yager λ ∈ [0,∞] λ ∈ [0,1]

Aczél-Alsina λ ∈ [0,∞] λ = 0

Dombi λ ∈ [0,∞] λ = 0

Sugeno-Weber λ ∈ [−1,∞] λ ∈ [−1,0]

Mayor-Torrens λ ∈ [0,1] λ = 1

Nilpotent Minimum t-norm Yes
Table 1

Families of t-norms and the nilpotent minimum t-norm (left-
continuous). Parameters for which they satisfy the axiomatic of sim-
ilarity.

Example 5 If we define ϕ(a) = tan(a)
tan(1) , ϕ is a strictly

increasing and continuous function in the interval
[0,1]. Also ϕ(0) = 0 and ϕ(1) = 1. Therefore, the t-
norm Ttan(a,b) = ϕ−1(TL(ϕ(a),ϕ(b))) is a nilpotent
t-norm.
Now, since tan(x+y) = tan(x)+tan(y)

1−tan(x) tan(y) ≥ tan(x)+ tan(y)
for any x,y ∈ [0,1], in particular tan(1) ≥ tan(x) +
tan(1−x) and therefore, ϕ(1)≥ ϕ(x)+ϕ(1−x). Then
the condition in Proposition 5 is fulfilled. Hence, from
Ttan we can define a measure of similarity. However,
Ttan does not belong to any of the families considered
in Table 1.

3.3. QL-implications

The operator presented in Def. 10 is not necessar-
ily an implication according to Def. 7, because I(·,b)

is not always decreasing. One example can be found
in [3]. They also provide a necessary condition for the
t-conorm and negation involved in the definition in or-
der for a QL-implication to satisfy all the axioms in
Def. 7, in particular the monotonicity in its first argu-
ment:

Proposition 6 (see [3]) Let T be a t-norm, S a t-
conorm, N a strong negation and I the operator given
in Def. 10. If I(·,b) is decreasing then

S(x,N(x)) = 1 for all x ∈ [0,1] .

Also in [3] we can find one example that proves that
the condition in Proposition 6 is only necessary, but
not sufficient.

However, our interest focuses on the study of simi-
larities. We showed in Proposition 1 that in order for an
operator E defined from an implication to be a similar-
ity, the implication operator has to satisfy I(a,a) = 1
for all a ∈ [0,1].
The following proposition shows that this condition
is not satisfied by any t-norm when applied to QL-
implications.

Proposition 7 There exists no t-norm T such that the
binary operation ET,S associated to the QL-implication
IT,S, where S is the dual t-conorm of T , is a similarity.

Proof Notice that IT,S(a,a) = 1 is equivalent to S(1−
a,T (a,a)) = 1 and this is equivalent to T (a,1 −
T (a,a)) = 0 for all a ∈ [0,1]. As a consequence, for
every a ≤ 0.5 it holds that a + T (a,a) ≤ a + a ≤ 1.
Therefore, a≤ 1−T (a,a).
This implies, since t-norms are increasing, that 0 =
T (a,1−T (a,a)) ≥ T (a,a). Equivalently, T (a,a) = 0
for all a ≤ 0.5. If we now apply the hypothesis to a
value 0 < a < 0.5 we get

1 = S(1−a,T (a,a)) = S(1−a,0) = 1−a .

A contradiction.

The conclusion is that the set of t-norms which can
be used for defining similarities according to Eq. (1) is
empty in the case of QL-operators.

3.4. f and g-generated implications

We next study if f and g-generated implications lead
to a similarity in the sense of Def. 13.
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As we proved in Theorem 1, the implication opera-
tor I f must satisfy the Identity Principle (I(a,a) = 1).
However, there is no implication operator I f generated
from a function f that satisfies this equality except for
a = 0 or a = 1 (see [3]). Therefore E f , the measure of
proximity defined as in Eq. (2), does not satisfy reflex-
ivity and consequently, it is not a similarity.

Also in [3], we can find a characterization for those
implication operators of the type Ig that satisfy the
Identity Principle.

Proposition 8 [3] The implication operator Ig satisfies
Ig(a,a) = 1 for all a∈ [0,1] if and only if g(1)< ∞ and
a≤ g(a)

g(1) for all a ∈ [0,1].

As a direct corollary we can give the following re-
sult.

Corollary 1 Eg, the measure of proximity defined as in
Eq. (2) using a g-generated implication operator Ig is
a similarity if and only if g(1)< ∞ and a≤ g(a)

g(1) for all
a ∈ [0,1].

Example 6 One example is the Yager’s class of addi-
tive generators, gλ (a) = aλ (see [3]), where λ ∈ ]0,∞[.
gλ (1) = 1 < ∞ for every λ and the pseudo-inverse is
(gλ )(−1)(a) = min(1,a1/λ ). It satisfies the inequality

a≤ gλ (a)
gλ (1)

if λ ∈ ]0,1]. Hence, the implication operator
is the following:

Igλ (a,b) = min
(

1,
b

a1/λ

)
. (3)

4. Application to image processing problems

Here, we illustrate the application of the measures of
similarity to compare one original image obtained by
contrast imaging in nuclear magnetic resonance with
other three digital images processed from it. This ex-
ample can be seen in [23].
A black and white image is digitally represented by
a matrix, where each element is an integer value of
the grayscale range 0-255 (see [26]). The ai j element
means the normalized gray value of the pixel placed in
this position, 0 means the pixel is black and 1 means
the pixel is white, intermediate values refer to a gray
color. The nearer it is to 1, the lighter it is, and the op-
posite: the nearer it is to 0, the darker it is.

Original image Processed Image 1

Processed Image 2 Processed Image 3

Fig. 1. The original and three processed images of one brain contrast
imaging in nuclear magnetic resonance.

In this example the original figure (on the left) will
be compared with the other three images, which were
obtained by processing the first one. We will answer
the question: How much does the original image look
like the other three? To answer this question we will
compare every pixel by the grayscale level. We will
use two implications, one is the Gödel implication, an
R-implication (see [3]) associated to the minimum t-
norm and defined by:

IG(a,b) =
{

1, if a≤ b
b, if a > b

The other one we have chosen is the bi-implication de-
fined by a S-implication from the Schweizer-Sklar t-
norm with λ = 2. Finally, we used the g-generated im-
plication from Yager’s class for λ = 1 and TM as the
t-norm in Eq. (1).
We have compared images pairwisely by using these
two operators as implications. As aggregation operator
we have tested three options: the t-norm TM , the Ge-
ometric Mean and the Arithmetic Mean, as compen-
satory operators.
The results are summarized in the table below. Let us
call A0, A1, A2 and A3 the matrices corresponding to
the original, the first, the second and the third images,
respectively.

The similarity between the original image and the
other ones is considered 0 for the minimum and the
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Equiv. def.
R-implication

(Gödel)

Case Aggr. Oper. TM GM AM

E(A0,A0) 1 1 1

E(A0,A1) 0 0 0.51

E(A0,A2) 0 0 0.36

E(A0,A3) 0 0 0.17

Equiv. def.
S-implication

(Schweizer-Sklar)
λ = 2

Case Aggr. Oper. TM GM AM

E(A0,A0) 1 1 1

E(A0,A1) 0 0 0.96

E(A0,A2) 0 0 0.93

E(A0,A3) 0 0 0.61

Equiv. def.
g−generated

(Yager’s class)
λ = 1

Case Aggr. Oper. TM GM AM

E(A0,A0) 1 1 1

E(A0,A1) 0 0 0.84

E(A0,A2) 0 0 0.50

E(A0,A3) 0 0 0.17
Table 2

Pairwise comparison of images, for the Gödel, the S-implication de-
fined from the Schweizer-Sklar t-norm for λ = 2 and the Yager’s
class for λ = 1 implications, where the aggregation operators are
TM , the Geometric Mean and the Arithmetic Mean.

Geometric Mean due to the fact that some pixels are
white in one image and black in the other one. This
fact influences the final result of the operator evalu-
ating the similarity between both images when some
aggregation operators are considered. We can see that
the arithmetic mean is not as affected as the other two
operators and the similarity measure is higher in that
case.
If we focus on the results obtained for the arithmetic
mean, we can realize that they maintain an order that
agrees with intuition. Those values confirm the visual
impression, that the similarity between the original and
the three others decreases from the first one to the third
one (from left to right in Fig. 1).
Despite there is a coincidence in the order of classifica-
tion according to every measure, the cardinality of the
similarity measures are completely different, mainly
the calculus corresponding to the arithmetic mean. The
advantage of the parameterized similarity measures
(the two on the right) is that their values can be ad-
justed to the criterion of a decision maker. This is a

benefit to be remarked. Furthermore, they are obtained
in a simple way and the computational cost of calcu-
lation is very low. These advantages become essentials
if we could design a Similarity Based Reasoning.
For example, in the similarity measure defined from
the S-implication with the arithmetic mean in Table 2,
for λ = 1 we obtained E(A0,A1) = 0.8967 and for
λ = 3, E(A0,A1) = 0.9700, and we could select the
value of λ which best fits the decision maker’s criteria.
Also, it is clear that if we choose a continuous impli-
cation, its corresponding similarity measure will pre-
serve the intra-dimensional similarities and at the same
time they can be represented according to linguistic
variables, for example ‘lightness’ or ‘darkness’.

5. Conclusions

In this paper one definition of similarity based on
logical bi-implication equivalence is studied. We use
a classic axiomatic for similarity between two fuzzy
sets to demonstrate that our definition of similarity is
valid. From the results obtained, we can do the follow-
ing conclusions:

– The equivalence definition based on an R-impli-
cation is a similarity measure for any t-norm.

– The equivalence definition based on an S-impli-
cation has to use a t-norm satisfying the condi-
tion T (a,1−a) = 0. The classical t-norms which
satisfy this condition are: the drastic t-norm,
Łukasiewicz, the nilpotent minimum t-norm, the
Schweizer-Sklar t-norm family for λ ∈ [1,∞], the
Sugeno-Weber family for λ ∈ [−1,0] and the
Yager family for λ ∈ [0,1]. Since Łukasiewicz
and the drastic t-norms are particular members of
the following families, we can also say that the
Frank family and the Hamacher family satisfy the
condition for λ = ∞, the Mayor-Torrens family
for λ = 1 and Aczel-Alsina and Dombi’s families
for λ = 0.

– QL-implications do not generate any similarity
measure, according to the definitions we used in
this paper. Reflexivity is the condition that fails.

– Bi-implications defined from f -generated impli-
cations do not satisfy the axiom of reflexivity. Be-
sides, g-generated implications can be used to de-
fine a measure of similarity if and only if g(1)<∞

and ∀a a≤ g(a)
g(1) .

– The theory developed in this paper can be ap-
plied to compare digital images. We have illus-
trated this with one example.
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– Our approach has many advantages: A family
of parameterized bi-implications with low com-
putational cost can be obtained. Also, the mea-
sures can be used in quantitative similarity calcu-
lus with qualitative meanings.
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