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Abstract

This paper presents a novel CFD study on the fluctuations induced in

water flow by a single vibrating tube in a parallel triangular array with pitch

ratio of 1.57. The simulations have been developed with a commercial code

for the resolution of the 2D-URANS equations while allowing mesh updating

at each time step, in order to incorporate forced oscillations in the transverse

direction for a selected tube. After each simulation, the velocity, vorticity

and pressure fields computed at successive time steps were FFT processed

to obtain the corresponding distribution of fluctuations in amplitude and

phase. This allowed for a convenient analysis of the disturbances inducted

in the flow, which is considered key for the development of fluidelastic insta-

bility. According to these computations, during the oscillation cycle several

vortices are formed around the vibrating tube, some of which are convected

downstream at an approximately constant speed. That process determines

the amplitude and phase of the velocity and pressure fluctuations throughout
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the domain, and, in particular, on the surface of the vibrating tube. Results

are reported for a range of cross-flow velocities, from very low values up to

a reduced gap velocity above 10. The predictions obtained are compared

to the results from some other studies in the literature, in particular to the

experimental data on the propagation of velocity fluctuations reported by

Khalifa et al. (2013a) and to the unsteady lift forces measured by Sawadogo

and Mureithi (2014), in both cases for relatively similar configurations. Ex-

cept for low flow velocity, the fluctuating lift forces result to be destabilizing

due to the pressure pulsations on specific areas of the vibrating tube at the

wake side, which behave as alternating stagnation regions for the periodic

vortical flows induced by the oscillating tube.
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1. Introduction

The development of self-excited vibrations in cylinder arrays subject to

cross-flow such as in shell-and-tube heat exchangers, usually referred to as flu-

idelastic instability (FEI), can be triggered by either a fluid damping or a fluid

stiffness controlled mechanism [Chen (1983), Paidoussis and Price (1988)].

The latter requires several degrees of freedom, i.e., it involves coupled oscil-

lations of several tubes of the array, but the fluid-damping mechanism only

requires motion of one single cylinder in one direction, with lower critical

flow velocity for the oscillations in the transverse direction than streamwise.
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The phenomenon is attributed to the phase lag between the instantaneous

fluid forces applied on the tubes and their position during each oscillation,

though different origins have been proposed to explain that lag. For some

authors, its origin lies on the adaptation process of the upstream flow to the

tube motion, either due to fluid inertia effects in the main stream [Lever and

Weaver (1982)] or because of fluid retardation in the vicinity of the stagna-

tion points [Price and Paidoussis (1984)]. Instead, Paidoussis et al. (1984)

associate that lag to the effect of viscous forces in the reorganization of the

wake after the oscillating tube. More specifically, Granger and Paidoussis

(1996) describe it as a memory effect due to the diffusion of thin vorticity

layers from the oscillating tube surface into its boundary layer, to be finally

convected downstream. Posteriorly, Meskell (2009) proposed a simple wake

model to estimate Granger and Paidoussis’s memory function, showing that

that process of vorticity transport can produce the time delay of the fluide-

lastic force.

Lever and Weaver [Lever and Weaver (1982), Lever and Weaver (1986a),

Lever and Weaver (1986b)] used the fluid inertia concept to build a quasi-

analytical model in which the main flow passes through the array along wavy

channels or streamtubes. Given a transversely oscillating cylinder, the cross-

area of the adjacent streamtubes is assumed to fluctuate too with a time lag

that increases with distance. The application of simple 1D unsteady flow

equations allows estimating the velocity and pressure fluctuations along the

wavy channels, from which the fluid-dynamic forces on the tubes can be de-

termined and used to establish a critical velocity for each configuration. As

compared to other models, Lever and Weaver’s is very attractive because
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it offers a simple way of applying the basic flow equations to explain the

phenomenon while yielding predictions of critical velocity that are reason-

ably in-line with the trend of the experimental data for several situations.

Posteriorly the model was extended to multiple flexible tubes by Yetisir and

Weaver [Yetisir and Weaver (1993a), Yetisir and Weaver (1993b)] and more

recently by Hassan and Weaver [Hassan and Weaver (2016a), Hassan and

Weaver (2016b)] to account for both transverse and streamwise vibrations.

However, there have been few studies intended to verify how disturbances

lag and decay while they are transmitted in the flow, despite its importance

in the excitation mechanism for FEI as described in Lever and Weaver’s

model. The most remarkable experimental study corresponded to Khalifa

et al. (2013a), who conducted detailed hot-wire measurements in the flow

across a parallel triangular array with P/d=1.54 and one tube vibrating

transversely due to damping-controlled FEI. This is very convenient because

it allows isolating the source of the perturbations induced in the flow. Khal-

ifa et al. (2013a) observed that velocity fluctuations originated near the flow

separation region behind the oscillating tube. From that position the fluctu-

ations propagated both up and downstream with a speed that was basically

proportional to the gap velocity (lower speed upstream than downstream),

though the fluctuation amplitude decayed quickly with increasing distance

from the origin.

Other recent studies on this topic have been based on CFD simulations

of the flow through arrays in which a single tube was forced to oscillate
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at a given amplitude and frequency. Hassan and El Bouzidi [Hassan and

El Bouzidi (2012)], who considered a normal triangular array with P/d=1.35,

obtained that the maximum velocity fluctuations were located close to both

flow attachment and detachment regions on the vibrating tube, with a nearly

constant velocity phase upstream. More recently, these authors [El Bouzidi

and Hassan (2015)] focused on the fluctuations in the cross-area of the equiv-

alent streamtubes through the same array. They concluded that the decay

function used by Yetisir and Weaver (1993a) for the cross-area fluctuations

is in general more realistic than the assumptions in the original Lever and

Weaver’s model, especially for low reduced velocities. Khalifa et al. (2013b)

also performed CFD simulations intended to model the velocity fluctuations

previously measured for a parallel triangular array [Khalifa et al. (2013a)].

They obtained good correlation between predictions and measurements, and

besides they obtained improved estimations of critical velocity when using an

empirical phase lag function in Lever and Weaver’s model [Lever and Weaver

(1986a), Lever and Weaver (1986b)]. Anderson et al. (2014) designed a nu-

merical model inspired in Lever and Weaver’s 1D theory to explore the devel-

opment of the boundary layer alongside each cylinder in an in-line array with

one oscillating tube. They obtained that the separation point oscillated with

amplitude and phase (relative to tube motion) that depended non-linearly

on the reduced flow velocity as well as on the excitation amplitude. They

concluded that the time lag of the fluidelastic force has two components: one

velocity-dependent component related to perturbations in the main stream

and another amplitude-dependent component related to the boundary layer

motion.
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This paper presents a novel CFD study on the fluctuations induced in the

flow by a single vibrating tube in a parallel triangular array with P/d=1.57,

not very different to the arrays tested Khalifa et al. (2013a) and Sawadogo

and Mureithi (2014). The study is based on a 2D URANS model developed

with the commercial code Fluent and complemented with an external soft-

ware routine that imposed forced oscillations in the transverse direction for a

selected tube. The methodology follows the previous work by de Pedro et al.

(2016) for normal triangular arrays, who obtained remarkable agreement be-

tween predictions and experimental data on the time lag of the fluid-dynamic

forces and, especially, on the critical velocity. After each simulation, the ve-

locity, vorticity and pressure fields computed at successive time steps were

FFT processed to obtain the corresponding distribution of fluctuations in

amplitude and phase, thus allowing for a convenient analysis of the flow per-

turbations in the region of interest.

2. CFD procedure

A CFD methodology involving structure motion and dynamic re-meshing

has been applied to simulate the unsteady flow through cylinder arrays with

one single tube undergoing forced oscillations while subject to water cross-

flow. The procedure is based on 2D URANS computations with the Fluent

6.3 software. The choice of a 2D URANS formulation allows for a relatively

low computational cost, but it entails a significant simplification with respect

to a real 3D high turbulent flow as expected across packed cylinder arrays,
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because the effects of turbulence are condensed in averaged Reynolds stress

terms. This means that only deterministic fluctuations can be computed,

i.e. the coherence between the fluctuations predicted at any two positions

will be unity regardless their distance, whereas in real flow it would decay

with increasing separation. In consequence, the prediction with a URANS

model of the fluid forces induced by a vibrating tube on the other cylinders

in an array can be expected to lose reliability with increasing distance. Yet,

a URANS model can be a convenient means to analyze the periodic flow

perturbations induced around the oscillating tube and the subsequent fluid-

dynamic forces leading to damping-controlled FEI. This has already been

shown in other numerical studies, for instance by de Pedro et al. (2016) for

normal triangular arrays.

To incorporate the motion of the vibrating tube, the CFD model was

complemented with a specially designed User Defined Function so that, at

every time step, the position of the tube could be updated and the domain

remeshed [de Pedro et al. (2016)]. For this purpose, a hexagonal region was

defined surrounding the vibrating tube, in which triangular cells could either

shrink or expand depending on the instantaneous tube position (Fig. 1-b).

Around each tube, a special grid was defined composed by several layers of

quadrilateral cells, the closer to the tube surface the smaller size. In the case

of the vibrating tube, this ring of quadrilateral cells moved attached to the

cylinder without undergoing deformation. For all the cases tested the y+

parameter was equal or less than 1. The array modeled corresponded to the

parallel triangular geometry with P/d=1.57. This array had seven rows, with
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the vibrating tube located in the fourth row, and the calculation domain ex-

tended the equivalent to nine tube diameters both up and downstream (Fig.

1-a). The model contained about 4× 105 cells.

Several preliminary series of computations were performed in order to se-

lect adequate calculation parameters including turbulence model (k-ϵ RNG),

boundary conditions at the channel sides, mesh refinement and time step.

Further details from these preliminary tests can be found in [de Pedro et al.

(2016)]. In particular, full-slip guide plates were placed behind each tube of

the last row, parallel to the main stream, in order to prevent the appear-

ance of large-scale flow oscillations downstream. This was preferred to the

option of truncating the domain at the centerline of the last cylinder row as

used in other studies [Hassan et al. (2010)] in order to prevent affecting the

disturbance propagation downstream by a constant pressure condition not

too far from the vibrating cylinder. Besides, the time step for the compu-

tations now reported was set to 512 time steps per tube oscillation, which

is about six times higher than the minimum value recommended by Hassan

et al. [Hassan et al. (2010)] for equivalent simulations under forced vibration.

For each new case tested, dynamic simulations were left to progress over

several oscillations until the successive maxima and minima of the lift co-

efficient on the vibrating tube and on the surrounding cylinders differed in

less than 2% of the corresponding peak-to-peak amplitude. Then the instan-

taneous velocity and pressure fields at 64 instants covering one more tube

oscillation were registered for posterior analysis. For this purpose, a new
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regular grid was defined for the region of interest, i.e. the region surrounding

the vibrating tube including the wavy channels adjacent to it (see detail in

Fig. 2). Typically, the nodes in this grid were separated 0.25 mm in both di-

rections. In this regular grid, velocity and pressure time signals at each node

were determined from adequate composition of the instantaneous flow fields

previously computed with the CFD software. Besides, each instantaneous

velocity field was processed to obtain the corresponding instantaneous vor-

ticity distribution, so that vorticity time signals were also assigned to each

node of the regular grid. Then FFT calculations were performed at each

node to yield the amplitude and phase of velocity, vorticity and pressure at

the vibration frequency and harmonics, as well as the average value. This

procedure was applied systematically for different values of upstream velocity

and vibration amplitude.

Figure 3 shows an example of the spectral distributions so obtained for

the velocity and pressure amplitude at three reference locations close to the

vibrating tube TV, for a specific set of system parameters. Like in the case

shown in Fig. 3, the amplitude of both velocity and pressure fluctuations for

the second and higher order harmonics was always very small throughout the

computational domain. Because of that, only predictions corresponding to

the first harmonic (i.e., to the vibration frequency) are reported in this paper.
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3. Pattern of the average flow

Figure 4 shows the average flow field (streamlines and velocity and pres-

sure distribution) obtained for a parallel triangular array with tube diam-

eter d=12 mm, pitch ratio P/d=1.57 and water cross-flow with upstream

velocity UU = 0.21 m/s. The Reynolds number based on gap velocity

was ReG = 6020. Tube TV was oscillating transversely with amplitude

A = 0.83% of tube diameter and frequency f=7.81 Hz. The resulting re-

duced gap velocity was URG = 5.33. This was considered as the reference

case.

As expected, the flow pattern is characterized by wavy stream channels

between tube lines, with low velocity wake regions between tubes of the same

line. The pattern is notoriously symmetric with respect to the horizontal line

through the centers of tubes T1, TV and T4, though the domain (Fig. 1-a)

is not strictly symmetric. After the second row, the stream channels are seen

to attach to each tube surface at about β1 ∼ 35◦ ahead of the tube top or

bottom, whereas detachment starts just at β2 ∼ 5◦ after of those positions.

No significant variations were found in this velocity pattern when modifying

the flow velocity or the vibration amplitude.

These wavy lanes resemble the streamtubes considered in Lever andWeaver’s

theory. Though they assumed symmetrical locations for the flow attach-

ment and detachment from each cylinder (i.e., β1 ∼ β2) [Lever and Weaver

(1986a)], the input data they proposed for parallel triangular arrays with

P/d=1.6 [Lever and Weaver (1986b)] corresponds to β1 ∼ β2 = 18.5◦; this
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gives an angular extension for the region of contact between cylinders and

stream tubes that is close to the current prediction of β1+β2 ∼ 40◦ (Fig. 3).

Nonetheless, the current predictions are in line with the values β1 = 40◦ and

β2 = 10◦ suggested by Yetisir and Weaver [Yetisir and Weaver (1993b)] for

parallel triangular arrays, based on a previous flow visualization study by

Scott (1987).

The pressure pattern of Fig. 4-c shows the progressive decay of pres-

sure through the array, from highest values at the stagnation point on the

tubes of the first and second rows. Along the stream channels, pressure is

seen to decrease locally round the top and bottom portions of each cylinder

in the array, approximately at the detachment regions, whereas the kinetic

energy rises up in the mid-stream. In the wake regions, pressure is mostly

determined by the pressure in the adjacent stream tubes and so it is rather

uniform until the stagnation points on the next tube downstream.

4. Velocity fluctuation field

Figure 5 presents the instantaneous fluctuation of the velocity vectors

when the oscillating tube TV is located at four different positions during

one cycle. They were obtained for the same conditions of the reference case

by subtracting the average velocity vectors (modules as in Fig. 3) from the

instantaneous values. Only one out of 64 vectors is shown in Fig. 5.

It is seen that the motion of tube TV induces vortexes in the wake regions
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T1-TV and TV-T4 with alternating sense of rotation and highest intensity

approximately when TV is at maximum speed, i.e., when it passes through

the neutral position either upwards (0◦) or downwards (180◦). These vortices

are mostly related to the fluid areas alternatively displaced in and out by tube

TV as it moves up and down during the oscillation cycle. For example, when

TV is at 0◦ going upwards (first graph of Fig. 5), the fluid displaced from the

top of TV plus the fluid suctioned from its bottom side and the fluid layers

dragged upwards form a counter-clockwise vortex between T1 and TV, as

well as a clockwise vortex between TV and T4. These two vortices are not

wholly symmetric because the main stream imposes different flow conditions

up and downstream from TV.

Besides, alternating vortices are also induced in the region of the wavy

channels adjacent to tube TV, with highest intensity approximately when TV

is at maximum displacement (90◦ and 270◦). These vortices are related to the

periodic changes of cross-section in the wavy channels and the corresponding

changes in hydraulic resistance. When, for instance, TV is at bottom position

(270◦, fourth map in Fig. 5), the channel cross-section below TV is lowest,

part of the incoming stream between T1 and T2 is diverted upwards through

the T1-TV passage and part of the stream above TV is diverted downwards

through the TV-T4 passage. As a result, at that instant the velocity fluc-

tuation alongside the bottom of TV is negative (it goes upstream) and a

counter-clockwise vortex is located below TV. Unlike the former vortices in

wake regions, these new vortices do not remain fixed but are progressively

convected downstream while TV oscillates. Consider the clockwise vortex
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induced below TV when it is at top position (90◦). When TV comes back

through neutral position (180◦) that vortex has already overpassed the top of

tube T3, then it is right below T4 when TV reaches bottom position (270◦),

and finally, it is seen to have overpassed T4 when TV goes again through

neutral position (0◦).

The vectors with highest velocity are seen to be placed alongside the top

and bottom surfaces of tube TV, but this is more readily appreciated in Fig.

6, which shows the distribution of the velocity fluctuations for the first har-

monic, i.e., at the vibration frequency, for the configuration of the reference

case (the same as in Figs. 3 to 5). Figure 6-a shows the fluctuation amplitude

and, like Fig. 4, it is mostly symmetric with respect to the horizontal line

through the center of TV. Analogously, Fig. 6-b presents the phase of the

velocity fluctuation with respect to the displacement of TV. In this case the

phase distribution of Fig. 6-b is mostly anti-symmetric. The sign convention

is that a positive phase expresses delay with respect to TV position, and the

latter increases upwards (i.e. towards tubes T5 and T6). Therefore, a phase

of, say, 10◦, would mean that the highest value is achieved slightly after TV

has passed through top position (i.e. 90◦ in Fig. 5).

Figure 6-a confirms that the maximum fluctuation values correspond to

the region of the main stream adjacent to the boundary layer of the vibrat-

ing tube. Highest values are of the order of 15% of the gap velocity, which

is about twice the tube velocity amplitude for this particular case. On the

left side of TV, several zones appear with some appreciable velocity fluc-
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tuation that are related to the alternating secondary flows in the T1-TV

passage. They include zones surrounding the attachment of the main stream

on TV. But indeed the right side of TV is more relevant: once the flow sepa-

rates, high amplitude values still remain along the boundary region between

main stream and cylinder wakes. This behavior is in line with Granger and

Paidoussis’ explanation for what they call flow memory effect [Granger and

Paidoussis (1996)], due to the diffusion and subsequent convection of thin

vorticity layers from the oscillating tube surface. However, it can also be

attributed to the shift of the separation points while TV oscillates (Ander-

son et al. (2014)). Actually both attachment and separation points undergo

some small shift in the present case (about 0.7◦ and 1.4◦ respectively between

top and bottom position), but across the detached shear layer the gradient

of average velocity is higher and so the velocity fluctuations are more intense

downstream from flow separation.

Consider the case of experimental measurements with hot wire, like the

tests performed by Khalifa et al. for a similar configuration [Khalifa et al.

(2013a)]. Certainly, it would be difficult to get close enough to a tube surface

that is vibrating as to measure the highest values suggested in Fig. 6-a. If

measurements were to be taken starting at some safety distance from the vi-

brating tube, the highest values would correspond to the region of separated

flow after the cylinder, i.e., slightly downstream from the detachment point.

This was in fact the result obtained by Khalifa et al. (2013a) from their tests

and it is consistent with the present computations.
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On the other hand, the map of Figure 6-b shows that the velocity phase

is about 0◦ at the bottom of TV and 180◦ on top, but across the respective

main stream channels the phase changes 180◦. This is due to the vortices

formed in the main channels. Consider the stream channel below TV when

it is at top position, as seen in the second graph of Fig. 5. The velocity

fluctuation alongside TV is highest and its direction is downstream, so that

the modulus of the velocity vector is highest too and the phase delay with

respect to the position of TV is nearly zero. At the opposite side of the

stream channel (from T2 to T3) the velocity fluctuation is also highest but

its direction is upstream, and so at that instant the modulus of the velocity

vector is lowest and the phase delay is close to 180◦. In contrast, in the

middle of the channel, which corresponds to the core region of the vortices

induced in the main stream, Fig. 6-b shows that the phase is not uniform but

increases rapidly upstream, until the passage between T2 and TV. Further

upstream the phase reduces somewhat and becomes uniform. Finally, down-

stream from TV, the phase is seen to increase progressively at both sides of

the stream channel, though there is an abrupt change of phase across the

central line. This is indicative of the vortex convection process shown in Fig.

5. In any case, those phase distributions mean that velocity perturbations

are perceived after a delay that increases with distance from TV. This is in

agreement with the results obtained by Khalifa et al. (2013a).

Finally, the fluctuations predicted at any position in the domain are to-

tally correlated with the tube motion despite the separation distance. This

unrealistic behavior is a consequence of the URANS formulation, as men-
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tioned in Section 2. In real turbulent conditions the vortical structures would

progressively transform into smaller eddies, thus weakening the vortex con-

vection downstream. However, around TV these vortices are continuously

formed and sustained by the oscillations of the cylinder TV itself, despite

the turbulence intensity in the main stream. Hence, in the neighborhood of

TV, it can be expected that a more realistic turbulent environment would

only produce secondary effects on the unsteady flow.

5. Velocity fluctuations along fluid lines

For a better analysis of the predictions obtained, data is now presented

for specific wavy fluid lines along the stream channels. These fluid lines have

been generated automatically as a function of a special parameter kR = [0...1]

that determines the distance from the vibrating tube: the line with kR=0

is adjacent to T1-TV-T4, whereas the line with kR=1 is adjacent to T2-T3.

Data is presented as a function of a curvilinear coordinate s∗, which has been

normalized so that it takes values of -2, -1, 0, 1 and 2 respectively for the

locations in front of the center of tubes T1, T2, TV, T3 and T4. Figure

7 presents the amplitude and phase of velocity fluctuations for three fluid

lines close to tube TV, especially the first one (red dots, with kR=0.05). The

system parameters are those of the reference case (Section 3). The phase has

been expressed in terms of time delay normalized by the oscillation period

(t∗).

For comparison purposes Fig. 7 also shows the experimental data ob-
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tained by Khalifa et al. [6] by traversing a hot-wire probe along the middle

of a wavy channel in an array with a relatively similar configuration. In

particular, those measurements correspond to P/d=1.54 (thus gap is ∼ 5%

lower than in the current model), air as flowing fluid and a reduced gap ve-

locity in the range URG=[6-8]. The Reynolds number based on gap velocity

was in the order of 3× 104, which is about five times higher than in the cur-

rent simulations. Besides, Khalifa et al. did not impose a forced transversal

vibration on a tube of the fourth row, but let a single tube (2 DOF) of the

third row develop fluidelastic instability. Despite these differences, Khalifa et

al’s data can still be considered a reference for comparison with the current

predictions.

Figure 7-b shows that, as discussed in the previous section, the high-

est velocity fluctuations take place alongside the tube surface, i.e., for the

line kR=0.05. For increasing radial distance from TV, those high fluctua-

tions become lower and the maximum values take place progressively further

downstream. The experimental data [Khalifa et al. (2013a)] present maxi-

mum values of the order of those for the line kR = 0.1, though the location

s∗ is slightly downstream. As discussed in the previous section, these experi-

mental data can be considered consistent with the current predictions. This

is also supported by the local increment in velocity fluctuation registered

by both experimental data and predictions at about s∗=-0.6, where flow is

nearing the attachment region on TV.

Regarding the time delay of the velocity fluctuations (Fig. 7-c), the pre-
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dictions for the line kR = 0.05 show that t∗ is about zero along the surface

of tube TV (around s∗=0), and that it increases quite progressively down-

stream until s∗ > 2. Changing to lines kR=0.1 and 0.25 makes the position

for minimum delay shift progressively downstream, but for s∗ > 0.5 the de-

lay values are very similar to those of line kR=0.05. As already mentioned,

this reflects disturbance propagation downstream and is in agreement with

Khalifa et al.’s experimental data.

Khalifa et al.’s data also reveal clear disturbance propagation upstream,

with a quite continuous increment in phase until s∗=-2, despite the fluctua-

tion amplitude is small. In comparison, the current computations reflect a

more complex pattern upstream. For the line kR=0.25, which can be consid-

ered representative of the central part of the wavy channel, the time delay

increases rapidly upstream until a value for t∗ above 0.9 at about s∗=-0.7,

but afterwards it reduces to t∗=0.65 with a relative minimum at about s∗=-

1.2. In contrast, the line kR=0.05, which passes very close to tube TV,

exhibits a continuous reduction of t∗ upstream until that minimum, though

a sharp jump, equivalent to one oscillation period, has been artificially intro-

duced before for ease of comparison with the other curves. The line kR=0.1

presents mixed features. This behavior is to be associated to the periodic

secondary flow induced in the wake region between T1 and TV, since, ac-

cording to the velocity maps of Fig. 5, it is significantly protruding into the

main wavy channels. Presumably, had the effects of that secondary flow been

less prominent, the delay of the velocity fluctuations along the central part

of the wavy channel might have increased upstream with a less steep slope,
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more alike to Kahlifa et al.’s measurements. However it is uncertain to what

extent that discrepancy can be attributed to the different conditions between

experiments and simulations, or to the approximations of the computational

model, including the assumptions implicit in a 2D URANS formulation.

A series of simulations was conducted varying the vibration amplitude

from 0% to 8% of tube diameter while keeping the remaining parameters

constant. No significant flow fluctuation could be detected if the vibration

amplitude was zero (non-oscillating tube). Even for the highest vibration

amplitude the tube velocity was an order of magnitude less than the gap

velocity. The predictions obtained, which are presented in Fig. 8 for the

fluid line with kR=0.2, show that the curves of velocity amplitude virtually

collapse if they are normalized by the tube velocity. Besides, the time de-

lay curves show no significant effect either. This proportionality between

flow fluctuations and vibration amplitude for not very large oscillations is in

fact a basic assumption in the models used to predict fluidelastic instabil-

ity inception, and it is also well supported by experimental measurements

(for instance Khalifa et al. (2013a)). In any case, this result confirms that

the CFD predictions were not affected by excessive cell distortion during the

process of mesh stretching and compression.

6. Variation of flow fluctuations with flow velocity

In the maps of Figs. 5 and 6, the velocity fluctuations up and downstream

from TV are very different, due to the relative high momentum in the wavy
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channels. Reducing the flow velocity without modifying the tube vibration

weakens the influence of the main stream, and a more symmetrical pattern

is to be expected between up and downstream. This is well characterized by

the amplitude and phase maps presented in Fig. 9 for an upstream velocity

UU = 0.03 m/s (URG= 0.76, ReG=860, other parameters as in Fig. 3).

The unsteady flow is now dominated by the fluid directly pushed in and

out by TV and there is very little difference in amplitude distribution be-

tween up and downstream. As in Fig. 6, the highest fluctuations in Fig. 9

take place along the top and bottom of TV, with phases equal to 180◦ and 0◦

respectively (similar to Fig. 6). However, around TV there are other eight

zones of relatively high amplitude and phases switching between −90◦ and

90◦, i.e., their highest values are achieved when TV is passing through the

neutral position at maximum speed either upwards or downwards. These

regions, which can also be traced in the maps of Fig. 6, just reflect the alter-

nating flows induced in the zones T1-TV and TV-T4. Consider the instant

when TV is at neutral position moving upwards. Apart from some layers

of fluid dragged upwards, the relevant flows are formed downwards at both

sides of TV to transport fluid being removed from the top of TV to the space

being liberated at the bottom. At the left-bottom region from TV, for in-

stance, the combination of that flow with the continuous stream coming from

the left side makes that the velocity modulus is maximum at that instant,

i.e. it is 90◦ ahead with respect to the displacement of TV, and so the phase

delay is −90◦ according to the adopted sign convention.
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In particular, those alternating downward and upward flows happen to

produce velocity fluctuations with similar high amplitude at the regions close

to both flow attachment (s∗∼-0.65) and detachment (s∗∼0.65). This is so be-

cause, contrary to the case of Fig. 6, now the gradient of average velocity

across the detached shear layer is low. The other zones with high amplitude,

which are next to TV at the left and right sides, are related to the secondary

flows induced in the inter-cylinder passages by the layers of fluid dragged by

TV.

Finally, no vortex convection along the wavy channels is identified in Fig.

9 for such a low flow velocity. In fact, the phase distribution downstream

from TV is rather uniform, as well as upstream, with about a 180◦ shift be-

tween both sides. Khalifa et al. (2013b), who obtained similar results from

their computations, suggested that disturbance propagation for low reduced

velocity has an acoustic nature as opposed to the case of higher reduced

velocity, for which propagation is determined by vorticity convection. They

concluded that the acoustic mechanism would be dominant for URG ≤ 2,

whereas in the present case vortex convection downstream could be detected

for URG ≥ 1.53.

Figure 10 shows the velocity fluctuations along a fluid line close to tube

TV (kR = 0.2) for five flow velocities ranging from UU=0.03 m/s to 0.42 m/s

(URG= [0.76...10.7], ReG= [860...12000]). The velocity amplitude, which has

been normalized by the gap velocity UG, shows a very similar pattern. Only

for the low velocity range, further velocity reductions result in higher fluctu-
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ations at about s∗=-0.65, so that for URG=0.76 there is an almost symmetric

pattern upstream and downstream as already reflected in Fig. 9. This is

in line with the results obtained from the numerical studies by Hassan and

El Bouzidi (2012) for a normal triangular array and by Khalifa et al. (2013b)

for a parallel triangular array.

Figure 10 also shows the phase of the velocity fluctuations at each location

in terms of the normalized time delay relative to the displacement of tube

TV. Again, the curves for flow velocities with URG>0.76 exhibit a similar

behavior, though increasing the flow velocity brings about a less steep slope

for the time delay evolution downstream from s∗=0. A slope with lower

steepness represents a higher propagation speed, which is consistent with

the fluctuations being convected downstream from tube TV. For URG=0.76,

which is the same case of the maps of Fig. 9, there is no vortex convection:

fluctuations far from TV are mostly due to fluid stirring around the fixed

tubes such as T4, and so the phase does not increase progressively down-

stream.

7. Speed of disturbance propagation

As already described in Section 4, the disturbances along the stream chan-

nels are associated to the vortices formed in the main stream while tube TV

vibrates and their subsequent convection downstream. The superposition of

the vortices with the main flow makes that, across the stream channels, at

one half the instantaneous velocity increases while it decreases at the other
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half. Because of this, the phase of the velocity fluctuations shown in Fig.

6-b exhibits a sharp change in value across the stream channels downstream

from TV. In consequence, analyzing the propagation of flow disturbances

from velocity fluctuations along a fluid line may be dependent on the specific

fluid line selected. To reduce that fluid line dependence, vorticity fluctua-

tions can be considered more convenient to estimate the speed of disturbance

propagation.

Figure 11 presents the distribution of the phase of the vorticity fluctu-

ations for the same configuration considered in the preceding sections 3-5.

The sign convention is that vorticity is positive for counter-clockwise rotation

and the phase represents delay relative to the position of tube TV, which is

positive upwards. This produces a map that is virtually symmetric with re-

spect to the T1-TV-T4 axis. The regions upstream, where the phase shows

a granular appearance, possess very low vorticity amplitude. Downstream

from TV, however, where the vorticity amplitude is larger, the phase shows

a well-established increasing trend. As expected, the vorticity phase does

not show the abrupt change of the velocity fluctuations of Fig. 6-b across

the stream channels. Still, the boundaries imposed by tubes T3 and T4 (or

T5 and T4) are seen to produce a higher growth rate close to their surfaces.

This is because they contribute to slow down the vortex motion, so that the

propagation speed of disturbances is highest along the middle of the stream

channels.

Figure 12 shows the phase delay of the vorticity fluctuations downstream
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along the central fluid line (kR=0.5) for several flow velocities. In all cases

the phase is about 180◦ around s∗=0, which means that when TV is at top

position (equivalent to 90◦ during the oscillation cycle of Fig. 5) the vor-

tex formed below TV is rotating clockwise with highest intensity (as shown

in the second graph of Fig. 5). Downstream from s∗=0.5, i.e., beyond the

region where the vortices are formed, the delay is seen to increase quite pro-

gressively, in line with the previous results. As in Fig. 10-b, the higher the

flow velocity the less steep the slope of the vorticity delay, i.e., the higher the

speed of disturbance propagation downstream.

For each flow velocity, the speed of disturbance propagation was esti-

mated by performing a linear fit of the vorticity time delay along that central

fluid line (kR=0.5) between s∗=0.6 and s∗=2.4, i.e., covering nearly two rows

downstream from TV. This always gave at least 20 nodes for the regression

analysis. The resulting determination coefficient R2 was always above 0.97,

including a flow velocity as low as URG= 1.53 (no vortex convection could be

traced for still lower URG). Figure 13 presents the results obtained in terms

of the ratio between the speed of disturbance propagation, uD, and the gap

velocity, UG. It is seen that increasing the flow velocity until URG ∼ 5 makes

the uD/UG ratio reduce from nearly 1 to about 0.4, and it remains around

that value for higher flow velocities. This behavior of the uD/UG ratio can

be attributed to the pushing effect of the oscillating flow on the moving vor-

texes, which is only significant for low cross-flow velocities, and to the partial

blockage effect of T3, T4 and following cylinders on the convected vortices,

which restrain their motion to a speed well below the gap velocity.
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These results can be compared to the data reported by Khalifa et al.

(2013a), based on hot wire measurements in wind tunnel for an array similar

to that of the present CFD study (see Section 5) operating in the range of

URG between 6 and 8. They obtained that the uD/UG ratio for disturbance

propagation upstream and downstream from a vibrating tube was about 0.42

and 0.52 respectively. In the current study no constant speed propagation

could be clearly determined upstream, but the results obtained for down-

stream propagation in the same range of URG give a value of uD/UG ∼ 0.4,

which is not far from Khalifa et al.’s data.

8. Pressure fluctuations on the vibrating tube

Figure 14 presents the fluctuating pressure field, in amplitude and phase,

corresponding to the reference case of Figs. 4-6 (URG = 5.34, A/d=0.83%,

f=7.81 Hz). As expected, the pressure phase exhibits obvious anti-symmetry

with respect to the line through the centers of T1, TV and T4. Maximum

amplitude values correspond to the regions of flow most directly displaced

by the tube motion, i.e. the regions labeled A and A’ at bottom and top of

TV respectively (Fig. 14-a), despite the velocity fluctuations there are high

only at the tube surface itself (Fig. 6-a). The phase with respect to tube

position is about 0◦ at the bottom (A) and 180◦ on top (A’). This means

that when tube TV is at maximum displacement upwards (equivalent to 90◦

during the oscillation cycle of Fig. 5) pressure is highest at the region A and

lowest at A’. That position of TV corresponds to the second map of velocity
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vectors of Fig. 5, which shows some stagnation being induced below TV by

the clockwise vortex. Thus the opposite situation of lowest pressure below

TV (region A) takes place when tube TV is at maximum displacement down-

wards (equivalent to 270◦ during the oscillation cycle of Fig. 5), where the

vortex below TV (which is now anti-clockwise) induces high velocity values

in the negative direction as seen in the fourth map of Fig. 5.

Besides, Fig. 14-a also shows high pressure fluctuation values at the re-

gions denoted as B and B’, which are about 45◦ upstream from A and A’

respectively. Approximately, they correspond to the stagnation points of the

average flow on TV (Fig. 3), where the average pressure reaches a relative

maximum too (Fig. 4). At the region B, the phase of the pressure fluctuation

is slightly less than 180◦. Therefore, pressure there reaches the highest value

when TV is close to maximum displacement downwards (close to 270◦ during

the oscillation cycle of Fig. 5), i.e. when the width of the T2-TV passage

is lowest. The fourth vector map of Fig. 5 shows that the resulting partial

blockage on the in-coming flow produces significant flow deviation upwards

through the gap between T1 and TV. Similar observations can be made for

the region B’, where the pressure phase is slightly less than 0◦ and thus

maximum values are achieved when TV is close to maximum displacement

upwards.

Finally, significant pressure fluctuations on tube TV can be observed too

at the locations C-C’, which are close to the flow detachment positions from

TV (Fig. 14). In fact, those two regions can be seen to extend across the
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main streams towards tubes T3 and T5 respectively, with little change in

amplitude or phase. The pressure phases are about −90◦ at C and 90◦ at

C’, which means that, when the tube velocity is highest upwards (i.e., when

tube TV is at 0◦ during the oscillation cycle of Fig. 5), the instantaneous

pressure is highest at C and lowest at C’. At that instant, the first graph of

Fig. 5 shows a large clockwise vortex formed between TV and T4 as well as

an anti-clockwise vortex above T3. Both vortices induce a high backwards

relative velocity in the main stream towards the separation region from TV,

so that the total downstream velocity reduces and the instantaneous pres-

sure increases. In particular, when tube TV is at 0◦ during the oscillation

cycle, the area C behaves as a stagnation region for that secondary flow and

so pressure at C is highest. The opposite behavior takes place when TV is

at maximum velocity downwards, i.e., at 180◦ during the oscillation cycle of

Fig. 5.

These results can be compared with the instantaneous pressure maps re-

ported by Khalifa et al. (2013b), obtained from CFD simulations for a similar

array with one oscillating tube (configuration geometry as in the experimen-

tal tests by Khalifa et al. (2013a)). They imposed a reduced gap velocity

URG=4, which is 25% lower than the value URG=5.34 used for Fig. 14, but

despite that the agreement with the current predictions of pressure fluctua-

tion is remarkable.

To appreciate how those pressure fluctuations depend on the cross-flow

velocity, Fig. 15 shows the pressure amplitude and phase along the fluid
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line with kR=0.05, which is nearly attached to tube TV, for several values

of the reduced gap velocity from URG=2.93 to 8.01. In all cases the vibra-

tion amplitude of tube TV was A/d=0.83% and the frequency was f=7.81

Hz. The pressure amplitude, which has been normalized by the dynamic

pressure associated to the gap velocity UG, always exhibits a clear maximum

very close to s∗=0, which corresponds to the zone below A in Fig. 14. The

magnitude of the normalized amplitude at that position is seen to decrease

for increasing values of URG, whereas its phase (relative to tube TV position)

is always very close to zero (as seen in Fig. 14-b).

Except for the lowest cross-flow velocity, another relative maximum ap-

pears at about s∗=-0.6, i.e., at the region B in Fig. 14. Increasing URG makes

that the relative amplitude in that position approaches the value at s∗=0,

while the phase evolves from above 90◦ to almost 180◦ for URG=8.0. At the

other side, at s∗ ≈+0.6 (i.e., the zone close to C in Fig. 14) the amplitude

is always low since it is reducing towards a minimum beyond s∗=1, while

the phase varies from about −60◦ to −120◦ when increasing URG from 2.93

to 8.01. Finally, approximately between s∗=0.8 and s∗=1.8, all the phases

augment in about a full 360◦ period, i.e., all the curves finish in phase values

similar to those at s∗≈+0.6 as shown explicitly for URG=2.93. In conclusion,

the pressure fluctuations on tube TV exposed in the maps of Fig. 14 can be

considered sufficiently representative for a wide range of cross-flow velocities,

with the exception of the region close to B for low values of URG.
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9. Fluctuating lift force and discussion

Since the pressure fluctuations on TV at the zones A and A’ (Fig. 14)

are respectively in phase and 180◦ out of phase with the tube position, the

associated dynamic force on TV does not have a component in phase with

the tube velocity. This also stands for the pressure fluctuations at the zones

B and B’ for high values of URG. Therefore, they cannot really explain the

self-excitation of vibrations due to damping-controlled fluidelastic instability.

In comparison, the pressure fluctuations on the C and C’ areas of tube TV

clearly contribute to create a force component that is in phase with tube

velocity, as shown below.

Figure 16 presents the amplitude CL,A and phase CL,Ph of the fluctu-

ating lift coefficient on tube TV as a function of URG (again the vibration

amplitude and frequency remained constant). This lift coefficient represents

the dynamic lift force due to both pressure and viscous stress distributions

around TV, divided by the tube vibration amplitude and by the dynamic

pressure associated to the gap velocity. Together with the values obtained

from the current CFD study, Fig. 16 also shows a continuous line that rep-

resents the data measured by Sawadogo and Mureithi (2014) for the case of

a parallel triangular array with P/d=1.5 (gap is 12% lower than with the

present P/d=1.57), single phase flow and one single tube undergoing forced

vibrations transversely, like in the present case. Their highest Reynolds num-

ber was about six times larger than in the current CFD simulations, and the

oscillating tube was located in the seventh row. Posteriorly Li and Mureithi

(2017) obtained similar results for another array with the same pitch and the
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vibrating tube located in the eleventh row. For Fig. 16, the original data

of lift coefficient and reduced velocity reported by Sawadogo and Mureithi

(2014) have been expressed relative to the gap velocity instead of the pitch

velocity.

Figure 16-a shows that increasing URG brings about a quick reduction in

amplitude until values of the order of 0.01 for URG > 5. Despite the difference

in pitch and Reynolds range, the quantitative agreement of the predictions

with the experimental data is noteworthy, with the computed values being

about 10% higher than measurements. On the other hand both measured

and computed phases (expressing delay relative to tube TV position) are seen

in Fig. 16-b to start with nearly zero values for very low URG, then increase

until a maximum at about URG=1.5 for the predictions and URG=4.5 for

the measurements, and finally decay respectively towards −135◦ and −90◦

at URG≈10. Predictions and measurements of the lift phase are not so close

to each other as the lift amplitude, but the qualitative agreement is still

good. Since the tube velocity is 90◦ ahead of tube position, the values of

phase delay relative to tube velocity can be obtained by adding 90◦ to the

values of Fig. 16b. This means that, in order to obtain a positive lift com-

ponent in phase with tube velocity, the phase delay relative to tube position

must lie between −180◦ and 0◦. In the present case this occurs for values of

URG > 2.3 (predictions) or URG > 5 (measurements). Above these limits,

in consequence, damping controlled fluidelastic instability in the transverse

direction can be expected for the corresponding configurations. This is con-

sistent with the experiments by Khalifa et al. (2013a) for P/d=1.54, since in
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that case a single tube vibrated due to instability.

As mentioned above, the current simulations predict that the component

of the unsteady lift force that is in phase with tube velocity, i.e. the desta-

bilizing force, is mostly generated by the pressure fluctuations on the zones

C-C (Fig. 14) of the oscillating tube TV, which correspond to areas in the

wake region close to the flow detachment zones. This has some parallelism

with the attribution by Granger and Paidoussis (1996) of the force lag to

the thin vorticity layer diffused from the vibrating tube surface and then

convected along the detached shear layer. According to the current simula-

tions, however, those pressure fluctuations at C-C’ are related to the periodic

secondary flow induced in the transversal passage between TV and T4, com-

bined with the vortices formed along the central part of the wavy channels

below and above TV. For those secondary flows, the areas C-C’ behave as in-

termittent stagnation regions. In turn, those secondary flows are originated

by fluid displacement from top and bottom of the oscillating cylinder and

by transversal diversion of flow from the main streams due to the changing

hydraulic resistance in the wavy channels. In particular, the vortices formed

in the main channels below and above tube TV are not really produced by a

vortex shedding from the shear layer of the wake of TV in the classical sense,

though they are convected downstream.

Certainly, there is a considerable flow re-organization following the tube

motion that involves local flow acceleration throughout the domain. This

represents significant flow inertia effects, especially in the surroundings of
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the vibrating tube. According to the assumptions of Lever and Weavers the-

ory [1982], the flow inertia effects would manifest as a harmonic perturbation

in the cross-section of the main wavy channels with a delay that increases

with distance from the oscillating tube, both up and downstream. Qual-

itatively, this is in line with the measurements by Khalifa et al. (2013b)

regarding the phase of velocity fluctuations, as well as with the predictions

of the current CFD model, at least downstream. On the other hand, the

current computations predict a significant flow exchange between the par-

allel stream channels at both sides of tube TV, with that transversal flow

being determinant in the pattern of pressure fluctuation around TV leading

to destabilizing forces. However, no transversal flow has been considered in

the Lever and Weaver’s models to date. Hence, the development of a new

version that could include that transversal flow might contribute to a better

description of the flow physics leading to instability and to better predictions.

10. Conclusions

The unsteady flow through a parallel triangular array with P/d=1.57

and one cylinder undergoing forced oscillations in the transverse direction

has been studied by means of a 2D URANS CFD model with mesh updating

at each time step. After each simulation, the velocity, vorticity and pres-

sure fields computed at successive time steps were FFT processed to obtain

the corresponding distribution of fluctuations in amplitude and phase. The

predictions obtained lead to the following main conclusions:

• The vibrating tube TV induces vortical secondary flows in the inter-
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cylinder regions with the preceding and the posterior tubes as well as

in the adjacent stream channels. Their origin is related to the dis-

placement of fluid from top and bottom of TV and to the transversal

diversion of flow from the main streams due to the changing hydraulic

resistance in the wavy channels. Those vortices alternate clockwise and

anticlockwise rotation during the oscillation cycle, each with a specific

phase with respect to tube motion. Besides, vortices in the main chan-

nels are convected downstream at an approximately constant speed,

whereas the vortices in the wake regions remain fixed.

• Velocity fluctuations are highest along a thin fluid layer adjacent to the

vibrating tube. High fluctuation values remain downstream the sepa-

ration region which is consistent with Khalifa et al.’s measurements

[Khalifa et al. (2013a)]. A possible origin is the motion of the sepa-

ration points on TV and the high gradient of average velocity across

the detached shear layer. At each position, velocity fluctuations are

proportional to the tube vibration amplitude amplitude, at least until

the highest amplitude tested of A/d=8%, and to the gap velocity if the

reduced gap velocity URG>2.5.

• For URG >1.5, the periodic secondary flows induced up and down-

stream from the vibrating tube TV are nearly symmetrical, and so is

the pattern of fluctuation amplitude. Besides, the phase of the veloc-

ity fluctuations is quite uniform both up and downstream (no vortex

convection is revealed downstream), with a jump of 180◦ between both

sides. This is in agreement with the computations by Hassan and

El Bouzidi (2012) and Khalifa et al. (2013b).
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• For URG >1.5 downstream propagation of flow disturbances was ana-

lyzed by using the phase of the vorticity fluctuations, as it determines

the speed of vortex convection. Increasing the reduced gap velocity

makes the ratio between propagation speed and gap velocity reduce to

about 0.4 for URG > 5. This is not far from the 0.52 value reported

by [Khalifa et al. (2013a)] from experiments for a relatively similar

configuration.

• Khalifa et al.’s measurements [2013a] also showed progressive propaga-

tion upstream up to two cylinder rows ahead of TV, whereas the present

study predicts a more complex fluctuating pattern with upstream prop-

agation concentrated in the central part of the stream channels at the

sides of TV. The discrepancy might indicate an excessive projection

of the secondary flow between TV and the preceding cylinder into the

main stream channels. It is uncertain to what extent the discrepancy

is attributable to the differences between configurations of experiments

and computations or to the assumptions of the computational model.

• Around the vibrating tube, highest pressure fluctuations take place on

the top and bottom of TV and close to the attachment region, showing

good agreement with the instantaneous pressure maps of [Khalifa et al.

(2013b)]. Nonetheless, the main responsible for generating a fluctuat-

ing lift component in phase with tube velocity, which is a necessary

condition for damping-controlled fluidelastic instability, appears to be

the pressure fluctuations on the wake side of TV, in particular at the

locations where the secondary flow forms periodic stagnation areas.
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• The amplitude of the computed fluctuating lift for a range of reduced

velocity shows good agreement with the measurements reported by

Sawadogo and Mureithi (2014) for an array with P/d=1.5 under similar

conditions. The predicted phase follows the trend of the experimental

data too. The calculated fluid-dynamic forces result to be destabilizing

for URG >2.3 (about half the experimental value).

• According to these simulations, the secondary periodic flows that pro-

duce the destabilizing forces impose a considerable alternating flow

exchange between the two wavy stream channels adjacent to tube TV.

The possible inclusion of this transversal flow in a Lever and Weaver’s

model might contribute to a better description of the systems develop-

ing fluidelastic instability.
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Figure 1: Computational domain. a) Array lay-out. b) Detail of mesh between tubes

with tube TV shifted 8%d upwards.
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Figure 2: Detail of the regular grid used for FFT post-processing of CFD data.
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Figure 3: Monitored positions (a) and amplitude spectra of velocity (b) and pressure (c).

Main system parameters: UU=0.21 m/s, A/d=0.83%, f=7.81 Hz (URG = 5.34).
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as in Fig. 3.
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(0◦, 90◦, 180◦ and 270◦) during one oscillation. System parameters as in Fig. 3
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Figure 6: Amplitude (a) and phase (b) of the velocity fluctuations at the 1st harmonic.

System parameters as in Fig. 3
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Figure 7: Velocity fluctuations along three fluid lines (system parameters as in Fig. 3).

Experimental data from [6]. a) Fluid lines. b) Velocity amplitude normalized by tube

velocity. c) Time delay normalized by oscillation period.
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Figure 8: Velocity fluctuations along one fluid line for several oscillation amplitudes

(URG=5.34 m/s, f=7.81 Hz). a) Fluid line (kR = 0.2). b) Velocity amplitude normalized

by tube velocity. c) Time delay normalized by oscillation period.
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Figure 9: Amplitude (a) and phase (b) of the velocity fluctuations at the 1st harmonic

(UU=0.03 m/s, other system parameters as in Fig. 3).
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Figure 10: Velocity fluctuations along one fluid line for several reduced gap velocities

URG (A=0.83%d, f=7.81 Hz). a) Fluid line (kR=0.2). b) Velocity amplitude normalized

by gap velocity. c) Normalized time delay.
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Figure 11: Phase of the vorticity fluctuations at the 1st harmonic. System parameters as

in Fig. 3.
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Figure 12: Phase of vorticity fluctuations along the central fluid line for several reduced

gap velocities. URG (A=0.83%d, f=7.81 Hz). a) Fluid line (kR=0.5). b) Phase delay.
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Figure 13: Speed of propagation of vorticity fluctuations downstream from tube TV,

normalized by gap velocity.
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Figure 14: Amplitude (a) and phase (b) of the pressure fluctuations at the 1st harmonic.

System parameters as in Fig. 3

.
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Figure 15: Pressure fluctuations along one fluid line for several reduced gap velocities

URG (A=0.83%d, f=7.81 Hz). a) Fluid line (kR=0.05). b) Pressure amplitude normalized

by gap dynamic pressure. c) Phase of pressure fluctuations.
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Figure 16: Modulus and phase (relative to position of tube TV) of the lift coefficient as

a function of the reduced gap velocity:

CL =
FL

1
2ρU

2
Gd

(2)

Recently, Li and Mureithi (2017) explored the determination of that time delay function

based on a frequency approach in the form of an equivalent Theodorsen function.
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