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1 Introduction 

In the last few years, the need for new wireless methods for 
people and asset tracking has made indoor location systems  
 

(ILS) to become a major research topic (Farid et al., 2013). 
This interest comes after the popularisation of global 
positioning system (GPS), which provides accurate outdoor  
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location. However, GPS is not operative inside buildings 
and industrial warehouses as there is no line-of-sight 
between the antenna and satellites. 

In Farid et al. (2013), ILS is defined as any system that 
provides a precise position inside a closed structure, as for 
example, industrial warehouses, public buildings (hospitals, 
schools, airports), flats and condominiums, etc. A number of 
ILSs have been proposed in the literature, based on infrared 
signals, ultrasound, inertial sensors and radiofrequency 
mainly, as summarised in Table 3 of Farid et al. (2013) and 
Table 1 of Shirehjini et al. (2012), with location accuracy 
ranging from 0.5 m to 5 m for the compared methods. The 
latter are, in general, range-based distance measurements 
systems, which can be classified in two main groups:  
time-of-flight (ToF) and received signal strength (RSS). On 
the one hand, ToF (Macii et al., 2013) is based on the signal 
propagation time between a transmitter (Tx) and a receiver 
(Rx) node. On the other hand, RSS techniques (e.g., Álvarez 
et al., 2011; Bandara et al., 2004; Chen et al., 2015; Gomes 
and Sarmento, 2009; Huang et al., 2015; Ismail et al., 2008; 
Macii et al., 2013), use the measured signal strength 
information converting it into distance. 

Radiofrequency-based ILS network infrastructure 
mainly consists of a set of anchor or static nodes, deployed 
in the scenario under test, and mobile nodes tagged to the 
assets to be tracked. One (either the static or the mobile) has 
to be configured as transmitter, and the other as receiver. 

ILS deployment for a particular scenario is affected by 
the following criteria:  

1 size of the scenario where the ILS is deployed 

2 positions where static nodes can be placed 

3 required location accuracy 

4 the environment where the ILS is deployed (office 
building, industrial warehouse, shop store) 

5 number of assets to be tracked 

6 the response/refreshing time of the ILS. 

With respect to the two latter criteria, ILSs can track several 
assets or people at the same time. However, when working 
with more than one mobile node, the RSS data acquisition 
time must be split according to the total number of tracked 
mobile nodes in order to be able to get the information of 
each node (identifier, ToF or RSS value), then setting a 
trade-off between the response of the ILS and the number of 
assets to be monitored. 

Accuracy will depend mainly on the static nodes 
density. Thus, for a given accuracy, one can calculate the 
minimum number of static nodes. In practical applications,  
the number of static nodes will be oversized to guarantee the 
requested accuracy with the highest probability. 

RSS-based ILS processing algorithms can be classified 
in three main groups:  

1 fingerprinting (Chen et al., 2013; Hossain et al., 2007; 
Ismail et al., 2008) 

2 empirical models (Bandara et al., 2004; Gomes and 
Sarmento, 2009; Jiménez-Ruiz et al., 2012; Pivato  
et al., 2011) 

3 theoretical free-space path loss (also known as free 
space propagation) (Álvarez et al., 2011; Huang et al., 
2015; Ismail et al., 2008; Macii et al., 2013). 

In the case of fingerprinting and empirical models, a 
previous characterisation of the ILS deployment scenario  
is required. This characterisation consists of RSS 
measurements in a set of points in such scenario, aiming to 
create a RSS database (fingerprinting) or to use them as 
inputs for a regression model (empirical model). Free-space 
path loss model does not require such previous time-
consuming measurement stage, although depending on the 
ILS algorithm implementation, ILS calibration can be done 
to get rid of systematic errors (e.g., different sensitivity of 
each static node). 

Fingerprinting has been proved to be more accurate than 
free-space path loss model (Table 3 of Farid et al., 2013; 
Table 1 of Shirehjini et al., 2012). However, it is quite 
sensitive to variations in the scenario under test. For 
example, if furniture were moved within the scenario, 
fingerprinting database would have to be generated again to 
keep the accuracy. To sum up, RSS-based ILS classification 
according to supporting technologies and data processing 
methods is depicted in Figure 1. 

In spite of the different nature of the aforementioned 
RSS data processing techniques, the achieved RSS-based 
ILS position estimation accuracy is, in general, in the same 
order of magnitude for a given scenario and ILS parameters 
(mainly the static nodes density, i.e., number of static nodes 
per surface unit). In all the cases, multi-path propagation is 
the main source of error causing measured RSS values to 
fluctuate: the signal is reflected in obstacles, then creating 
multiple propagation paths that may cause interference. 

Nowadays, the most common technologies for the 
deployment of RSS-based ILS are ZigBee (Álvarez et al., 
2011; Gomes and Sarmento, 2009; Macii et al., 2013; Pivato 
et al., 2011; Tennina et al., 2009), WiFi (Gallagher  
et al., 2012; Hossain et al., 2007; Ismail et al., 2008), 
Bluetooth (Bandara et al., 2004; Hossain et al., 2007), and 
RFID (Huang et al., 2015; Jiménez-Ruiz et al., 2012), with 
the latter growing rapidly due to the low price of RFID tags. 
ZigBee is more suitable than RFID or WiFi for the 
deployment of a sensor network thanks to features such as 
low power consumption of ZigBee nodes, and ease of 
connection with sensing devices (gas, temperature, 
humidity) and actuators. 

ZigBee nodes (both static and mobile) have the  
same hardware features: operating mode can be set by 
software. RFID networks consist of readers (static) and tags 
(mobile), the former being quite more expensive than the 
latter. Thus, depending on the final application (kind of 
scenario, number of assets to be tracked), either ZigBee  
or RFID could be the most advantageous even in terms  
of cost. 
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Figure 1 Classification of RSS-based ILS according to data processing methods and supporting technologies 

 
Source: [1] Álvarez et al. (2011), [2] Bandara et al. (2004), [3] Chen et al. (2015), [4] Gallagher et al. (2012),  
 [5] Gomes and Sarmento (2009), [6] Hossain et al. (2007), [7] Huang et al. (2015), [8] Ismail et al. (2008),  
 [9] Jiménez-Ruiz et al. (2012), [10] Macii et al. (2013) and [11] Pivato et al. (2011) 

 
The rapid popularisation of portable devices such as  
PDA, tablets, laptops, which include connectivity via 
Bluetooth and/or WiFi protocols, have attracted interest  
for ILS developers, based on the fact that the hardware 
infrastructure is already deployed (Ismail et al., 2008).  
In the case of WiFi, static nodes are the access  
points (AP), and portable devices act as mobile nodes. 
Bluetooth-based ILS infrastructure mainly consists of 
Bluetooth beacons usually acting as static nodes, and 
portable devices equipped with Bluetooth connection for 
mobile nodes. 

Another different approach for ILS is based on inertial 
sensors systems (Gallagher et al., 2012; Jiménez-Ruiz et al., 
2012). They are also referred as dead reckoning systems, 
that is, self-contained methods which do not rely on any 
external infrastructure. The inertial sensors, accelerometers 
and gyroscopes which measure, respectively, linear 
acceleration and angular rotation, form the inertial 
measurement unit (IMU). From a given initial position and 
using the information of those signals, it is possible to 
update the position of the object (Jiménez-Ruiz et al., 2012). 
Hence, inertial systems are not affected by the inherent 
issues of signal propagation of other location systems 
(multipath mainly). Besides, position and orientation 
calculation do not need external references, thus avoiding 
the need for a network of static nodes deployment. The 
main drawback of this type of navigation is the error drift: 
estimated position error grows each time the position is 
updated and thus, accurate sensors are needed. This 
drawback can be also overcome by combining inertial 
sensors with another ILS capable to provide a reference 
position, as proposed in Jiménez-Ruiz et al. (2012), by 
combining the information given by the IMU with an  
RFID-based ILS. 

The development of microelectromechanical systems 
(MEMS) technology has made inertial sensors smaller and 
cheaper. Their accuracy, which used to be very low with 

this technology, has been enhanced enabling the use of low 
cost IMUs. 

This work follows the idea of Jiménez-Ruiz et al. 
(2012), where inertial sensor information is combined with 
RSS data to correct the main sources of error of each one: 
drift in inertial sensor, and multipath in RSS. Instead of 
using RFID as in Jiménez-Ruiz et al. (2012), the idea is to 
extent RSS-based ILS, conceived for assets location and 
tracking, using ZigBee such as Álvarez et al. (2011) and 
Gomes and Sarmento (2009). The novelties of the current 
contribution with respect to Álvarez et al. (2011) and 
Gomes and Sarmento (2009) are: 

• A novel RSS algorithm that uses differential field levels 
of the radiolinks between each transmitting node and 
receiving node, thus avoiding an initial calibration stage 
of the system as well as periodic recalibration due to 
signal strength fluctuations or modification of the 
scenario where the ILS is deployed. 

• Development of a hybrid ZigBee–inertial sensor-based 
system for asset location and tracking, tested in a real 
indoor scenario. 

2 Indoor location system description 

2.1 Received signal strength-based location 
algorithm 

From a practical point of view, the role of transmitter  
and receiver nodes can be either assigned to the static or 
mobile nodes, thanks to the wireless channel propagation 
reciprocity between transmitter and receiver. In the 
application example presented in this work, the mobile  
node will be configured as receiver and the static nodes as 
transmitters (as depicted in Figure 2). Thus, for the sake of 
simplicity, the formulation presented in this section will 
follow this convention. 
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Figure 2 Idea of RSS-based ILS using absolute (left) and differential (right) field levels. Green dots: static nodes. Red dot: mobile node 
(see online version for colours) 

 
 
In general, RSS-based ILS techniques (Sklar, 2001) make 
use of the free space propagation exponential1 decay law (1) 
for the radiolinks between static and mobile devices or 
nodes: 

ref ( / 4 ),RxE E pRλ=  (1) 

where ERx is the field at the receiver (mobile node). Eref is a 
reference field level, usually evaluated at the static nodes 
(transmitter nodes) during a calibration stage and λ is the 
signal wavelength. It is assumed that mobile and static 
nodes are placed at the positions (x′, y′) and (x, y), 
respectively, considering that z ≈ z′. Thus, the distance 
between a mobile node and a static node is (2): 

2 2 1/ 2(( ) ( ) ) .R x x y y′ ′= − + −  (2) 

To improve the propagation model, equation (3) of Álvarez 
et al. (2011) includes quadratic and cubic field decay terms 
in the propagation model. From its representation shown in 
Figure 1 of Álvarez et al. (2011), a sharp variation around 
the distance from which the term 1/R is dominant is 
observed. However, typical measured signal strength decay 
does not exhibit a variation as sharp as predicted by 
equation (3) of Álvarez et al. (2011). A better propagation 
model, exhibiting smoother transition, is achieved by means 
of: 

2 2 2 3 3 3
ref (( / 4 ) ( / 8 )  ( /16 )).RxE E pR p R p Rλ λ λ= + +  (3) 

Depending on the selected working frequency, quadratic 
and cubic field decay terms may be negligible at a distance 
of few centimetres far from the transmitter (Álvarez et al., 
2011). 

The location problem aims to determine the mobile 
position coordinates (x′, y′) from the RSS values 
corresponding to the set of N-static nodes whose positions 
(xn, yn) are known. For this goal, the following cost function 
is established (Álvarez et al., 2011): 

2( , ) ( , ) ( , )
cost _ ant teor, meas,

 1:

.x y x y x y
n n

n N

f E E′ ′ ′ ′ ′ ′

=

= −∑  (4) 

Eteor,n
(x′,y′) is the theoretical field level at the position (x′, y′) 

radiated by the nth static node, which is calculated using 
equation (3) ( ( , )

teor,
x y

nE ′ ′ is ERx,n in equation (3)). ( , )
meas,

x y
nE ′ ′  is the 

measured field level at the position (x′, y′) emitted by the 
nth static node. 

The mobile node position (x′, y′) is the unknown. Thus, 
the cost function (4) has to be evaluated in a set of points 
(x′, y′) that belong to the scenario under test, for example, 
the points of a regular grid in which the scenario under test 
is discretised. The mobile node position estimation is 
associated to the (x′, y′) point that corresponds to the 
minimum cost function value. 

One major problem of the cost function (4) is that 
absolute field values, Eref, are involved, thus requiring 
calibration of the ILS when deployed in a new scenario. 
Furthermore, transmitted field levels may vary with 
environmental conditions, so periodic calibration may be 
required to ensure proper ILS system operation. 

To avoid the need of calibration (i.e. the determination 
of the value of Eref), this contribution proposes a new  
cost function that makes use of differential field levels.  
The concept is depicted in Figure 2: first, the field  
level difference between a pair of static nodes is  
calculated, for both theoretical (∆teor) and measured (∆meas) 
values (5): 

( , ) ( , ) ( , )
teor,m teor,p teor,q

( , ) ( , ) ( , )
meas,m meas,p meas,q

– ,

– , 

x y x y x y

x y x y x y

E E

E E

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′

∆ =

∆ =
 (5) 

[ ] [ ]
[ ] ( )
1, 2, , 1 ;  for every : 1, , ,

1, 2, , ,  with 1 / 2 .

p N p q p N

m M M N N

= … − = + …

= … = −
 

Then, a new cost function relating the theoretical (∆teor) and 
measured (∆meas) field level differences is established: 

( )2( , ) ( , ) ( , )
cos eor, meas,

1:
 1 / 2.x y x y x y

t t m m
m M

f M N N′ ′ ′ ′ ′ ′

=

= ∆ − ∆ = −∑  (6) 

As for equation (4), this cost function ( , )
cos

x y
tf ′ ′  is evaluated in 

a set of points (x′, y′) belonging to the scenario under test. 
Hence, the mobile node position estimation is associated to 
the (x′, y′) point that yields the minimum cost function 
value. 

The main advantage of the proposed cost function (6) is 
that differential field levels are used (i.e., the knowledge of 
Eref is not required), so the position estimation will not be  
 



 Sensor network and inertial positioning hybridisation for indoor location and tracking applications 5 

affected by signal strength drift, provided the N static nodes 
have the same power emission drift. The drawback of this 
method is that the amount of data, M, is proportional to the 
square of the number of static nodes N. 

The scenario under test can be discretised in a regular 
grid of (x′, y′) positions, where the separation between 
adjacent (x′, y′) points can be set according to the required 
ILS accuracy. For a two-dimensional scenario, evaluating 
cost function (4) or (6) at several thousands of (x′, y′) 
positions can be done in few milliseconds with a 
conventional laptop, so the ILS response time will 
eventually depend on the RSS acquisition rate (mainly 
limited by the supporting hardware). As mentioned in 
Section 1, tracking more than one mobile asset will increase 
that response time. 

2.2 ZigBee network implementation 

Among the different possibilities for hardware 
implementation of the ILS, ZigBee nodes operating at 
2.45 GHz were selected due to their reasonable cost, 
widespread utilisation and multiple configuration options; 
and above all, ZigBee has been conceived as a low power 
requirement wireless sensor network, suitable for the 
proposed ILS application (Álvarez et al., 2011; Gomes and 
Sarmento, 2009; Macii et al., 2013; Pivato et al., 2011). 
Besides, ZigBee routing capabilities are suitable to  
 

forward RSS information to the device that runs the  
location algorithm, without requiring additional network 
infrastructure, unlike RFID, where the readers have to be 
connected using another network technology. In addition to 
this, the coverage of the ZigBee network could be extended 
beyond the coverage area of each individual static node 
(that ranges from 10 m to 20 m in indoor scenarios) by 
means of the inclusion of repeater nodes. 

Three ZigBee node types, all based on the same IEEE 
802.15.4 PHY link, are used in the network, as shown in 
Figure 3: first, N static or transmitting nodes are placed at 
known locations (xn, yn). Second, the node attached to the 
mobile asset senses the RSS level received from the nth 
static node, gathers these RSS values, and forward them to 
the receiver/coordinator node. Last, the receiver node acts as 
interface between the ZigBee network and the computer. 
Commercial ZigBee modules operating at 2.4 GHz with 
250 Kbps data rate including RSS indicator functionality 
have been used for the setup and measurements  
(XBee® ZigBee RF Modules, 2015). 

The setup proposed for the ZigBee-based ILS system 
presented in this work collects RSS information every 
500 ms, with a duty cycle of 2%, that is, nodes  
will be in sleep mode for 490 ms, and active during 10 ms. 
This 2% duty cycle is chosen as a trade-off between 
refreshing time (concerning tracking capabilities) and 
battery savings. 

Figure 3 ILS implementation using ZigBee network and inertial sensors in a real environment. Pictures of the 12 × 6 m classroom room 
selected for testing the system. Camera icons mark the places where pictures were taken (see online version for colours) 
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2.3 Inertial system description 

An accelerometer attached to an object measures, in each of 
its axis, the sum of the acceleration due to the object 
movement, aI, and that of gravity, g. Hence, to compute the 
displacement of the object it is required to isolate the former 
acceleration from the undesired gravity components. For 
this purpose, it is necessary to rotate from the moving 
frame, defined by the accelerometer and the object or asset 
to be tracked, to an inertial frame in which the gravity is 
subtracted. This can be performed, using equation (7), 
multiplying the accelerometer measurements, am, by a 
rotation matrix which describes the Euler rotations, RI

B, 
defined as the transpose of the matrix in equation (67) of 
Diebel (2006). 

( )0 0 TB
I I ma R a g= +  (7) 

Therefore, as initial step, the orientation of the asset to be 
tracked must be computed. By fusing the data from the 
inertial sensors, a good estimate of the asset heading can be 
obtained. Hence, it is possible to compute the moving frame 
acceleration and integrate it twice to estimate the asset 
displacement from a reference point. The tested inertial 
system uses low-cost MEMS sensors: a tri-axial 
accelerometer LIS331DLH (Accelerometer LIS331DLH, 
2015) and a tri-axial gyroscope L3GD20H (Gyroscope 
L3GD20H, 2015) whose measurements were combined 
with a complementary filter. The complementary filter 
coefficients are obtained by means of a frequency domain 
analysis. Thus, the gyroscope, whose measurements are 
integrated, follows high frequency variations while the 
accelerometer holds long-term tendency. To illustrate this, 
the computed pitch of the asset to be tracked during 
approximately 6 s is depicted in Figure 4. In this period of 
time, the asset is rotated several times to test the 
accelerometer output. The pitch of the asset computed with 
only the accelerometer data (red line) differs from the true 
pitch value when the asset is rotated. The blue line 
represents the pitch calculated with the gyroscope data, 
which is a reliable estimation of the true pitch value on the 
short term. However, as this value is obtained integrating 
gyroscope signals, it drifts with time. Finally, the pitch 
computed using the complementary filter (black line) 
provides accurate estimations of the true pitch angle value 
when the asset is rotated while it removes the drift. Several 
laboratory tests showed that the true pitch value could be 
considered equal to the pitch computed with the 
complementary filter. 

Finally, once the orientation is computed, the Euler 
rotations are performed and the gravity is subtracted. The 
resulting data correspond to the moving frame acceleration, 
which is integrated twice in order to obtain the displacement 
between two consecutive samples. Figure 5 represents a 
simplified scheme of IMU data processing. 

Both the accelerometer and the gyroscope are low-cost 
sensors with low power consumption. In addition, the 
complementary filter is very simple from a computationally 
point of view. This is critical for the autonomy of the 
repeater node attached to the asset to be tracked. 

Figure 4 Estimated pitch angle using accelerometer data  
(red line), gyroscope data (blue line) and combining 
both with a complementary filter (black line)  
(see online version for colours) 

 

2.4 Inertial and RSS-based systems combination 

As pointed out in Section 1, one of the goals of this research 
is to improve the RSS-based ILS location performance with 
inertial sensors information. 

While the RSS-based system takes samples every 
500 ms, inertial sensors update information every 25 ms.  
In the case of the RSS-based system, the choice of the 
sampling rate was made considering a trade-off between  
the power consumption of the nodes and the tracking 
capabilities of the system. Since a buffer of 10 samples is 
considered in order to smooth the trajectory mitigating 
multipath effects, it is necessary to take new samples fast 
enough not to filter out the trajectory of the asset to be 
tracked. In the case of the inertial system, a higher sampling 
rate is required in order not to lose information of the 
movement of the object and thus achieve a good 
performance. This data can be processed and stored in an 
integrated circuit attached to the asset to be tracked in order 
to send it in ZigBee frames with the RSS data to the receiver 
node. Thus, the asset position is reestimated each time the 
inertial sensors are sampled. When the RSS-based system 
collects a new set of samples (i.e., every 500 ms), the 
information of both systems is combined. Linear regression  
is used to fit the inertial samples taken between two RSS 
data acquisitions, filtering noise and vibration. Next, 
displacement vectors are constructed from two consecutive 
inertial and RSS datasets, as shown in Figure 6: green 
arrows represent inertial displacement and the pink arrows 
represent RSS displacement. 
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Figure 5 Inertial system signals processing for orientation and distance calculation 

 

Figure 6 Example of inertial sensor and RSS data fusion. Schematic representation of information weighting. Squares indicate points 
were data is combined and position is calculated (see online version for colours) 

 
 
Even though a moving average buffer is applied to RSS 
values, they can still exhibit abnormal signal variation, 
reflected in RSS-based position estimation. These 
significant path fluctuations can be easily detected if 
compared with previous RSS and inertial displacement 
vectors variation. If the current displacement is not larger 
than twice the previous displacement values, RSS and 
inertial vectors are equally weighted. Otherwise, RSS 
displacement vector weight is inversely proportional to RSS 
distance variation excess, as depicted in Figure 6 (red and 
yellow arrows). 

3 Validation 

This section is devoted to experimentally evaluate the 
performance of the proposed ILS in a real scenario. The ILS 
design criteria are:  

1 size of the scenario where the ILS is deployed: a 
12 × 6 m2 classroom 

2 positions where static nodes can be placed: walls of the 
classroom (shown in Figure 3) 

 

3 required location accuracy: this criterion is the one to 
be analysed, so it cannot be defined a priori 

4 environment where the ILS is deployed: a classroom 
with furniture (tables, wardrobes, chairs, computers) 

5 number of assets to be tracked: one 

6 response/refreshing time of the ILS: 500 ms (ZigBee 
nodes sampling rate). 

The choice of this scenario size (12 × 6 m) is motivated by 
the fact that it is similar to others used for ILS testing, some 
of them listed in Table 1, making easier the comparison of 
the evaluated ILS’s. 

To cope with RSS fluctuations inherent to indoor 
measurements due to multipath and time-varying scenario, a 
solution based on a moving average is considered. RSS 
values are stored in a 10-samples size ‘first in–first out’ 
(FIFO) buffer. The averaged RSS values are used to 
estimate the position of the asset. Taking into account that 
RSS samples are taken every 500 ms, a 10-samples size 
buffer introduces a 5 s delay (sufficient for the majority of  
slow-motion asset tracking applications) while keeping 
reasonable accuracy as it will be shown next. 
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Table 1 RSS-based ILS comparison sorted by maximum 
relative error (% of the scenario size) 

Method 
Scenario 
size (m) 

No. 
static 
nodes, 

N 
Absolute 

error 
Relative 

error (%) 

Hybrid inertial and 
RFID system 
(Jiménez-Ruiz  
et al., 2012) 

60 × 40 
1000 m path 

71 11.5 m  
(in a 

1000 m 
path) 

1.1% (in a 
1000 m 
path) 

This work 
(RSS + inertial) 

12 × 6 6 Up to 
0.7 m 

Up to 5.2%

RSS-based RFID 
(Huang et al., 
2015) 

10 × 5 6 0.83 m 7.4% 

Data fusion (RSSI 
and ToF), ZigBee 
(Macii et al., 
2013). Range 
estimation only 

5 × 5 m 1 Around  
50–60 cm. 
Up to 1 m 

Around 
50–60 cm. 

Up to 
14% m 

RSS-based ZigBee 
(Álvarez et al., 
2011) 

12 × 6 6 0.5 m avg. 
Up to 2 m 

3.7% avg. 
Up to 15%

This work  
(RSS-only) 

12 × 6 6 Up to 
2.1 m 

Up to 16%

RSS-based WiFi, 
fingerprinting 
(radiomap) (Ismail 
et al., 2008) 

7.4 × 14 m 3 Up to 
2.5 m 

16% (80% 
certainty) 

Fingerprinting. 
RSS-based WiFi 
and Bluetooth 
(Hossain et al., 
2007) 

540 m2 

23 × 23 m 
approx. 

4 (62 
train. 
pts) 

5 m (90% 
certainty) 

21% (90% 
certainty) 

RSS-based  
ZigBee, centroid 
concept-based 
algorithms  
(Pivato et al., 
2011) 

5.8 × 4 m 12 Around 
2 m (90% 
certainty) 

Around 
28% (90% 
certainty) 

RSS-based 
Bluetooth (Bandara 
et al., 2004) 

4.5 × 5.5 m 4 2 m (92% 
certainty) 

28% (92% 
certainty) 

This work  
(RSS-only) 

12 × 6 4 Up to 
3.8 m 

Up to 28%

RSS-based ZigBee, 
WAF model 
(Gomes and 
Sarmento, 2009) 

3.5 × 6.1 m 4 Up to 
2.5 m 

35% 

3.1 Comparison of absolute and differential  
field levels 

First, a comparison between ILS accuracy using absolute 
RSS (equation (4)) plus a previous calibration stage, and 
differential RSS (equation (6)) (without calibration stage) is 
presented. For this comparison, 20 static positions within 
the classroom have been randomly selected. For each 
position, 100 RSS acquisitions were conducted, one every  
 

500 ms (so the overall acquisition time for each position is 
50 s). During the acquisition time, two people were walking 
inside the classroom aiming to create a time-varying 
environment. The number of active static nodes has also 
been evaluated for each of the two compared cost functions. 
ILS accuracy is assessed by means of the following 
indicators: mean error, maximum error, standard deviation 
and the radius of the dispersion circle (DC). The latter is 
defined as the radius of the maximum circle that contains all 
the estimated target locations for a fixed position. 

Results for different sets of active nodes as well  
as the processing technique (absolute RSS + calibration, 
equation (4); and differential RSS, equation (6)) are 
summarised in Table 2. Besides, location estimation using 
equation (6) (differential RSS) for several sets of nodes and 
static positions are depicted in Figure 7, illustrating the 
concept of DC. 

From Table 2, it can be noticed that there is not 
significant improvement when using the differential RSS 
method with respect to the technique based on absolute RSS 
values plus calibration stage. Concerning the number of 
nodes, the accuracy of the RSS-based system is around 1 m 
with dispersion smaller than 0.7 m using six nodes. If only 
four nodes were considered, accuracy is worsened up to 
1.6 m, as well as the dispersion (around 1.2 m). The 
influence of the nearest static nodes to the true position of 
the mobile node (blue dot) can be also observed in Figure 7: 
when the nearest nodes are deactivated, the dispersion is 
significantly worsened in this real-time varying scenario. 

Table 2 Analysis of the RSS-based ILS uncertainty for 
different number of nodes and location technique 

No. of 
nodes, N 
(list of 
active 
nodes) Method 

Mean 
error 
(m) 

Maximum 
error (m) 

Standard 
deviation 

(m) 

Radius 
dispersion 

circle 
(RD.C.) (m)

N = 6 
[1,2,3,4,5,6]

Differential 
RSS 

1.1 2.1 0.6 0.7 

Absolute  
RSS +  
calibration 

1.2 2.1 0.8 0.6 

N = 4 
[1,2,5,6] 

Differential 
RSS 

1.5 3.4 1.5 1.0 

Absolute  
RSS +  
calibration 

1.5 3.3 1.7 1.2 

N = 4 
[3,4,5,6] 

Differential 
RSS 

1.7 3.6 1.5 1.4 

Absolute  
RSS +  
calibration 

1.6 3.2 1.6 1.3 

N = 4 
[1,2,5,6] 

Differential 
RSS 

1.6 3.5 1.3 1.2 

Absolute 
RSS +  
calibration 

1.8 3.8 1.4 1.3 
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Figure 7 Analysis of positioning uncertainty with RSS information for selected static positions (blue dots). Different set of static nodes 
are activated (green diamonds): (a) all static nodes activated; (b) nodes 3 and 4 deactivated; (c) nodes 1 and 2 deactivated  
and (d) nodes 5 and 6 deactivated (see online version for colours) 

 
 
3.2 RSS-based ILS combined with inertial  

systems 

Once the RSS-based ILS performance has been evaluated, 
next step is devoted to test the position accuracy 
improvement achieved when combining RSS and inertial 
sensor information. Inertial sensors require the asset  
to be in motion, so a path has been created in the  
scenario under test, shown in Figures 8 and 9 (thick orange 
line). 

Path estimation for 4 and 6 static nodes are depicted in 
Figures 8 and 9, respectively. The path computed by the 
RSS-based method (dash–dotted purple line) has the lowest 
accuracy among the three systems under study with a 
maximum error of 2.1 m in the case of four nodes (Figure 8) 
and 1.7 m, when considering six static nodes (Figure 9). 
This maximum position estimation error, which does not 
occur at the intermediate testing positions marked (with 
geometric shapes) in Figures 8 and 9, is in agreement with 
Table 2 results. 

As mentioned in Jiménez-Ruiz et al. (2012), inertial-
based tracking systems suffer from error drift, meaning  
that the positioning error steadily increases as the asset  
to be tracked moves along the path. In this example,  
if the initial position is assumed to be known, the  

inertial system positioning error at the end of the path is 
0.6 m. 

In practice, inertial-based systems require the initial 
position of the asset to be given. For example, in this  
work the initial position is estimated by the RSS-based  
ILS, as depicted in Figures 8 and 9 (dashed green  
line). Note that this RSS-based initial position estimation  
is different for Figures 8 and 9, and so the inertial  
system positioning error with respect to the true  
path. 

Next, RSS and inertial sensor information are combined. 
The estimated path (solid blue line) follows closely the true 
path of the mobile node, reducing RSS-based uncertainty as 
well as the inertial system drift. Path error is up to 1.2 m 
when four static nodes are considered (Figure 8), and up to 
0.5 m with six static nodes. 

Additional paths have been created and evaluated  
in the scenario, achieving the following metrics (N = 6 static 
nodes deployed): for the inertial system, the error drift at the 
end of the path is within the range [0.5–0.8] m (initial 
position is assumed to be known for this analysis);  
RSS-based technique provides a maximum positioning  
error of [1.5–2.1] m; and combined RSS and inertial  
sensor information yields a maximum positioning error of 
[0.4–0.7] m. 
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Figure 8 Tracking results for the RSS-based system, inertial system, and the hybrid system, when four nodes are active. The true path  
is highlighted in light orange. Initial position is denoted with ( ), final position is denoted with (+), and intermediate positions 
are denoted with ( ) and ( ). Positioning errors for every tested location system are depicted (see online version for colours) 

 

Figure 9 Tracking results for the RSS-based system (dash-dotted purple line), inertial system (dashed green line), and the hybrid system 
(solid blue line), when the six nodes are active (see online version for colours) 

 
 
4 Conclusions 

It can be concluded that, from the results considering just 
the RSS information, there is not significant improvement 
when using the differential RSS method with respect to the 
technique based on absolute RSS values plus calibration 
stage. Thus, the improvement is mainly related to the fact 
that the calibration stage is avoided, therefore allowing fast 
deployment of the ILS in the scenario. 

Next, from the comparison of RSS-based ILS, inertial 
sensor positioning, and combination of RSS and inertial 
sensor, one may think that the inertial system is just slightly 
worse than the combined one, but the inertial system has a 
cumulative error that cannot be corrected unless combined 
with an absolute positioning system as the RSS-based 
technique. 

The location method presented in this work has been 
compared in Table 1 with other RSS-based ILS and hybrid 
methods. If only RSS information is considered, the location 
error is in the same order as the cited RSS-based ILS’s for a 
given scenario size and number of reference nodes. It is true 
that the proposed hybrid method is not as good as the 
proposed hybrid RFID-inertial system presented in Jiménez-
Ruiz et al. (2012), but both are able to improve the results of 
RSS-based techniques, regardless the supporting technology 
(RFID, Huang et al., 2015; ZigBee, Gomes and Sarmento, 
2009; Pivato et al., 2011; WiFi, Hossain et al., 2007; Ismail 
et al., 2008; Bluetooth, Bandara et al., 2004; Hossain et al., 
2007). In addition, the interest on the proposed ILS lies on 
the ease of deployment and low cost, together with the 
capability of extending ZigBee coverage network beyond  
the range of a single static node thanks to the use of repeater 
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nodes, thus making it suitable for applications such as 
machinery, equipment or cargo tracking in industrial 
warehouses. A potential practical scenario could be cargo 
containers location and tracking in a sorting and storage 
facility in a seaport. 
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