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Abstract—The widespread use of mobile devices and the rise
of Global Navigation Satellite Systems (GNSS) have allowed
mobile tracking applications to become very popular and valu-
able in outdoor environments. However, tracking pedestrians in
indoor environments with Global Positioning System (GPS)-based
schemes is still very challenging. Along with indoor tracking, the
ability to recognize pedestrian behavior and activities can lead
to considerable growth in location-based applications including
pervasive healthcare, leisure and guide services (such as, hospitals,
museums, airports, etc.), and emergency services, among the most
important ones. This paper presents a system for pedestrian
tracking and activity recognition in indoor environments using ex-
clusively common off-the-shelf sensors embedded in smartphones
(accelerometer, gyroscope, magnetometer and barometer). The
proposed system combines the knowledge found in biomechanical
patterns of the human body while accomplishing basic activities,
such as walking or climbing stairs up and down, along with
identifiable signatures that certain indoor locations (such as turns
or elevators) introduce on sensing data. The system was imple-
mented and tested on Android-based mobile phones. The system
detects and counts steps with an accuracy of 97% and 96.67% in
flat floor and stairs, respectively; detects user changes of direction
and altitude with 98.88% and 96.66% accuracy, respectively; and
recognizes the proposed human activities with a 95% accuracy.
All modules combined lead to a total tracking accuracy of 91.06%
in common human motion indoor displacements.
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I. INTRODUCTION AND MOTIVATION

Mobile computing devices such as smartphones, tablets
and smartwatches are nowadays overtaking the popularity of
conventional desktop computers. The computing paradigm has
evolved in recent years reducing the prices of these devices
while increasing the number of features, processing power and
mobility capabilities. As a result, location-aware services and
applications have spurred particularly in the wellness [26] and
in the entertainment sector [19]. This rapid growth in people-
centric mobile computing applications has led to improvements
in localization technologies, not only in terms of localization
accuracy, but also across multiple and specific dimensions such
as power consumption, energy efficiency, response time, and
ubiquity.

In outdoor environments localization is successfully solved
by traditional Global Navigation Satellite Systems (GNSSs),
such as the Global Positioning System (GPS), cell tower

localization and Wi-Fi. However, these technologies cannot
track the user’s position accurately in indoor environments
where humans spend most of their time (offices, home, schools,
universities, malls, hospitals, etc.). A location service capable
of providing accurate positioning in indoor environments could
promote the interest in a whole range of new mobile applica-
tions in different domains, such as healthcare, transportation,
tourism, and many others. The list below includes some
of the most important services that could be provided in
indoors environments, in this case customized to hospitals and
healthcare services.

• Real-time tracking: patients could be tracked continu-
ously for their safety and security inside hospitals.

• Safety: location systems could provide rescue services
with an accurate and immediate knowledge of the
user’s position inside a hospital building in case of
emergency.

• Resource-efficiency: hospital could utilize the infor-
mation of where the patients are to optimize resources
such as air conditioning, heating, or lighting.

• Security: location-awareness could permit automatic
locking of sensitive resources depending on the owner
presence and could trigger alarms if patients cross
certain boundaries.

• Social networking: patients and medical professionals
could easily and efficiently find each other.

• Automatic resource routing: follow-me applications
could allow patients to be routed to achieve their goals.

• Navigation: patients and visitors could be easily
guided to navigate to areas or rooms of interest.

• Announcements: messages or alerts could be sent to
patients according to their location in the hospital.

Although several systems and solutions have been proposed
for indoor localization and tracking, they have not been very
successful so far because of the following common challenges:

• Additional hardware. Most proposed systems require
some form of supplementary hardware and additional
infrastructure that makes them impractical and costly
for most applications. Specific high quality sensors are



usually mounted in bare functional locations making
the system impractical and uncomfortable for the
user’s common use.

• Unreliable sensor data. Several obstacles in indoor
environments, such as machines, walls, corridors, open
areas, metals, etc., introduce random noise in the
sensor measurements.

• Cumulative errors. Low cost sensors embedded in
mobile devices are normally low quality devices that
would lead to cumulative errors when estimation of
new positions are based on previous Pedestrian Dead
Reckoning calculations.

• Data fusion. The multisensory approach of the pro-
posed system introduces the challenge of combining
sensing data collected from sensors of different nature
to extract reliable signatures and patterns.

• High level of location accuracy required. Because
the indoor context varies at fine spatial granularity,
most indoor-based applications require a high level of
accuracy from the location system.

• Energy consumption. The continuous use of sensors
and processing needs of the location system consume
extra energy from already energy-constrained devices
like smartphones.

• Processing power. Although hardware resources in
mobile devices are in continuous evolution, processing
power is still limited. Algorithms and data processing
techniques implemented in these devices should pre-
vent a high consumption of resources.

• Mobile device position. The use of a mobile device
as data collector introduces the challenge of multiple
possible positions and orientations of the device, such
as calling, messaging, swinging if the users hold the
device in hand while walking. These different actions
affect the tracking and activity recognition algorithms.

• Evaluation tools. The evaluation of positioning sys-
tems is a tedious job consisting of the repetition of
experiments and comparisons of the results with real
scenarios. In most cases, experiments are performed
manually and individual evaluation is necessary to
compute global results.

In this paper, we propose a smartphone-based system for
pedestrian tracking in indoor environments that addresses most
of these problems. First, the proposed system simultaneously
harnesses sensor-based dead-reckoning and environment sens-
ing for localization and does not require of previous calibration
nor installation of external infrastructure/additional hardware.
It applies a set of data processing techniques to the noisy
raw sensor data received from the array of inertial sensors
embedded in the smartphone (triaxial orthogonal accelerome-
ter, gyroscope, magnetic field detector and barometric pressure
sensor) to produce acceptable location accuracy results. The
system implementation is based on two sequential components:
a decision tree for activity recognition, which recognizes
human indoor activities, such as turns (T), stationary times
(Sy), use of elevators (E), walking (W) and stairs (St), and a
set of algorithms that provide additional information about the

activity, such as motion distance or direction. The algorithms
avoid machine learning techniques, which require training
tasks, rely on statistical analysis, and demand more processing
power. Instead, they are based on filters, peak detection, and
thresholds, and use simple internal calibration routines to
detect and count stairs and steps, detect turns and altitude
changes or recognize motion direction and sensing patterns
in indoor environments. In addition, the system uses track-
splitting and landmarking strategies to reduce the accumulated
error usually inherent in every inertial sensor-based system.
The system shows that adequate points of interests (POI) exist
in indoor environments that they can be used to make dead-
reckoning practical and reasonably accurate. Finally we also
introduce and use two tools to evalute the system. The first one
and used in this paper consist of an Android application in the
client side, which is in charge of collecting the sensor data
from the mobile device, and a server application working as
a testbed that simplifies the system’s implementation and the
evaluation process. The second one is a solution for real-time
tracking of pedestrians in indoor environments [27].

The remainder of the paper is organized as follows. Sec-
tion II describes previous research work done in this area.
Section III describes the groundwork of this research where the
key concepts of the system design are explained including the
modules and algorithms that are part of the system. Section IV
details the system implementation. Section V includes the
evaluation methodology and discusses the performance the
individual algorithms and the system as a whole. Finally,
Section VI concludes the paper and sets forth directions for
future research.

II. RELATED WORKS

There is a large body of literature on indoor positioning
systems. A comprehensive coverage is provided in surveys re-
lated to inertial systems [13] and wireless positioning systems
[18] [12]. The set of solutions available can be classified as:
lateration and angulation systems, proximity systems, radio fin-
gerprint systems, dead-reckoning systems, and hybrid systems.

Among the current technologies, the lateration and angu-
lation methods are probably the most complex to deploy and
expensive to maintain in terms of infrastructure. Similarly to
the GPS principle for position estimation, the system func-
tionality is based on the computation of distances between
the mobile unit and an array of base stations installed in the
building. Careful choice of the beacon signal can contribute to
mitigate the difficulties of radio signal propagation that arise
due to indoor obstacles. The most common signal types are
ultrasonic systems [11], radio frequency-based systems [20],
and ultra wideband (UWB) radio systems [14]. As an example,
in [31], Zhao et al. propose AUITS, an autonomous ultrasonic
indoor tracking system for locating and tracking mobile objects
inside a building. The results of their work show that the
coverage area to estimate the location of one device can reach
up to 65m2, obtaining a positioning error of less than 15cm
with 90% probability or more. However, as most conventional
ultrasonic location systems, it poses some challenges such as
manual calibration of the transmitters, high installation cost,
antenna mismatch, external interferences from other systems,
and low power emission.



Proximity systems are another common alternative for
indoor positioning. Mobile stations include detectors which
recognize signals transmitted by a proximity system. Since
the location of the transmitters is known, the true location
of the mobile device is easily obtained. Due to the short
range of the signals, these systems provide only the near-
est room or building area (a coarse location) rather than
a coordinate location. Examples include Bluetooth stations,
Radio-Frequency Identification (RFID) systems and Near Field
Communication (NFC) infrastructures. Bluetooth is a wireless
communication technology for the exchange of data in a short
range. The position accuracy is proportional to the number of
cells used and the precision of the receivers [4]. In the case
of RFID technology, the position accuracy also depends on
the amount of tags used and the type of these tags, which
can be either active or passive. Proposed RFID-based indoor
navigation solutions require an extensive usage of tags to get a
reliable position and they are generally based on active RFID
tags. Actives tags increase the transmitting distance compared
with passive tags since they include batteries to increase the
transmitting power. The main disadvantage of the solutions
based on active RFID tags is the high cost of the transmitters.
Furthermore, studies suggest that they do not provide an
efficient tracking system [22]. Similarly, NFC solutions [23]
require a large number of readers to obtain reliable ubiquitous
coverage.

Radio fingerprinting approaches have been the successful
indoor systems to date. In these systems, a radio map of various
signal properties such as received signal strength is previously
collected and compared to the current measurements. The
closest match is searched and identified as the estimated
position. Wi-Fi is the most common radio fingerprinting choice
due to its ubiquity [17] [5] [24]. The Wi-Fi based system
typically reports accuracies of a few meters. However, the time
required to install, configure and maintain these indoor systems
have so far limited their general deployment.

Other popular set of systems are independent navigation
systems based on Pedestrian Dead Reckoning (PDR) tech-
niques. Instead of providing a coordinate location, a common
method for human tracking is to calculate the current position
based on the last estimated position, the speed of the item,
the route, and the elapsed time between the current and the
previous position. Recently, PDR systems use Micro Electro-
Mechanical Sensors (MEMSs) and inertial sensors embedded
in cell phones, so very basic physical infrastructure is needed.
Furthermore, MEMs based systems usually offer an additional
degree of privacy since the user can choose to either share
their location information with any third party or not. The most
important drawback of PDR-based navigation systems is the
need to correct the noise associated with the sensors when the
estimation of the new position is based on a previous PDR cal-
culation. For example, the inertial sensors distance traveled can
be calculated from the acceleration signal by double integration
with respect to time; however, due to the low accuracy of the
accelerometer, the presence of noise and the component of
acceleration caused by gravity, error accumulates rapidly with
time [10]. An interesting approach shown by Constandache et
al. in [9] takes advantage of a smartphone’s digital compass
and accelerometer to track pedestrians. The system is designed
and tested for outdoor environments where map information
is available. It compares the estimated path with the true

map information without requiring any external extra device.
Alzantot et al. [2] show how a step counter for tracking
pedestrians can be created using exclusively the inertial sensors
built in a cell phone. They use dead reckoning navigation
techniques combined with lightweight finite state machines
to obtain an acceptable accurate level. Additionally, recent
developments in PDR systems have incorporated urban sensing
and activity recognition. For instance, several inertial sensors
worn simultaneously on different parts of the body can detect
when a user is walking, turning, or climbing up stairs [28].
Similarly, microphones and magnetometers can be used to
detect ambient sounds and magnetic fluctuations [3] [7]. While
these signatures have been primarily used for various forms of
context awareness, they can contribute to localization purposes
as well. These signatures can be treated as landmarks and
are useful for indoor dead-reckoning systems when combined
with sensor information in order to recognize indoor points of
interest and users movements.

All these techniques for indoor positioning systems are
not independent and several hybrid systems are also found
in the literature. Lateration and angulation systems are often
combined with other indoor positioning techniques to improve
the global performance. For instance, in [16], Jin et al. propose
the use of the digital compass and the accelerometer in a
smartphone to track user location in indoor environments.
The commercial system, called SparseTrack, uses additional
ultrasonic sensors sparsely distributed in the area to correct
the possible error provided by the smartphone. In [30], foot-
mounted inertial sensors are used to build RF radio maps for
pedestrian tracking. The scheme uses a particle filter and the
known radio-frequency map information to track the user and
to improve the positioning estimated by the basic INS system.
In [25], Tom et al. present an almost self-deployable solution
based on RFID tags inertial Micro Electro Mechanical Sensors.
Capelle et al. [6] designed a GNSS-based multisensory system
based on the fusion of three different technologies: high
sensitivity GNSS (GPS and the future Galileo), MEMS-based
Pedestrian Navigation System and WI-FI. Proposed in [29],
Woodman et al. implement a pedestrian localization system for
indoor environments using a foot-mounted inertial unit and a
localization algorithm using Wi-Fi signal strength to reduce
initial complexity. All these hybrid designs partially solve
the indoor localization problem. However, all of them require
offline training in order to build a radio map or the installation
of additional infrastructure. Requiring infrastructure beyond
the common mobile phone can make a solution impractical
for several scenarios and it will undermine the use of these
solutions in real environments.

Comparing this paper with the current literature, the pre-
sented work focuses on the integration of raw data and context
information collected by sensors embedded in mobile phones
only. The cumulative errors, as a consequence of using low
quality inertial sensor and PDR techniques, are reduced by
splitting and resetting the complete trajectory in small inde-
pendent traces. Altogether, the proposed method provides an
acceptable accuracy at a low cost.

III. SYSTEM DESIGN

The proposed system tracks pedestrians in indoor environ-
ments by automatically detecting landmarks, pedestrian motion



and human activity by combining data from several sensors. It
uses accelerometer readings of the mobile phone to record the
number of steps/stairs a person has walked/climbed [15] [21]
and accordingly obtain the distance traveled by the person. By
utilizing the compass, the direction of the heading changes can
be tracked [8]. Using magnetometer readings anomaly context
behavior can be detected [1] and finally, the barometer can
be used to perceive vertical movement patterns. Additionally,
the proposed technique is based on resetting the accumulation
of errors by splitting the complete trajectory into independent
motion traces.

In order to model indoor human activities, the possible
human actions are reduced to five states which correspond with
the limitations that indoor obstacles and floor plans impose on
pedestrians:

• Turns (T): when the pedestrian changes the heading
in his/her route.

• Stationary (Sy): when the person remains in the same
location for some time.

• Elevator (E): when the user makes use of an elevator
to travel to a different floor.

• Walking (W): when the user moves across the same
floor.

• Stairs (St): when the user takes the stairs to go
up/down to change floors.

Fig. 1: Real floor plan example.

Consider for example the floor plan of the first floor of
the Fine Arts Hall Building at the University of South Florida
shown in Figure 1. This real location is basically formed by
corridors where users can walk straight (W), corners in which
pedestrians make heading changes (T), stairs, where users
climb up/down steps (St), and elevators, used to automatically
change floors wither up or down (E). Stationary times (Sy) are
also considered in which users remain in the same position for
a defined period of time.

This set of predictable activities can be translated into iden-
tifiable context signatures or landmarks that can be specified
using the data gathered by the sensors integrated in the mobile
phone. For instance, elevators exhibit a remarkable variation in
the magnetic field magnitude added to the pressure variation
with the vertical movement. Human walking steps can be iden-
tified by a repetitive pattern in the accelerometer raw data, and
heading changes can be detected from gyroscope measures.
We take advantage of this approach to simultaneously harness
sensor-based dead-reckoning and environment sensing.

Fig. 2: Human gait cycle.

The proposed system defines a set of rules to automatically
detect the activity among the possible states defined above.
These rules are based on three key concepts:

1) Indoor points of interest (POI). Multiple tests have
shown that certain indoor locations present identifi-
able signatures on one or more sensing dimensions.
These signatures can be detected processing the raw
data gathered by the sensors and translated into the
real indoor points. This principle is used in our design
to detect elevators and corners.

2) Human body behavior patterns. Pedestrian actions,
like walking, generate repetitive and identifiable pat-
terns that are detectable by the inertial sensors. For
instance, human gait is defined as the way that
humans walk. Human walk is a bipedal and biphasic
forward propulsion in which there are alternate sinu-
ous movements describing a motion cycle. Different
segments of the body are involved in the walk activity,
mainly in the lower body. The gait cycle begins
with the initial contact of the supporting heel on
the ground and ends when same heel contacts the
ground for a second time. Thus, it can be classified
in two phases: stance and swing (Figure 2). Each
cycle begins at initial contact with a stance phase
(defined as the interval of time in which the foot is
on the ground, approximately 60 percent of the gait
cycle) and proceeds through a swing phase (defined
as the interval of time in which the foot is not in
contact with the ground approximately 40 percent of
the gait cycle) until the cycle ends with the repetition
of the initial contact. The idea of identifying human
repetitive patterns is used in this system to detect
human steps and climbing stairs.

3) Elimination of cumulative errors. The approach of
navigation based on landmarks and activities allow
us to split the data by activity frames to reduce the



cumulative error of the sensors. Furthermore, every
single motion frame is processed to include specific
information, such as number of steps/stairs, time in
the detected action, distance walked/climbed, elevator
direction or turn direction. Thanks to this additional
information the system is able to rebuild the user’s
motion by a sequence of traces. This functionality is
useful for pedestrian tracking, indoor positioning, or
eventually for participatory floor plan construction.

The architecture of the system consists of four main
modules: the data collection module, the motion segmentation
module, the activity recognition module, and the activity
specification module, as shown in Figure 3. Altogether, these
four modules in a sequential manner:

1) Gather raw data from the sensors embedded in the
mobile device.

2) Split the complete user’s motion into segments using
heading and altitude changes as separators or splitters.

3) Classify each segment in an activity using a decision
tree based on classification rules.

4) Add additional specifications to each activity creating
motion traces that recreate pedestrian indoor move-
ments. This last module applies the specific algo-
rithms (step detection and counting, stairs detection
and counting and elevator frame classification).

Fig. 3: System architecture.

A. Data Collection Module

The first module in the architecture of the system is
responsible for gathering raw data from the various sensors
embedded in the user’s mobile device. Raw sensor data comes
from the inertial sensors, namely the accelerometer, gyroscope,
magnetometer, and barometer. These sensors have the advan-
tage of being ubiquitously embedded in most smartphones,
have a low-energy footprint, and be always active during the
phone operation with the goal of detecting changes in the
orientation of the phone or helping in the location of the
cell phone. The data collection module was implemented as
a service in an Android application. The sensors are sample
every 15ms (66.6Hz). This duty cycle is good enough to
detect user’s activity and motion details as discussed in the
evaluation section.

B. Segmentation Module

The main goal of this module is to split the raw data
into independent segments. The data are split into segments
using two main events: heading changes, detected by the turn
detection algorithm when pedestrians perform a turn in a
corner, and altitude changes, identified by the altitude change
detection algorithm when the user takes the stairs or an elevator
to change floors.

1) Turn Detection Algorithm: Corners are a common oc-
currence in indoor scenarios and they can be used as splitters to
segment the traces. Hence, an important event to be detected in
indoor traces is the change on heading directions. Turns can be
recognized based on the measurements from the gyroscope and
applying the algorithm explained below (Algorithm 1), which
is based on significant changes in gyroscope readings. Turns
are detected when compass measurements identify heading
changes more significant than random variations. The turn de-
tection algorithm performs a calibration routine to compensate
the bias introduced by the sensor and applies a filter to reduce
the background noise. It sets a threshold over the magnitude of
the filtered signal to detect high variations and eventual turns.
Finally, the turn’s direction is given by the sign of the compass
reading with the biggest magnitude.

Algorithm 1 Turn Detection Algorithm
1: for each i ∈MotionTrace do
2: G(α)← f(gαi) Equation 1
3: E[gi]← f(gxi, gyi, gzi) Equation 3
4: end for
5: G(α)← f(G(α), N) Equation 1
6: Gcalib ← f(G(x), G(y), G(z)) Equation 2
7: for each i ∈MotionTrace do
8: for j = i− ω to j = i+ ω do
9: gi ← f(E[gj ], Gcalib) Equation 4

10: end for
11: gi ← f(gi, ω) Equation 4
12: Gi ← f(gi, GT ) Equation 5
13: Ti ← f(Gi)
14: Add Ti to TurnInstants[ ]
15: end for
16: for each Ti ∈ TurnInstants do
17: TurnDirection← f(Ti, gαi, ω) Equation 6
18: end for
19: return [TurnInstants, TurnDirections]

The algorithm is based on the following steps:

1) Calibration routine: during a trace of movement,
gyroscope samples are collected in the three axes
[gx, gy, gz]. Then, using Equation 1, the mean of the
compass values for each axis is calculated.

[G(x), G(y), G(z)] with G(α) =
1

N

N−1∑
i=0

gαi (1)

where N means the number of samples used for the
calibration routine for one movement trace. Then,
Equation 2 is used to calculate the magnitude of the
averages, which is considered as bias and used to
compensate and shift the compass variations to zero.



Gcalib =

√
(G(x)

2
+G(y)

2
+G(z)

2
(2)

2) Moving average filter: using Equation 3, the energy of
the compass samples gi for every sample i, is com-
puted. Then, Equation 4 applies a moving average
filter by estimating the average of the energy in a
window of size ω (10 samples) and compensating
the bias previously calculated by Equation 2.

E[gi] =
√
gx2i + gy2i + gz2i (3)

gi =
1

2ω + 1

j=i+ω∑
j=i−ω

(E[gj ] −Gcalib) (4)

3) Threshold: defined by Equation 5, it generates a
square wave to detect the heading changes based on
the high and low levels of the signal.

Gi =

{
GT if gi > GT
0 otherwise

(5)

After multiple empirical tests, the threshold value
GT has been fixed to 1.2rad. Thus, a high level
in the signal Gi means that the compass headings
changed more than GT during an interval of 10
samples around sample i (or 150ms with a sampling
time of 15ms).

4) Turn detection: a turn is detected when the square
signal Gi shows a period of high level followed
by a low level. In other words, a transition from
low to high level is detected in Gi (Gi−1 < Gi)
and samples later, a transition from high to low
(Gi−1 > Gi). The turn instant Ti is estimated in the
center of this G high level period.

5) Turn direction: once a turn is detected for sample
i, in order to determine its direction it is necessary
to study the sign of the compass reading with the
biggest magnitude. The function MainComponent
(Equation 6) returns the biggest gyro component
(maximum absolute value) in a window of size w
with center in the detected turning instant Ti.

MainComponent(i) = max
{
gxi, gyi, gzi

}
with gαi =

1

2ω + 1

i=j+ω∑
i=j−ω

abs(gαi)
(6)

According to the sensor’s coordinate system in the
Sensors Android API and the standard mathematical
definition of positive rotation, a rotation is posi-
tive when follows the counterclockwise direction. It
means that, an observer looking at a device positioned
on the origin from some positive location on the
x, y or z axes would report positive rotation if the
device is rotating counterclockwise. Therefore if the
MainComponent value for the detected turn sample
is positive, a turn to the left has been performed.

Otherwise, if the sign is negative, a turn to the right
has been performed.

As an example, the top part of Figure 4 shows the values
of the signals as calculated by Equations 3, 4 and 5 in the
turn detection algorithm while the bottom part of the figure
shows the components of the compass readings as computed
by Equation 6. The trace motion in the example includes a
turn to the left between samples 95−110, a right turn between
samples 200−215 and a left turn between samples 275−290.

Fig. 4: Turn detection algorithm signals.

2) Altitude Change Detection Algorithm: Altitude changes
are critical to detect activities that involve a change of floor.
For instance, it is useful to differentiate between walking in
flat floors or stairs. Similarly to heading changes, altitude
changes can be used as splitters to segment the raw data. The
altitude change detection algorithm (Algorithm 2) is based on
significant changes in the air pressure raw data acquired by
the barometer.

Algorithm 2 Altitude Change Detection Algorithm
1: for each i ∈MotionTrace in windows i+N do
2: for i to i+N do
3: Pi ← f(pi−1, pi, β) Equation 9
4: P (t[i])← f(Pi) Equation 8
5: end for
6: f(P (t[i])← f(P (t[i]), N) Equation 8
7: ACi ← f(P (t[i+ 1]), P (t[i]), StDev) Equation 7
8: Add ACi to AltitudeChanges[ ]
9: end for

10: return AltitudeChanges[ ]

Altitude changes are recognized when the barometric
pressure values vary more significantly than due to random
oscillations, as given by Equation 7.



Fig. 5: Example of a pedestrian trace split by turns and altitude changes.

P (t[i+ 1]) − P (t[i]) ≥ StDev(P ) (7)

in which the first term represents the variation of the average
between two consecutive intervals. In Equation 7, P (t[i])
denotes the average of the low pass filter values for the air
pressure readings over a t[i] time period, as calculated by
Equation 8, N is the number of samples included in the period
t, and Pi is the low pass filter signal of the pressure readings
pi.

P (t[i]) =
1

N

N−1∑
i=0

Pi (8)

The filter has been implemented using a discrete implemen-
tation of a basic RC low-pass filter, as show in Equation 9,
with a smoothing factor of β = 0.9 in order to obtain a
smoother form of the signal, remove the short-term oscillations
and maintain the longer-term trend.

Pi = LPF [pi] = β pi−1 + (1 − β) pi (9)

The second term in the detection condition of the algorithm
(Equation 7) identifies the pressure random oscillations. It is
detected based on the standard deviation estimated for the
barometric pressure sensor in resting conditions (not moving),
0.05mbar/sec. This value was obtained from the quality
sensors test shown in the evaluation section of this paper.

In those time intervals in which a significant variation is
detected (ACi), the trend of the pressure signal is analyzed
to generate a square wave to represent the altitude changes
(+1 and −1, respectively). It is worth noting that, a notable
increase in the pressure signal means a decrease in altitude
and vice versa.

Figure 6 shows an example of the signals in the altitude
change detection algorithm. The figure on the top left shows
the pressure raw data; the one on the top right shows the
pressure measurements after being computed by the low pass
filter as calculated by Equation 9. The figure on the bottom
left shows the difference of averages between two consecutive

intervals as computed by Equation 7. Finally, the figure on
the bottom right shows the altitude changes detected. In the
example, a positive altitude change was detected in the interval
between samples number 60 and 250, and a period of negative
altitude, or going down, was detected in the interval between
samples 540 and 740.

Fig. 6: Altitude change detection algorithm signals.

Once detected, turns and altitude changes are used in the
proposed solution to split the continuous motion traces in a
sequence of independent segments. This trace segmentation
technique reduces the error accumulation introduced by the
inertial sensors. This approach contrasts with classical relative
navigation techniques, such as dead reckoning in which the
new location of a user is estimated using the previous location,
the distance traveled and the direction of motion.

Figure 5 shows an example of an indoor motion trace and
sequence of activities split by Turns (T) and Altitude Changes
(AC).

C. Activity Recognition Module

The aim of this module is to define a set of rules that
automatically allows the system to detect the segment activity
among the possible indoor states defined above (stationary,



Fig. 7: Decision tree to classify the possible indoor states.

elevator, walking or stairs). This module receives the segments
of motion generated by the previous module and processes the
sensor data to classify the segments and estimate the activity
performed. Figure 7 shows the decision tree that has been
defined to classify the possible states.

1) Activity or Rest: At the very top of the tree, the first
decision to make is to decide whether the user was active or
at rest. The first decision is to differentiate between movements
based on the magnitude level of acceleration, a process similar
to the one used in the turn detection algorithm. After filtering
the signal to make it smoother, the first decision is to differ-
entiate between movements based on the magnitude level of
acceleration. Fixing a threshold over the acceleration energy
leads to estimate periods of activity and, complementary,
segments of rest. Analogous, other inertial sensor signals can
be used to detect the activity subclasses in the decision tree,
such as the magnitude of the magnetic fields, the pressure
changes, the variance of accelerations, or the correlation of
the accelerations.

2) Elevator (E): According to the decision tree, if the
user is at rest is because he or she is either stationary or in
an elevator. Similar to cars or planes, elevators behave like
a Faraday shield presenting a unique magnetic field pattern
that makes them distinguishable with accuracy. Since a typical
elevator is a structure formed by conducting material, it blocks
non-static electric fields and external static. The different
values for the magnetic field energy coming from the outside
and the inside of the elevator show a notable difference, thus
this transition of states is easily identifiable, as shown in
Figure 8.

There are two additional details that have to be distin-
guished in the elevator motion segments: the direction of
motion and the estimation of the number of floors traveled.

Fig. 8: Transition of magnetic field energy outside and inside
an elevator.

The identification of the elevator direction can be estimated
based on the energy of the acceleration measurements when
the elevator starts and stops its travel. These events produce
a pattern of acceleration peaks in the elevator segment and
studying its order of appearance the elevator motion can be
classified. If the pattern is a positive peak followed by a
negative peak, a travel in the up direction was performed (see
Figure 9). If the sequence shows a negative peak followed by
a positive one, the elevator traveled down.

The number of floors traveled can be estimated in two
different ways. First, it can be estimated with the aid of the
displacement duration of the travel inside the elevator, consid-
ering the number of samples between the acceleration peaks
detected. Second, it can also be estimated using the barometric
sensor included in recent smartphones. With the barometer raw
data, the detection of pressure changes helps enormously in the



Fig. 9: Energy of acceleration values when the elevator travels
in the up direction.

detection of altitude changes, thus in the recognition of elevator
direction travels. As shown in Figure 10, an elevator traveling
up means a notable decrease in the air pressure measurements.
The number of floors traveled can be estimated considering the
period of time during which the barometer shows an abnormal
variation.

Fig. 10: Air pressure variations when the elevator is traveling
in the up direction.

3) Stationary (Sy): Stationarity or being at rest includes
sitting or standing with no displacement performed during a
period of time. Since elevator and stationary states are the only
two possible states in the left branch of the decision tree, if a
segment is not classified as elevator, it will be considered as
a stationary segment.

4) Walking (W) and Stairs (St): The second possibility at
the very top of the tree is when the user is active. Once
the rest states have been discarded using the energy of the
acceleration, it is necessary to differentiate the active segments
between stairs and walking cases. The initial observation is
that when pedestrians are taking the stairs, the variance of
the acceleration is broader than in the walking case. This
can be seen in Figure 11, which shows the variance of the
acceleration’s energy in a Walking (W) - Stationary (Sy)
- Stairs (St) motion sequence. The correlation between the
acceleration signals in the motion’s direction (y axis) and the
direction of gravity (z axis) is a good indicator to separate
stairs from walking. Furthermore, the measurements show that
taking the stairs down (helped by the acceleration of gravity)
involves higher motion intensity than going up.

Fig. 11: Variance of energy acceleration in walking, stationary
and stairs states.

In addition, for mobile devices that include a barometric
sensor, the detection of altitude changes can be useful to find
the different active states and the direction of movement during
stairs periods. As shown in Figure 12, the trend of air pressure
measurements helps in the identification of the type of activity
performed. It can be an accurate signature for the detection of
walking the stairs or walking flat.

Fig. 12: Values of air pressure in stairs and walking states.

Combining these three processed signals (variance and
correlation of accelerations and pressure changes) and using
them as indicators, the active states can be detected, including
the direction of the user in the stairs segments. On the one
hand, a segment with high variance in the acceleration, a high
yz correlation in the acceleration and notable increases in air
pressure will be detected as going down the stairs. On the other
hand, a high variance, a medium value of yz correlation and
decreasing changes in air pressure will be detected as going
up the stairs. Finally, a low level in the variance and the yz
correlation, combined with a stable level in the air pressure
readings will classify the segment as walking.

D. Activity Specification Module

Once the activity recognition module has identified the
activity in a segment, some activities, like walking or stairs,
require of additional algorithms to enable a complete tracking
of the user. In this section we describe additional algorithms
to detect steps and stairs and therefore being able to estimate
the total distance traveled by the user.



1) Step Detection and Counting Algorithm: Thanks to the
detection of cycles in the data gathered by the accelerometer
(swing and stance phases) caused by the repeated patterns or
events in motion of walking, it is possible to count the number
of steps, and therefore obtain and estimation of the distance
traveled. Based on the experiments, the effect of walking on
the magnitude of the acceleration vector is independent from
the phone orientation and tilt. Consequently, our step counting
algorithm is designed using the magnitude of the acceleration,
making this approach for distance estimation independent from
the placement of the mobile phone (messaging in hands,
calling in user’s ear or swinging in the pocket). The step
detection and counting algorithm (Algorithm 3) performs a
calibration routine that compensates the bias introduced by the
sensor and applies an average filter to reduce the background
noise. A double threshold over the magnitude of the filtered
signal is used to detect the stance and swing phases in the
human gait. Finally, a step is detected when a transition
between stance and swing phases is recognized.

Algorithm 3 Step Detection and Counting Algorithm
1: for each i ∈MotionTrace do
2: A(α)← f(aαi) Equation 10
3: E[ai]← f(axi, ayi, azi) Equation 12
4: end for
5: A(α)← f(A(α), N) Equation 10
6: Acalib ← f(A(x), A(y), A(z)) Equation 11
7: for each i ∈MotionTrace do
8: for j = i− ω to j = i+ ω do
9: ai ← f(E[aj ], Acalib) Equation 13

10: end for
11: ai ← f(ai, ω) Equation 13
12: A1i ← f(ai, AT1) Equation 14
13: A2i ← f(ai, AT2) Equation 15
14: Si ← f(A1i , A2i , ω)
15: Add Si to StepDetections[ ]
16: end for
17: return StepDetections[ ]

The algorithm implemented for step detection and counting
consists of the following steps:

1) Calibration routine: during a segment of movement,
samples of linear acceleration [ax, ay, az] are col-
lected to estimate the mean of the acceleration using
Equation 10.

[A(x), A(y), A(z)]

with A(α) =
1

N

N−1∑
i=0

aαi
(10)

where N is the number of samples used in the
calibration routine for one segment. Then, the energy
of the averages is calculated using Equation 11, which
is considered as bias to compensate.

Acalib =

√
A(x)

2
+A(y)

2
+A(z)

2
(11)

2) Mean of accelerations: compute the energy of the
acceleration E[ai] for every sample i, as shown in
Equation 12.

E[ai] =
√
ax2i + ay2i + az2i (12)

Use Equation 13 to estimate the average of the energy
in a window of size ω (10 samples) and compensate
for the bias as calculated by Equation 11.

ai =
1

2ω + 1

j=i+ω∑
j=i−ω

(E[aj ] −Acalib) (13)

3) Thresholds: a first threshold AT1
is applied according

to Equation 14 to detect high accelerations during the
swing phase.

A1i =

{
AT1 if ai > AT1

0 otherwise
(14)

A second threshold AT2
, as defined by Equation 15,

is used to detect the walking stance phase.

A2i =

{
AT2 if ai < AT2

0 otherwise
(15)

AT1
and AT2

are symmetric values respect to 0
and fixed heuristically to 0.5m/s2, meaning that the
acceleration varies more than AT1

or less than AT2

during an interval of 150ms or 10 samples.
4) Step detection: a step Si is identified in the sample i

when a swing phase ends and a stance phase starts.
For a step detection two sequential conditions must
be accomplished:

a) a change from high to low acceleration
(A1i−1

> A1i) is detected in the square wave
generated after applying the threshold AT1

(Equation 14), and simultaneously
b) there is at least one detection of a low level

of acceleration in a window of size ω ahead
of the current sample i, i.e., min(A2i:i+ω

) =
AT2

in the square wave generated after ap-
plying the threshold AT2

(Equation 15).
5) Finally, the array with the step samples is iterated to

obtain the average time between steps, which could
be useful to estimate the step rate or the velocity of
displacement of the person.

Fig. 13: Step detection and counting algorithm signals.



Figure 13 shows the signals as a result of applying Equa-
tions 12, 13, 14 and 15 in the step detection and counting
algorithm for a basic walking example. Once the number of
steps is obtained, the total distance walked can be directly
estimated considering the stride length of each step to be
constant and with a value of 0.74m [2].

2) Stairs Detection and Counting Algorithm: The algo-
rithm in this section estimates the number of steps while using
the stairs and the total distance traveled by the user. This
algorithm (Algorithm 4) also performs a calibration routine to
compensate for the bias and applies a low pass filter over the
energy of the accelerations to reduce the background noise.
Finally, it looks for peaks in the signal and applies a guard
factor to discard minor variations and detect only the peaks
that are eligible as stairs.

Algorithm 4 Stair Detection and Counting Algorithm
1: for each i ∈MotionTrace do
2: A(α)← f(aαi) Equation 10
3: E[ai]← f(axi, ayi, azi) Equation 12
4: Ai ← f(E[ai−1], E[ai], α) Equation 16
5: end for
6: A(α)← f(A(α), N) Equation 10
7: Acalib ← f(A(x), A(y), A(z)) Equation 11
8: for each i ∈MotionTrace do
9: Ai ← f(Ai, Acalib) Equation 17

10: Pi ← f(Ai, Ai−1, Ai+1) Equation 18
11: Add Pi to Peaks[ ]
12: end for
13: for each i ∈ Peaks[ ] do
14: C ← f(Ai,M,G) Equation 19 and 20
15: Sti ← f(C,Ai)
16: Add Sti to StairDetections[ ]
17: end for
18: return StairDetections[ ]

The algorithm implemented for stairs detection and count-
ing based on peak detection consists of the following steps:

1) Calibration routine: during a segment, samples of
linear acceleration [ax, ay, az] are collected to esti-
mate the mean in the acceleration. The energy of
the average is estimated and considered as bias to
compensate. The same Equations 10 and 11 are used
here.

2) Energy of acceleration: the simplest way to produce
useful data out of the three components of the sensor
is to take the magnitude of the acceleration vector.
It computes the energy of the acceleration E[ai] for
every sample ai using Equation 12.

3) Low pass filter and bias compensation: low-pass
filters provide a smoother form of the signal removing
the short-term fluctuations. Ai is the discrete low
pass filter signal of the acceleration energy readings
LPF (E[ai]). It has been applied using a discrete-
time implementation of a simple RC low-pass filter as
show below in Equation 16, with a smoothing factor
of α = 0.9.

LPF (E[ai]) = α E[ai−1] + (1 − α) E[ai] (16)

To compensate the bias, the value Acalib is removed
for all the energy filtered samples using Equation 17.

Ai = Ai −Acalib (17)

4) Peak Detection: a peak Pi is detected at a sample i
if during the Ω previous samples (Ω = 5, meaning
75ms) the backwardSlope of the current sample is
positive and in the next sample the forwardSlope
becomes negative. These two functions are detailed
in Equation 18.

backwardSlope(Ai) = Ai −Ai−1

forwardSlope(Ai) = Ai+1 −Ai

(18)

5) Stairs detection: the energy signal is traversed by
a buffer of a fixed number of samples. In this
implementation, the buffer length is 100 samples
equal to 1.5s. For every set of samples in the buffer,
peakMean (Equation 19) is calculated estimating the
energy of the detected peaks Pi.

peakMean =
1

M

N−1∑
i=0

APi
(19)

where M is the number of samples detected as peaks
and possible stairs. This value is multiplied by a guard
factor (G = 0.6) to avoid the detection of false peaks,
and the new value C (Equation 20) is the threshold
for each set of samples in the buffer.

C = G ∗ peakMean (20)

The peaks detected in each buffer have effect on the
responsiveness of the algorithm changing the value
of the threshold C. The final step of the algorithm is
to detect stairs Sti by iterating over Ai and detecting
the peaks that are above the threshold.

Fig. 14: Stairs detection and counting algorithm signals.

Figure 14 shows the signals taking part in the stairs
detection and counting algorithm applied in a motion test in
which a user was going down the stairs. The total altitude
climbed can be estimated considering the number of steps and
the maximum stair riser heights. This value is regulated and
fixed to 7inches (178mm) by the International Building Code
(IBC). The IBC is a model building code which has been
adopted throughout most of the United States. It is developed
and maintained by a standards organization independent of the
jurisdiction responsible for enacting the building.



IV. SYSTEM IMPLEMENTATION

The system was implemented in two main parts as shown
in Figure 15: the mobile application (called SensorApp), which
is in charge of gathering the data from the mobile device and
displaying the values on the screen; and the server, which ap-
plies the activity recognition decisions and the data processing
algorithms, saves the traces, provides tools to introduce the
experiments for testing, and displays the evaluation results.

Fig. 15: System implementation architecture.

A. Client Side: Mobile Application

An Android application was developed to acquire the raw
data from the sensors embedded in the smartphone. SensorApp
makes use of the Android Sensor API and provides two screens
to visualize the data, as shown in Figure 16. Both screens
show the raw data collected from the embedded inertial sensors
available in the device: accelerometer, gyroscope, magnetome-
ter and barometer. The first screen shows several text views
where the values of the raw data collected are displayed. The
second screen represents the sensor values in graph format
where the x axis shows time and y axis can be: m/s2 for the
acceleration, rad/s for the rotation, µT for the magnetic field,
or mbar in the case of the air pressure. The y axis scale is
adapted to the current measurements to give a better resolution
of the values. Additionally, the mobile application is in charge
of transmitting the information packets to the server using a
web service when the motion test finishes.

Fig. 16: Mobile application screens.

B. Server Side

The server side has been designed as the main module
of the system. It aims to be a test environment to support
and simplify the system’s implementation and the evaluation
process. It allows to create experiments for different real
scenarios and to compare them with indoor motion sequences
obtained from the tests performed. Thus, it automates much
of the testing process and makes simpler the evaluation of the
results. The server performs the following tasks:

• Receiving data. It includes a web service to receive
the raw data sent by the mobile device at the end of
every single test.

• Data processing algorithms. The different modules
explained in the system design are accomplished by
several synchronized threads. These algorithms will
return the activities detected and their details.

• Storage. The system saves the information returned
by the processing algorithms for future references,
queries and evaluations. It also stores the experiments
to be tested.

• Experimentation. The server provides a graphical in-
terface to create experiments, i.e., a sequence of turns,
steps, etc. The experiments are then supposed to be
performed as such using the mobile device identifying
them with the ID created by the server. Upon comple-
tion of the data collection, the mobile device sends
the data to the server, which uses the experiment ID
to compare the experiment generated (ground truth)
with the results of analyzing the raw data.

• Visualization. The server includes a web application to
visualize and represent the results of the experiments,
so they are easy to read and analyze, as shown in
Figure 17.

Fig. 17: Server web application screenshot.



V. EVALUATION

In this section, the performance of the proposed system is
evaluated with several basic tests and complete motion traces
involving different activities. The section starts describing the
methodology applied, followed by a set of quality sensor tests
for the inertial sensors and presenting the evaluation of all the
modules and algorithms involved in the system. It concludes
with the discussion of the test results.

A. Methodology

The client side of the system was implemented using
the Android platform in two different devices: the Samsung
Galaxy SII I777 and the LG Nexus 4 E960, which are equipped
with basic inertial sensors such as accelerometer, gyroscope,
magnetometer and barometer. The set of experiments were car-
ried out in different buildings in the campus of the University
of South Florida, with plenty of corridors, corners, stairs and
elevators. The evaluation requires three steps:

1) Create the experiment in the graphical interface of
the server specifying the sequence of motion to be
performed by the user.

2) Perform the test with the mobile application identi-
fying the experiment to be tested.

3) Compute the results and show them to the user.

A total of 200 motion traces were collected while the
user was carrying the phone in his hand, in texting position.
Initially, the quality of the sensors is analyzed and evaluated.
Also, the convenience of the chosen sampling frequency is
demonstrated. Then, the algorithms detecting turns and altitude
changes are evaluated. These algorithms allow the segmenta-
tion of the original traces. The evaluation continues studying
the results of the activity recognition module in charge of
classifying the segments in one of the possible states. The
results for the specification module are also shown. They
include the results of the algorithms for detecting and counting
steps and stairs. Moreover, the counting steps algorithm is
compared with the step counting hardware-based solution
included in the latest version of the Android platform. Finally,
the combined tracking accuracy, when applying the complete
architecture of the system, is presented.

B. Data Collection Results

1) Inertial Sensors Evaluation: This section performs an
evaluation of the inertial sensors considered as data sources in
the system. This evaluation is carried out to study the long
term errors introduced by the sensors and to consider the
need of calibration to obtain more reliable outputs. The set
of inertial sensors embedded in the Samsung SII are a 3-axes
accelerometer, a gyroscope, and a magnetometer. In addition
to all these sensors, the LG Nexus 4 also includes a barometric
pressure sensor.

To analyze the accuracy and the behavior of the sensors,
tests are performed with the devices stationary on a table.
In these error analysis tests, the sensor samples are recorded
during a period of 15s with the phone lying flat with its back
on the table, i.e., with the z axis pointing to the sky. The phone
is stationary in order to prevent any force other than gravity
from affecting the output.

The accelerometer measures the acceleration in three axes
in m/s2. It outputs the acceleration applied to the device
by measuring forces exerted to the sensor. The measured
acceleration is always influenced by the force of the earth’s
gravity, as shown in Equation 21 and considered as bias to
compensate.

ad = −g −
∑ F

m
(21)

where ad is the acceleration applied to the device, g is the
force of gravity, F is the force acting on the device, and m is
the mass of the device. The sign

∑
represents the sum of the

x, y, and z axes.

As a result, when the device is not undergoing any accel-
eration, the accelerometer output should read 0m/s2 in the
x and y axes, and a negative Earth’s gravity of 9.81m/s2 in
the z axis. The accelerometer test results, included in Table I,
show the high variability of the magnitude of the acceleration
measured in the stationary position, in particular, in the case
of the Samsung smartphone with 0.13m/s2. This is equivalent
to more than one percent of the total acceleration, which, with
time, could potentially generate a large error. These errors are
compensated in the system implementing the initial calibration
methods described in Section III.

The gyroscope readings are in radians per second and mea-
sure the rate of rotation around the x, y, and z axes. Rotation
is positive in the counterclockwise direction. When the device
is at rest on top of a table, the gyroscope values should read
a magnitude of 0rad/s. Table I shows the magnitude of the
offset or bias introduced by the rotation sensor, calculated as
the standard deviation of the gyroscope outputs when it is not
undergoing any rotation. To calculate the angle of rotation error
α (rad), the deviation for the angular speed of the gyroscope
ω (rad/s), should be integrated over time t as shown in
Equation 22.

α =
∑

(ω ∗ ∆t) (22)

During a 15s test, an error of 0.2365rad was estimated for
the Samsung Galaxy SII and 0.0102rad for the LG Nexus
4. Since the expected error average is zero, the calculated
values are approximately equal to the bias error of the sensor.
This error is compensated in the gyroscope algorithm in the
system performing the initial calibration methods described in
Section III.

The magnetometer measures the strength of the ambient
magnetic field in micro-Tesla (µT ) in the x, y, and z axes.
Ideally, a magnetometer completely isolated should measure a
magnitude of 0µT . Table I shows the statistical results from the
magnetic field signals collected during a test of 15s with both
cell phones in a stationary position. Since the measurements
are not centered at 0µT , because the magnetometer is not
isolated, the average standard deviation is the only useful
value to analyze the sensitivity of the sensor. The tests show a
rather high standard deviation of 0.403µT and 0.275µT for
the Galaxy SII and the Nexus 4, respectively. Due to this
deviation, calibration and signal filtering routines, similar to
the ones described in Section III for the accelerometer and



TABLE I: Inertial sensors test results.

Accelerometer (m/s2) Gyroscope (rad) Magnetometer (µT ) Barometer (mbar)

Average Std deviation Average Std deviation Average Std deviation Average Std deviation

Samsung Galaxy SII 9.42610 0.13240 0.01858 0.01577 -51.05188 0.40299 - -

LG Nexus 4 10.35168 0.04543 0.00099 0.00068 -56.45019 0.27505 1014.69 0.050086

Fig. 18: Output signals for sampling rate test.

gyroscope, are applied to the magnetometer raw data to reduce
and compensate the eventual sensor errors in the system.

The barometric air pressure sensor or barometer is classi-
fied as an environmental sensor. It measures the ambient air
pressure in mbar. Recognizing changes in the barometric air
pressure are useful to recognize altitude changes. Similar to
the rest of the sensors, a test was performed to estimate the
bias error introduced by the barometric sensor embedded in
the LG Nexus 4 (the Samsung SII has no barometer). The
standard deviation estimated in this test (see Table I) is used
in the altitude change detection algorithm of the systems to fix
a threshold to eliminate random pressure oscillations.

2) Sampling Rate Test: In all the experiments, a sampling
interval of 15ms was used to obtain raw data from the sensors.
This sampling interval was found empirically after several tests
since it provided enough data to determine the activity of
the user without consuming more energy than necessary. To
get to that conclusion, an experiment performing a walking
activity was repeated using sampling intervals of 7ms, 15ms,
and 30ms. It is worth mentioning that the walking activity is
the most demanding final state in terms of sample resolution
among the ones considered in the system. Thus, it imposes
the maximum value for the sampling parameter. Figure 18
shows the output signals of the walking segment sampled at
those intervals. As it can be seen, the 15ms sampling interval
offers the best trade off between accuracy and overhead. As
the figure shows, the resolution and magnitude of the energy
signals decreases as the sampling interval increases, making it
more difficult to the step detection and counting algorithms to
work correctly. In fact, it can be seen how the number of steps
is correctly determined sampling at 7ms and 15ms (15 steps)
while the algorithms only count 11 steps at 30ms. At the same
time, the figure shows that it is not necessary to sample the
signal so frequently, as an interval of 15ms offers the same
final results.

C. Segmentation Results

This section evaluates the algorithms for detecting the
events considered as separators in the segmentation module
of the system: heading changes, when pedestrians perform a
turn in a corner, and altitude changes, when the user takes
stairs or an elevator to change floors. These turn detection
and altitude change algorithms allow the segmentation of the
original complete motion trace into independent segments.

1) Turn Detection Test: Table II summarizes the results
of the heading change detection algorithm for six different
sequences with two, three, and four heading changes in which
L means a turn to the left in a corner and R means a turn to
the right. The sequence of turns are detailed in Figure 19. Each
sequence was repeated 5 times for a total of 30 experiments
and 90 turns. As it can be seen from the table, out of 90 turns
in 30 experiments, the algorithm only made one mistake for
an accuracy of 98.8%.

TABLE II: Turn detection test results.

Turn Detection
Test

Test 1
result

Test 2
result

Test 3
result

Test 4
result

Test 5
result

Number
of Errors

Sequence 1 (LL) LL LL LL LL LL 0
Sequence 2 (RR) RR RR RR RR RR 0

Sequence 3 (LRL) LRL LRRL LRL LRL LRL 1
Sequence 4 (RLR) RLR RLR RLR RLR RLR 0

Sequence 5 (LRRL) LRRL LRRL LRRL LRRL LRRL 0
Sequence 6 (RLLR) RLLR RLLR RLLR RLLR RLLR 0

2) Altitude Change Detection Test: The altitude change
detection algorithm was evaluated using six different altitude
change sequences, involving one, two, and three changes,
respectively. The sequences of altitude variation are shown in
Figure 20, where U means an interval of time going up, and
D a time going down. Each experiment was repeated 5 times,



Fig. 19: Sequences performed in the turn detection test.

TABLE III: Altitude change detection test results.

Altitude Changes
Detection Test

Test 1
result

Test 2
result

Test 3
result

Test 4
result

Test 5
result

Number
of Errors

Sequence 1 (D) D D D D D 0
Sequence 2 (U) U U U U U 0

Sequence 3 (DD) DD DD DD DD DD 0
Sequence 4 (UU) UU UU UU UUU UU 1

Sequence 5 (DUU) DUU DUU DUU DUU DUUU 1
Sequence 6 (DDU) DDU DDU DDU DDU DDU 0

for a total of 30 tests and 60 altitude changes. Table III details
the results of the experiments and the number of errors. As
it can be seen from the table, out of 60 altitude changes in
30 experiments, the algorithm only made two mistakes for an
accuracy of 96.6%.

D. Activity Recognition Results

Table IV shows the confusion matrix for the activity
classification tests, in which the first column shows the real
experiment performed and the first row the activity recognized.
A set of 10 experiments were performed for every activity
considered in the decision tree. In total 40 activity recognition
tests were performed. As it can be seen from the table, only
the elevator activity was misclassified; two out of ten times, it
was classified as stairs for a 95% accuracy.

Fig. 20: Sequences performed in the altitude detection test.

TABLE IV: Activity recognition test results.

Activity Recognition
Test

Stationary
(Sy)

Elevator
(E)

Walking
(W)

Stairs
(St)

Number
of Errors

Stationary (Sy) 10 - - - 0
Elevator (E) - 8 - 2 2
Walking (W) - - 10 - 0

Stairs (St) - - - 10 0

E. Activity Specification Results

Once the activity is recognized, some of them require
additional algorithms to enable a complete tracking of the
user. In the case of the walking activity, the step detection
and counting algorithm returns the number of steps walked. In
the case of the stairs activity, the stair detection and counting
algorithm provides with the number of stairs. The results of the
evaluation of these two algorithms are analyzed in this section.

1) Step Detection and Counting Test: The step detection
and counting algorithm was tested executing three walking
sequences with different distance of 5, 10, and 15 steps. Each
sequence was repeated 10 times, for a total of 30 walking
traces and 300 steps. Table V shows the results, in which
the first column is the real number of steps walked and the
first row indicates the number of steps detected relative to the
correct value. The content in the table shows the number of
experiments for each possible number of mistakes. As it can
be seen from the table, 6, 7, and 8 times out of 10 experiments
in each distance, the algorithm counted the number of steps
correctly and in most of the error cases, the algorithm counted
one step difference only. In total, out of 300 steps, only 9
errors were detected for a 97% accuracy.

TABLE V: Steps detection and counting test results.

Step Counting
Test -2 steps -1 step Correct +1 step Number

of Errors
Distance 1: 5 steps - 3 7 - 3

Distance 2: 10 steps - 2 8 - 2
Distance 3: 15 steps 1 2 6 1 4

2) Stair detection and counting test results: Similar to
the previous test, the stair detection and counting algorithm
was evaluated testing 2 stair sequences of 6 and 12 stairs,
respectively. Each sequence was repeated 10 times (combining
up and down direction), making a total of 20 motion traces
and 180 stairs. Table VI shows the results following the same
format used in the previous evaluation. Similarly, most of the
steps were counted correctly and, in this case, all the mistakes
were cases with a difference of plus or minus one step. From
a total of 180 steps, only 6 errors were detected for a 96.7%
accuracy.

TABLE VI: Stairs detection and counting test results.

Stair Counting
Test -2 stairs -1 stair Correct +1 stair Number

of Errors
Motion 1: 6 stairs - 2 8 - 2

Motion 2: 12 stairs - 3 6 1 2

In addition, we compared our step/stair detection and
counting algorithms with the most recent step detection and
counting algorithm included in the last version of the Android
platform (version 4.4.2). It is worth noticing that, although this
solution is available through Google Play services, it is actually
a hardware-based implementation, as it uses a dedicated chip
included in the LG Nexus 5 smartphone for reading and ana-
lyzing the raw data coming from the accelerometer; therefore,
this feature is not available in most of the current smartphones
in the market.



TABLE VII: Comparison step/stair detection and counting for hardware and software solutions.

Comparison
Hardware vs Software

Solutions

Test 1 Test 2 Test 3 Test 4 Test 5

G - HW P - SW G-HW P-SW G-HW P-SW G-HW P-SW G-HW P-SW

Walking: 10 steps 10 10 9 10 10 11 9 11 10 11

Walking: 20 steps 21 19 20 19 21 20 20 20 21 19

Climbing up: 13 stairs 12 12 14 12 13 13 13 13 14 13

Climbing down: 13 stairs 13 13 13 14 14 12 14 12 13 13

Combined: 6 St- 3 W- 6 St 16 15 15 14 16 14 15 15 15 14

We compared both algorithms performing five different
sequences in texting position with a LG Nexus 5 smartphone.
The sequences were: walking segments with distances of 10
and 20 steps; taking the stairs up and down 13 stairs; and a
combined motion trace involving 6 stairs, walking 3 steps and
6 additional stairs. Each experiment was repeated 5 times for
a total of 25 sequences and more than 355 steps and stairs.
Table VII shows the results of the experiments in which the
first column represents the real experiments performed and the
two first rows are the header of the results detected by the two
solutions under study. G−HW means the Google hardware-
based solution and P − SW refers to the Proposed Software
solution (our algorithms). As it can be seen from the table, both
solutions present very similar and accurate results. Out of 355
steps, our algorithm made 14 mistakes (96.1% accuracy) while
Google’s solution made 12 mistakes (96.7% accuracy).

F. Pedestrian Tracking Results

This section presents the combined tracking accuracy when
the complete architecture of the system is applied. In this eval-
uation, we utilized three traces, each representing a different
type of motion inside a building.

The first experiment mimics a person walking inside the
same floor through the corridors in a rectangle manner. It
includes four walking segments and four turns, as shown
in Figure 21. The walking sections are 18m (23 steps ap-
proximately) and 14m (18 steps approx.) long, respectively.
Five independent tests were performed in both, clockwise
(Table VIII) and counterclockwise (Table IX) directions. The
tables show the results of the walking segments since the
corners were detected correctly. As it can be seen from the
tables, the results are very accurate.

TABLE VIII: Tracking rectangle motion clockwise results.

Rectangle W 1 W 2 W 3 W 4 Total Steps Number
Motion (23) (18) (23) (18) (82) of Errors
Test 1 23 18 23 18 82 0
Test 2 22 19 22 19 82 4
Test 3 22 19 23 19 83 3
Test 4 23 18 23 19 83 1
Test 5 22 19 23 19 83 2

Average 22.4 18.6 22.8 18.8 82.6 2.4

The second experiment mimics a person in a sequence of
walking, stairs and turns, as shown in the left sequence in
Figure 22). The activity was performed in both ways, going

Fig. 21: Motion traces used for testing square motions.

TABLE IX: Tracking rectangle motion counterclockwise re-
sults.

Rectangle W 4 W 3 W 2 W 1 Total Steps Number
Motion (18) (23) (18) (23) (82) of Errors
Test 1 18 23 18 24 83 1
Test 2 18 23 19 23 83 1
Test 3 18 23 17 23 81 1
Test 4 18 24 18 24 84 2
Test 5 18 23 18 24 83 1

Average 18 23.2 18 23.6 82.8 1.2

down and up directions, five times each. The sequence, from
up to down, consists of the following segments: walking 2m
(3 steps approximately), 12 stairs, turn, walking 3m (4 steps
approx.), turn, 7 stairs, and 2m walking. Table X summarizes
the results for this experiment and Table XI shows the results
when performing the activity in the opposite direction, i.e.,
from down to up. Turns were correctly detected. Again, it can
be seen from the tables that the algorithms are very accurate.

TABLE X: Results of taking the stairs down.

Tracking Down W 1 St 1 W 2 St 2 W 3 Number
Stairs Motion (3) (12) (4) (7) (2) of Errors

Test 1 2 10 3 9 2 7
Test 2 3 10 4 8 3 3
Test 3 2 13 3 8 3 4
Test 4 3 12 2 7 3 2
Test 5 2 11 2 7 4 5

Average 2.4 11.2 2.8 7.8 3.2 4.2



Fig. 22: Motion traces for testing pedestrian indoor tracking.

TABLE XI: Results of taking the stairs up.

Tracking Up W 3 St 2 W 2 St 1 W 1 Number
Stairs Motion (3) (7) (4) (12) (3) of Errors

Test 1 2 7 2 12 3 3
Test 2 3 9 2 12 3 4
Test 3 4 7 4 12 4 2
Test 4 2 8 3 11 3 4
Test 5 4 7 3 11 2 4

Average 3 7.6 2.8 11.6 3 3.4

The last motion mimics a person that combines several
activities in different floors: stays stationary, walks, and takes
the elevator, as shown at the right hand side of Figure 22).
The sequence consists of the following segments: stationary,
walking 1.5m (2 steps approximately), turn, 2 floors in the
elevator (5sec approx.), and 1.5m walking. Table XII summa-
rizes the results for this experiment in which tests 1 to 5 show
the result of the user going in down and tests 6 to 10 going
up. Turns and stationary periods were correctly detected. As
the table shows, the results are also very accurate.

From these results, it can be inferred that the combination

TABLE XII: Results of combined sequence in different floors.

Combined
Motion

W 1
(2 steps)

E
(5 sec)

W 2
(2 steps)

Total Steps
(4)

Number
of Errors

Test 1 2 5 2 4 0
Test 2 2 4 2 4 1
Test 3 2 6 3 5 2
Test 4 2 5 3 5 1
Test 5 2 6 3 5 2
Test 6 2 5 2 2 0
Test 7 2 4 2 4 1
Test 8 3 5 3 6 2
Test 9 2 5 3 5 1

Test 10 2 5 2 4 0
Average 2.1 5 2.5 4.4 1

of the individual modules added complexity to the tracking
problem. The separators used to segment the original trace
(turns and altitude changes) can split the motion in wrong
samples that lead to errors in the final activity specifica-
tion. Also, the quick transition among activities in pedestrian
movements, as a consequence of the granularity of the in-
door environment, requires a high accuracy, not only in the
classification of the activity, but also in the detection of the
exact moment when the action was performed. While a more
rigorous experimentation is necessary (across more buildings,
users, phones, and models), the results obtained from these
experiments justify the proposed multisensory indoor tracking
system as a good solution. Further, the individual algorithms
can be used separately in many other applications, such as in
pedometers.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper presents a model to track pedestrians in indoor
environments using the sensors embedded in current off-the-
shelf smartphones. The model includes four modules to collect
the raw sensor data, segment the data using corners, stairs, and
elevators, identify the activity of the user, and quantify the type
of activity. A series of algorithms and mechanisms are included
in each module to achieve these objectives. For example, there
are algorithms to detect corners, stairs, and elevators as well
as others to accurately count the number of steps and stairs
taken by the user. Similarly, the activity recognition module
recognizes whether the person is stationary, moving, taking the
stairs or an elevator. In addition, a complete testbed framework
that simplifies the systems evaluation process is implemented.

The performance evaluation shows very good results in
both, the individual algorithms and the overall system with
all the modules and algorithms combined. The evaluation of
the system shows a combined tracking accuracy of 91.06%.
Individually, the activity recognition module recognized the
activities correctly 95% of the time; the step counting and stair
counting algorithms are 97% and 96.7% accurate, respectively;
and the detection of user changes of direction and altitude are
shown to be 98.8% and 96.6% accurate, respectively.

The proposed work can be extended and improved in sev-
eral directions. First, the presented evaluation was performed
using the smartphone in one position, the messaging position.
A complete solution should be able to track the user regardless
of the position of the smartphone, or at least using other
common positions such as calling, swinging (refers to the
position in which the user holds the device in a hand while
walking) and pocket (the device sits in the user’s pocket/bag,
which is the most common position when the user is walking).
Since most of the algorithms use the magnitude of the signal,
they should potentially work in any of the described positions.
However, this needs further investigation and evaluation. Sec-
ond, the current design of the system tracks pedestrian motions
offline, meaning that the sensor data are initially gathered by
the mobile application and, once the motion is finished, they
are sent to the server, which applies the different algorithms
and returns the results. We are currently modifying the system
to track pedestrian movements in real time, collecting and
processing the data and returning the results directly on the
smartphone. An initial implementation was utilized in the
experiments where we compared our step/stair detection and



counting algorithms with those of Google’s. Third, in the
current version of the system, the data collection module
is initiated manually by the user when entering an indoor
location. A useful improvement would be an additional module
responsible for changing from outdoor location services to this
indoor location system and viceversa automatically. Fourth,
we are also working on the integration of this system into a
complete application for indoor navigation where the indoor
map data is provided a priori. The current position could be
displayed on the map on real time, the system could provide
navigation indications to the pedestrian and also track the user
movements to correct the indications if needed. Finally, in the
future online navigation system, an investigation of the power
consumption of the system would be recommended.
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