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of the electronic structure of matter. The most important 
family of such compounds is found for systems containing 
d- and f-electrons, many of which are known to possess fas-
cinating properties, for instance, high-temperature supercon-
ductivity or colossal magnetoresistance. After many decades 
of intensive investigations, Mott insulators still stay in the 
focus of active research,1 being especially difficult objects to 
deal with from the theoretical viewpoint. The reason behind 
that difficulty is that they are essentially governed by strong 
electron correlation which makes them complicated inter-
acting many-body systems for which one-electron theories 
often turn out to be even qualitatively wrong [4].

Due to this complexity, lots of efforts have been put on 
the study of prototypical systems: from analytical models, 
e.g., Hubbard models [5, 6], allowing even exact solutions 
under certain circumstances [7] to hydrogen lattices handled 
by a number of advanced numerical techniques like dynamic 
mean-field theory (DMFT), [8], density matrix embedding 
theory (DMET) [9, 10] variational Quantum Monte–Carlo 
(QMC) [11] and others. The first nonempirical theoretical 
descriptions of Mott transitions in 3D metal solid-state com-
pounds employing, e.g., DMFT [12] or one-electron reduced 
density matrix functional theory (1RDMFT) [13] have also 
appeared recently.

Mott transitions (MTs) are tightly related to the para-
digmatic homolytic dissociation of covalent bonds in mol-
ecules [14]. Finite clusters from hydrogen lattices have 
been therefore also extensively used as model systems for 
studying the MT, with a wide variety of methods ranging 
from full CI, used ubiquitously as a reference, to density 
matrix renormalization group [15], auxiliary-field QMC 
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1 Introduction
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[16], variational two-particle reduced density matrix func-
tional theory [17], geminal-based AP1roG methods [18] 
and many others.

The rationalization of Mott insulators and MTs is not 
a trivial task since a lot of concepts in both physics and 
chemistry rely upon one-particle pictures that become 
inapplicable in this case. Besides the evolution of the total 
energy, various indicators from spectral densities [8] to the 
off-diagonal elements of the one-particle reduced density 
matrix (1-RDM) [17] have been employed to monitor the 
transition from the metal to the insulator. From this side, it 
would be advantageous to utilize a universal set of indica-
tors capable to deliver physically sound information from 
all the models and theoretical approaches. The methods of 
quantum chemical topology (QCT) [19] can serve as such 
a universal toolkit for recovering chemical concepts. Being 
based on orbital invariant reduced density matrices [20], 
they have been already successfully applied to the study 
of dissociation processes in simple molecules [21], MTs 
in model 1D Hubbard lattices and finite hydrogen cyclic 
molecules [22].

This article presents the application of this powerful 
toolkit to the study of the Mott transition in one- to three-
dimensional hydrogen lattices evaluated from the results of 
periodic one-particle reduced density matrix functional the-
ory (1RDMFT) calculations [23] employing APW+lo+LO 
basis set [24]. The degree of electron localization and 
electron sharing in real space has been studied employing 
electron sharing indices [25, 26], and the evolution of their 
profiles during the MT is analyzed as well as their spatial 
dependence at the different stages of the transition. The 
influence of the electronic correlation on the electron locali-
zation and sharing during the MT is also considered. Finally, 
the dependence of the results from the computational param-
eters has been also analyzed.

2  Methods and computational details

2.1  One‑electron reduced density matrix functional 
theory

In 1RDMFT the system can be described by its one-electron 
reduced density matrix (1RDM) [20]

where �  is the N-electron wavefunction of the system and 
� = {�, �} denotes a combined space and spin electron coor-
dinate. In the electronic energy [23] functional of 1RDM 
theory,

(1)

�(�, ��) = N ∫ d�2 …∫ d�N�
∗(�, �2 … �N)� (��, �2 … �N),

all the terms but the last one, corresponding to the correla-
tion energy, are known exactly. The spin-summed diagonal 
part of � is the electron density, �(�) =

∑
� �(��, ��). The 

1RDM for collinear periodic system can be represented via 
its eigenvalues {n} and eigenvectors {�} called natural occu-
pations and natural spinorbitals, respectively, as:

whereas in periodic systems natural spinorbitals have to be 
Bloch states due to translational symmetry [27]. The N-rep-
resentability conditions [28] that define appropriate 1-RDMs 
for a fermionic system (corresponding to either pure state or 
an ensemble of pure states) are known to be:

Minimization of Eq. 2 with respect to natural occupations 
and orbitals yields the best possible 1RDM [23] if we keep 
the conditions of Eq. 4 fulfilled and the natural orbitals 
orthonormal. Unfortunately, the exact correlation functional 
Ec[�] is not known, so many approximations to it, starting 
from Müller’s functional [29], have been proposed in the 
literature [30]. New functionals continue to appear [27, 31, 
32].

In the present work a power functional [27, 33]

with � = 0.656 and Kj�j��� = ⟨�j�(1)�j��� (2)�r−112 ��j��� (1)�j�(2)⟩  
has been used because it is known to reproduce the basic 
features of the electronic structures of some transition metal 
oxide Mott insulators [13]. Moreover, a benchmarking of 
the 1RDMFT functionals versus the exact solutions for the 
quasi-solvable few-electron harmonium atoms [34] yielded 
for the strongly correlated regime optimal � values reason-
ably close to the one used here.

1RDMFT calculations have been performed for 1D, 2D 
(square) and 3D (primitive cubic) hydrogen lattices using a 
customized version of the Elk code [35]. In the case of 1D and 
2D lattices, the distance between lattice replicas was set equal 
to 10 a.u. The unit cell parameter has been varied within the 
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range 2–10 a.u, and the size of the k-mesh along each direction 
of the lattice was set equal to 16 for 1D and 2D calculations 
and to 8 for the 3D case.

Natural orbitals have been expanded over the set of 
Kohn–Sham orbitals (within the local density approxima-
tion (LDA) [36]) for the seven lowest bands obtained using 
periodic APW+lo+LO calculations with the same compu-
tational parameters. In a first step, their coefficients have 
been minimized using fixed step iterative gradient optimiza-
tion with the consequent orthogonalization until the energy 
change between the two last iterations becomes less than 
10−5 a.u. In a second step, the natural occupations have been 
minimized using fixed step iterative gradient optimization 
until the energy change becomes less than 10−8 a.u. These 
sequence has been repeated at least three times which has 
provided a final convergence in the total electronic energy 
at the level <1 × 10−4 a.u.

To check the sensitivity of the results, extra 1RDMFT cal-
culations employing:

• 10 lowest bands instead of 7 for 1D lattices,
• 24 k-divisions instead of 16 for 1D lattices,
• 12 k-divisions instead of 8 for 3D lattices, and
• Müller’s functional [29] with � = 0.5 instead of the power 

functional already described [13] functional for 1D lattices

have been performed and evaluated.

2.2  APW+lo+LO method

Augmented planewaves with local orbitals belong to one of 
the most accurate and popular classes of basis sets for all elec-
tron full-potential calculations [24, 37]. A single APW one-
electron function is a multipole-expanded function within the 
atom-centered nonoverlapping muffin-tin (MT) spheres and a 
planewave outside, in the interstitial region (IR):

The radial functions f �+�
n,lm

(r) are built from the solutions of 
radial Schrödinger equations taken at fixed energy values. In 
the APW+lo method, APWs are extended with several addi-
tional so-called local functions (defined only inside the MT) 
that are used to improve the representation of radial parts. 
With this, the Kohn–Sham orbitals can then be expanded in 
the APW basis as:

(6)𝜙n�+�(�) =

�∑
lm f �+�

n,lm
(r)Ylm(�̂) � ∈ MT

1√
𝛺
ei(�+�)� � ∈ IR.

(7)�j�(�) =
∑

�

∑

n

cj;n�+��n�+�(�).

2.3  Electron sharing indices

The degree of electron localization inside the spatial domain �,  
given by the localization index (LI) �(�) [25], can be evalu-
ated as

where �2(�1, �2) is the electron pair density,

and the expression in the square brackets is the so-called 
exchange–correlation part of the electron pair density [38].

The difference between the (average) domain popula-
tion N(�) = ∫

�
d��(�) and the localization index

is equal to the statistical variance of the domain population 
[25]. If �(�) is equal to the electron population of domain �,  
then the electrons are regarded as perfectly localized inside 
it.

Delocalization indices (DI) �(�,��) characterize the 
degree of electron delocalization between the correspond-
ing spatial domains and are given by

For spatial domains taken to be QTAIM topological 
basins [39], they can be interpreted as a covalent bond 
order between QTAIM atoms [40, 41].

The sum of delocalization indices between all neighbor-
ing domains �′ surrounding one particular � is directly 
related to the statistical variance of the domain population

which can be interpreted as the valence of the QTAIM 
atom � [41–43].

Equations 8 and 11 require the pair or exchange–corre-
lation (xc) hole density to be accessible. However, no exact 
expressions for them via the RDM are known, so we have 
evaluated the pair density via an approximated expression 
of the xc-hole density. In this work, we have used the form 
proposed by Buijse and Baerends [44]

(8)
�(�) = ∫

�

d�
1 ∫

�

d�
2

[
�(�

1
)�(�

2
) − �

2
(�

1
, �

2
)
]

= ∫
�

d�
1 ∫

�

d�
2
�xc(�1, �2),

(9)
�
2
(�

1
, �

2
) = N(N − 1)∫ d�

3
…

∫ d�N�
∗(�

�
, �

2
… �N)� (�

1
, �

2
… �N),

(10)N(�) − �(�) = �2(�)

(11)
�(�,��) = 2∫

�

d�
1 ∫

��

d�
2

[
�(�

1
)�(�

2
) − �

2
(�

1
, �

2
)
]

= 2∫
�

d�
1 ∫

��

d�
2
�xc(�1, �2).

(12)2�2(�) =
∑

��≠�
�(�,��),



 Theor Chem Acc (2017) 136:96

1 3

96 Page 4 of 10

(representing a Müller-type functional [29], also of power 
type), since it guarantees the proper normalization of the 
pair density to N(N − 1) pairs which is very convenient for 
chemical bonding analyses. In this way, computed locali-
zation and delocalization indices correspond to the Fulton 
formulation [45]. All the electron sharing indices as well 
as the QTAIM partitionings have been calculated using a 
customized version of DGrid code [46].

3  Results and discussion

We will first report and discuss the results of 1RDMFT 
calculations with � = 0.656 for 1D–3D hydrogen lattices, 
comparing them with those from other methods and models 
reported in the literature. The evolution of electron localiza-
tion and sharing in the course of the MT, as well as the spa-
tial decay of electron sharing at different stages of transition, 
will be analyzed in detail, as well as how they are linked 
to the electronic correlation energy of 1RDMFT (Eq. 5). 
Finally, we will discuss the stability of the results with 
respect to the variation of the computational parameters.

Table 1 compares the values of delocalization indices 
and related parameters obtained from LDA DFT [47] and 
1RDMFT calculations for 1D–3D lattices with an small 
unit cell parameter a = 2.5 a.u. corresponding to the metal-
lic regime. The nearest neighbor delocalization indices are 
pretty close for both methods, indicating much similar-
ity in the degree of nearest neighbor sharing. At the same 
time, the localization indices are systematically higher for 
1RDMFT results which thus favors a more localized picture 
and weaker sharing with distant atoms. This difference can 
be attributed to the enhanced long-range electron correla-
tion characteristic of the 1RDMFT approximation that favors 
electron localization [48].

(13)

�xc(�1, �2) =
∑

jj����

(nj�nj��� )
1∕2�∗

j�
(�1)�

∗
j���

(�2)�j�(�2)�j��� (�1)

Figure 1 presents the dependence of the total energy 
per atom of hydrogen lattices versus the lattice unit cell 
parameter, a. For 1D and 2D lattices, the energy profiles 
display a shallow maximum for large a values which most 
likely should be attributed to spurious interaction effects 
among the periodic replicas of the lattices. The energy 
of dissociated lattices (at 10 a.u.) for all three lattices 
is very close and roughly approaches −0.44 a.u. which 
is  0.06 a.u. higher than the exact value. Equilibrium unit 
cell parameters for all the three lattices lie between 2 and 
3 a.u., whereas aeq

1D
< a

eq

2D
< a

eq

3D
. Cohesive energies lie 

within the range 0.06–0.08 a.u. and decrease in the series 
Ecoh
1D

> Ecoh
2D

> Ecoh
3D

.
Unit cell parameters and cohesive energies coincide 

reasonably well with the results of other calculations. 
For finite cluster models of 1D lattices, density matrix 
renormalization group (DMRG) calculations yielded [15] 
aeq ≈ 1.8 a.u. and Ecoh ≈ 0.07 a.u., similar to AP1roG [18], 
QMC [16] and DMET [10] results. For 2D cluster model, 
the latter method yielded aeq ≈ 2.5 a.u. and Ecoh ≈ 0.02 
a.u [10]. Variational two-particle reduced density matrix 
functional theory [17] yielded for finite cluster model of 
3D lattice equilibrium lattice constant is aeq ≈ 2.8 a.u. 
and Ecoh ≈ 0.02 a.u. Equilibrium unit cell parameters 
have pretty close values, whereas the cohesive energies 
show larger deviations most likely due to the difference 
in the models (finite vs. periodic). It should be noted that 
the value of � may essentially influence the quality of the 
potential energy surface [49].

Figure 2 shows the distribution of the occupation num-
bers of the natural orbitals on a for the 1D lattices. At 
short distances most of the orbitals are either doubly occu-
pied or empty, and at long distances all of them become 
singly occupied, a limit which corresponds to the set of 
noninteracting H atoms. Higher-dimensional systems show 

Table 1  Comparison of localization and delocalization indices for 
hydrogen lattices from DFT [47] and the present 1RDMFT calcula-
tions

�(H) – localization index for H; �(H, H’) – delocalization index 
between nearest H atoms (d(H, H’) = 2.5 a.u.). All the values are 
obtained using Fulton’s formulation [45]

Data from 1

∞
[H] 2

∞
[H] 3

∞
[H]

�(H, H’) 1RDMFT 0.384 0.19 0.12
�(H, H’) DFT 0.424 0.19 0.12
�(H) 1RDMFT 0.59 0.49 0.43
�(H) DFT 0.46 0.37 0.31
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Fig. 1  Dependence of the total energy per atom on the cell parameter 
for 1D–3D hydrogen lattices from 1RDMFT calculations
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similar distributions displaying slightly large dispersion 
that increases with the dimensionality of the system. A 
similar evolution of the occupation numbers has been 
reported from variational 2RDMFT calculations [17].

The behavior of the localization indices of the lattices 
as a is varied is presented in Fig. 3. In contrast to the local 
spin density approximation (LSDA) results [50], where 
the electron localization was shown to display a stepwise 
increase necessarily associated with the appearance of 
nonzero magnetic moment, the 1RDMFT results show an 
electron localization profile that continuously increases 
from  0.5 to  1 while the system stays nonmagnetic. It is 
also noteworthy to recognize that the different dimension-
ality profiles never cross within the distance range studied 
covering the metal to insulator transition. Thus, the degree 
of electron localization always decreases as the dimension-
ality of the system increases. The same effect has been 

observed earlier for lattices in the metallic regime using 
DFT calculations [47, 51] and has been rationalized as a 
systematic increase of electron sharing due to increase of 
coordination number in higher-dimensional lattices.

The evolution of the delocalization indices between near-
est neighbor QTAIM atoms is shown in Fig. 4. One can 
clearly recognize smooth sigmoidal profiles much similar to 
what was reported for finite systems [21] and 1D Hubbard 
models [22]. We interpret these results in terms of an essen-
tial electron sharing between nearest atoms in the metal-
lic regime, just like between covalently bonded atoms in 
textbook molecules, that gradually decreases to zero in the 
insulating state during the course of the MT. As it was stated 
for localization indices, the nearest neighbor delocalization 
indices also decrease with the system dimensionality for all 
the distance range studied.

All the nearest neighbor profiles have a sigmoidal shape. 
From the analysis of molecular systems, it has been stated 
[21] that such a shape is a sign of shared interactions of the 
atom with its environment, just as expected for metallic sys-
tems. Similar profiles have been obtained from the 1D Hub-
bard model and in correlated molecular calculations [22].

From the analysis of delocalization indices profiles in 
molecules [21], it has also been concluded that the inflection 
point in these profiles signals the situation where bonds are 
half-broken. Similarly, the analysis of Hubbard model results 
[22] has showed that at this point the strength of the correla-
tion and hopping terms become equal. The delocalization 
index value attains at this point half of its maximum value 
(i.e., at the equilibrium geometry). This rule is also fulfilled 
for the profiles shown in Fig. 4. With that idea, the middle 
point of the transition for each lattice can be estimated. One 
can easily see that this occurs at ≈ 5 a.u. for the 1D lattice, 
at ≈5.5 a.u. for the 2D case, and at ≈ 6 a.u. for the 3D lattice.
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Fig. 2  Distribution of the occupation numbers of the natural orbitals 
for 1D hydrogen lattice as obtained from 1RDMFT calculations
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Fig. 3  Dependence of the localization index for QTAIM atoms, �(H), 
on the cell parameter a for hydrogen lattices in 1RDMFT calculations
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In the 1D lattice case, it is also observed that more dis-
tant than first neighbor contacts display sigmoidal profiles 
(Figs. 5, 6). However, this is not the case for 2D and 3D 
lattices. In these two latter cases, the delocalization indi-
ces between QTAIM atoms whose attractors are separated 
from each other by 2a show profiles with shapes closer to 
exponential decay, this situation being typical for nonbond-
ing interactions (Fig. 5). The same holds also for contacts 
between atoms at a distance equal to 3a in the 2D lattice 
(Fig. 7). At the same time, the DI profiles between next 
nearest neighbor atoms at a distance equal to a

√
2 in 2D 

and 3D lattices (Fig. 8) show profile shapes (Fig. 8) which 
are difficult to classify unambiguously into the exponential/
sigmoidal categories. Next nearest neighbor profiles for the 
3D lattice display even a shallow maximum near the middle 

point of the transition. This provides an interesting insight 
into the very nature of bonding in metals, showing how dif-
ferent the interactions can be even in the simplest metal-
lic system. The results of this work demonstrate that the 
chemical bonding between atoms in metals occurs basically 
among (a few) nearest neighbors, this image delivering a 
rather localized picture of chemical bonding in contrast to 
the classical Drude–Sommerfeld model [4] of a delocalized 
electron gas in which the lattice ions are immersed. Such a 
locality for the interactions existing in 2D and 3D hydrogen 
lattices can be rationalized as a consequence of the high 
coordination numbers in conjunction with the low num-
ber of valence electrons that characterizes typical metallic 
scenarios. The electron sharing of an atom described by its 
basin-averaged Fermi hole [52–54] provides bonding only 

72 3 4 5 6 8 9 10
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0.005

0.01
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0.02
 δ

0,
2
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Fig. 5  Dependence of the delocalization index to the neighbor at the 
distance 2a along the unit cell vector, �

0,2
, on the cell parameter a for 

hydrogen lattices in 1RDMFT calculations
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Fig. 6  Dependence of the delocalization index to the neighbor at the 
distance 3a along the unit cell vector, �
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, on the cell parameter a for 

1D hydrogen lattice in 1RDMFT calculations
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Fig. 7  Dependence of the delocalization index to the neighbor at the 
distance 3a along the unit cell vector, �
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, on the cell parameter a for 

hydrogen lattices in 1RDMFT calculations
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2) on the cell parameter a for hydrogen lattices in 
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with a set of relative few neighboring atoms. The extent 
of this bonding should depend both on the structure defin-
ing the coordination number and on the nature of the metal 
defining the number of available valence electrons.

From the analysis of Hubbard model results, the origin 
of the sigmoidal profile shapes has been shown [22] to lie 
in the nonlinear mapping between the interatomic distance 
and the correlation strength parameter. Figure 9 illustrates 
the dependence between the 1RDMFT correlation energy 
calculated using Eq. 5 and the unit cell parameter of the 
1D hydrogen lattice, which also shows remarkable nonlin-
earity. At short distances the correlation energy changes 
only slowly, whereas at large distances the changes become 
larger. Quantitatively similar dependence is revealed from 
DMRG calculations of finite H50 chain [15]. The same non-
linearity is recognized in Fig. 2 by looking at the deviation 
of the highest NO occupation from 2, which one can also 
naively see as a quantity mirroring the strength of the corre-
lation driving the electrons far from each other and prevent-
ing double occupation of the same site at large distances. 
Similar nonlinear dependencies have been recovered for 2D 
and 3D lattices. The curves in Fig. 9 are shifted to the right 
in the series 1D–2D–3D, showing that the correlation energy 
increases with the system dimensionality.

In the case of Hubbard cyclic chains, two types of depend-
ence of the delocalization indices on the correlation strength 
parameter have been observed previously [22]. The delo-
calization indices �(0, 2j + 1) ( j = 0, 1...) decay monotoni-
cally as the correlation strength grows. However, �(0, 2j + 2) 
( j = 0, 1...) show nonmonotonical dependence: At zero cor-
relation strength they are also equal to zero, then increase 
as the correlation gets stronger and attain a maximum after 
which they decay monotonically. From 1RDMFT calcula-
tions, we observe only monotonically decaying behavior 
for all the indices as the correlation strength increases. 

This should mean that in all our calculations the correlation 
strength is rather strong, in the sense that the weak correla-
tion regime has not been attained (Fig. 10).

Figures  11, 12 and 13 show the spatial decay of the 
delocalization indices in the 1D–3D lattices with unit cell 
parameters equal to 3, 5 and 8 a.u., respectively. All the dia-
grams are plotted in a double logarithmic scale. For small 
and (to less extent) medium values of the unit cell param-
eters, (Figs. 11, 12), one observes a linear dependence on 
these doubly logarithmic plots indicating thus a power law 
�0,j = j−f �0,1 decay. For 1D lattice there are visible oscilla-
tions for a = 3 a.u. which have also been observed earlier on 
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Fig. 9  Relation between the negative 1RDMFT correlation energy 
(Eq. 5) and the cell parameter a for 1D–3D hydrogen lattices

Fig. 10  Relation between first few delocalization indices and the 
negative 1RDMFT correlation energy for 1D hydrogen lattices. Dots 
and solid lines connecting them correspond to the calculated results, 
whereas dashed lines illustrate the anticipated behavior for weak cor-
relation strength

1 2 4
 j

1e-06

1e-04

1e-02

1e+00
δ 0,

j

1D f=-3.4
2D f=-4.9
3D f=-5.6

Fig. 11  Spatial dependence of the delocalization indices for 1D–3D 
lattices with a = 3 a.u., as obtained from 1RDMFT calculations. 
Notice the doubly logarithmic scale. Dashed lines show a fit using 
equation �

0,j = j−f �
0,1

 with the power f specified in the legend
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the basis of DFT calculations [51]. However, in this case the 
oscillations are clearly weaker than in the DFT results and 
the situation 𝛿0,j < 𝛿0,j+1 never shows up. From the analysis of 
Hubbard models, it was also shown [22] that the oscillations 
are dumped by electron correlation. In line with that, Fig. 10 
indicates that in the 1RDMFT description of the 1D lattice 
the correlation strength is not very weak and that even at the 
shortest a = 2 a.u. parameter these oscillations are dumped. 
Nevertheless, their presence can be clearly recognized in 
the plots. For larger unit cell parameters, these oscillations 
become weaker and starting from a = 5 a.u. they are not 
clearly visible anymore (Fig. 12). For 2D and 3D lattices, 
there are no such pronounced oscillations even for small unit 
cell parameters, which was also the case for DFT results [51].

The presence of these oscillations is an interesting phe-
nomenon which is related to such different concepts as 
mesomerism and resonance [55] in chemistry and Frie-
del oscillations and Ruderman–Kittel–Kasuya–Yosida 
(RKKY) interactions [4] in solid-state physics. In the last 
realm, spatial oscillations of the delocalization indices have 
been shown to be directly related to the Fourier transform 
of the Fermi surface [56]. Thus, the gradual disappearance 
of the oscillations during the MT, being dumped by the ever 
increasing electronic correlation, reflects the progressive 
disappearance of the Fermi surface under the influence of 
strong correlations as the metal transforms into the insulator.

An approximate linear dependence (somewhat distorted 
for large distances probably due to the numerical inaccura-
cies) holds for the unit cell parameters around a = 6.a.u. 
For larger a values, a systematic deviation from the linear 
dependence appears (Fig. 13) indicating that the power law 
�0,j = j−f �0,1 is not valid anymore. It is interesting to note that 
this change occurs at unit cell parameter values close to the 
middle point of the transition (p. 9).

The power f from the dependence �0,j = j−f �0,1 obtained 
from 1RDMFT results systematically increases with the 
dimension of the crystal and with the unit cell parameter. 
The latter trend has been also observed for molecular ring 
models calculations of 1D lattices, and it can be directly 
interrelated to the Fourier transform of the Fermi surface. 
For instance, for 1D lattices the analytic tight-binding model 
yields the power f = 2 [51, 56]. For 2D system with an iso-
tropic Fermi surface, the power is equal to 3, in compliance 
with the results of Taraskin [57], whereas for an anisotropic 
Fermi surface, it can be between 2 to 4 depending on the 
direction [51]. For a 3D lattice displaying spherical Fermi 
surface, a fourth-power decay is expected [56].

As in the case of the powers derived from DFT calcula-
tions [51], the values obtained here are somewhat higher 
than the powers derived from simple analytical models, 
being close to full configuration interaction (FCI) and com-
plete active space (CAS) results for comparable short H–H 
distances. For instance, our value f = 3.45 for a = 3 a.u. is 
very close to f = 3.33 (CAS) and f = 3.45 (FCI) for cyclic 
ring with (H-H) = 2.7 a.u. [22]. From our 1RDMFT calcu-
lations for a = 5 a.u. f = 5.16 and for a = 6 a.u. f = 6.85 
which is smaller than CAS and CI values f = 7.54 and 
f = 9.09, which were correspondingly obtained for a = 5.5 
a.u. [22] The larger discrepancies found in this case can 
probably be attributed to the fact that our fit is obtained for 
a rather short distance range, whereas the molecular cluster 
fit was derived from more distant contacts.

Increasing the number of k-points from 16 to 24 and the 
number of the empty states taken for the NO expansions 
from 7 to 10 in the case of the 1D lattice does not alter 
the results appreciably. The same holds if the number of 
k-point divisions per axis is increased from 8 to 12 in 3D 
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Fig. 12  Spatial dependence of the delocalization indices for 1D–3D 
lattices with a = 5 a.u. from 1RDMFT calculations. Notice the 
doubly logarithmic scale. Dashed lines show a fit using equation 
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0,j = j−f �
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 with the power f specified in the legend
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Fig. 13  Spatial dependence of the delocalization indices for 1D–3D 
lattices with a = 8 a.u. from 1RDMFT calculations. Notice the dou-
bly logarithmic scale
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lattice. The only remarkable change observed was a very 
slight increase in electron localization for large values of 
the unit cell parameter when the number of empty states 
was increased.

Changing the exponent of the 1RDMFT power function � 
to 0.5, this corresponding to moving to Müller’s functional 
does, however, introduce much more noticeable changes in 
the results. For instance, the energy profile of the transition 
runs significantly lower, just as it was observed earlier [49], 
and almost converges to the exact value −0.5 a.u. at large 
unit cell parameters. The equilibrium shortest interatomic 
distance lies below 2 a.u., a value which is clearly shorter 
than the equilibrium distance obtained with other correlated 
methods. Thus, the Müller functional overbinds the 1D lat-
tice. Surprisingly, this overbinding is not accompanied by 
electron sharing enhancement as one might expect, but by a 
marked electron sharing reduction accompanied by a higher 
electron localization. The localization index evolution pro-
file shifts up, whereas the delocalization index profiles shifts 
down. Sigmoidal shapes are to a larger extent retained, at 
least for the first several shortest contacts. Finally, the spatial 
oscillations of the delocalization indices become less pro-
nounced with Müller’s functional than if we use � = 0.656, 
this result also being in line with the fact that � = 0.5 over-
correlates [58].

4  Conclusions

1RDMFT calculations employing the power potential with 
� = 0.656 have delivered qualitatively correct descriptions of 
the metal–insulator Mott transitions in 1D–3D hydrogen lat-
tices. Total energies were found to be higher than those com-
ing from other methods. However, their evolution profiles 
as well as the evolution of the 1RDM eigenvalue spectrum 
show a correct behavior.

The evolution profiles of localization indices and nearest 
neighbor delocalization indices for QTAIM atoms in 1D–3D 
lattices have sigmoidal shapes. Similar shapes have been 
observed earlier in molecular systems (0D) and 1D Hubbard 
lattices and have been interpreted as a signature of shared 
interactions between atoms. At the same time, the profiles 
for the delocalization indices between more distant neigh-
bors in 2D and 3D lattices show different shapes, having 
more similarity to the exponential profiles typical in non-
bonding interactions. This could mean that, in contrast to 
the generally accepted conception, bonding interactions in 
metals can be quite local and might only involve few nearest 
coordination spheres.

The sigmoidal profile shape for the nearest delocalization 
indices has been rationalized on the basis of cyclic Hubbard 
models as a composition of the exponential decay of the 

delocalization index versus the strength of electronic cor-
relation (which favors electron localization) combined with 
the nonlinear dependence of the correlation strength versus 
the unit cell parameter.

Employing 1RDMFT correlation energies, the same 
types of dependencies have been recovered from 1RDMFT 
calculations for 1D–3D lattices, confirming this rationale. 
Another type of dependence for the delocalization indi-
ces between next nearest neighbors that was found from 
Hubbard models, characterized by a maximum at inter-
mediate correlation strengths, has not been observed in 
the 1RDMFT results here reported. This points at a rather 
strong correlation strength regime in 1RDMFT calcula-
tions, even at the equilibrium distances of the several lat-
tices examined.

The dependence of the delocalization indices with dis-
tance in the metallic regime for 1RDMFT calculations was 
found to roughly follow a power law with �0,j = j−f �0,1, 
where j is the distance expressed as a multiple of the unit 
cell parameter. In the 1D case there are clearly visible 
oscillations, which are nevertheless much less pronounced 
than in the DFT results.

The essential damping of these oscillations can be attrib-
uted to the significant strength of the electronic correlation 
as mentioned above. The power f obtained by fitting the 
reported 1RDMFT results was found to be close to the CAS 
and FCI results for molecular clusters, at least for short inter-
atomic distances. f-values increase with the unit cell param-
eter as well as with the system dimensionality. In consistence 
with that, oscillations disappear as the unit cell parameter 
increases. For large enough values of the unit cell parameters 
that correspond to the insulating regime, the spatial depend-
ence of the delocalization indices does not obey a power law.

The 1RDMFT calculation results for the 1D lattices 
reported in this article are consistent with the molecular 
cluster data. Interestingly, they practically do not depend 
on the basis set expansion. Changing the power � of the 
functional has a stronger impact, although the qualitative 
picture remains unchanged. For 2D and 3D lattices, essen-
tially the same conclusions can be drawn as for 1D lattices.

To conclude, the results of the 1RDMFT calculations here 
reported confirm the insights into the real-space picture of 
Mott metal–insulator transitions formulated earlier on the 
basis of finite molecular calculations and simple analytical 
models. Armed with this agreement, it has then been pos-
sible to generalize them to 2D and 3D systems. The results 
have also showed that even rather simple 1RDMFT function-
als can quantitatively correctly describe the spatial evolution 
of electron localization and sharing for different correlation 
strengths. We hope that with further developments in this 
field the real-space analysis of realistic Mott systems based 
on transition metals will become feasible in the near future.
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